This source file includes following definitions.
- calcDisp
- calcCostBorder
- calcCostInside
- stereoBM
- prefilter_norm
- prefilter_xsobel
#define MAX_VAL 32767
#ifndef WSZ
#define WSZ 2
#endif
#define WSZ2 (WSZ / 2)
#ifdef DEFINE_KERNEL_STEREOBM
#define DISPARITY_SHIFT 4
#define FILTERED ((MIN_DISP - 1) << DISPARITY_SHIFT)
void calcDisp(__local short * cost, __global short * disp, int uniquenessRatio,
__local int * bestDisp, __local int * bestCost, int d, int x, int y, int cols, int rows)
{
int best_disp = *bestDisp, best_cost = *bestCost;
barrier(CLK_LOCAL_MEM_FENCE);
short c = cost[0];
int thresh = best_cost + (best_cost * uniquenessRatio / 100);
bool notUniq = ( (c <= thresh) && (d < (best_disp - 1) || d > (best_disp + 1) ) );
if (notUniq)
*bestCost = FILTERED;
barrier(CLK_LOCAL_MEM_FENCE);
if( *bestCost != FILTERED && x < cols - WSZ2 - MIN_DISP && y < rows - WSZ2 && d == best_disp)
{
int d_aprox = 0;
int yp =0, yn = 0;
if ((0 < best_disp) && (best_disp < NUM_DISP - 1))
{
yp = cost[-2 * BLOCK_SIZE_Y];
yn = cost[2 * BLOCK_SIZE_Y];
d_aprox = yp + yn - 2 * c + abs(yp - yn);
}
disp[0] = (short)(((best_disp + MIN_DISP)*256 + (d_aprox != 0 ? (yp - yn) * 256 / d_aprox : 0) + 15) >> 4);
}
}
short calcCostBorder(__global const uchar * leftptr, __global const uchar * rightptr, int x, int y, int nthread,
short * costbuf, int *h, int cols, int d, short cost)
{
int head = (*h) % WSZ;
__global const uchar * left, * right;
int idx = mad24(y + WSZ2 * (2 * nthread - 1), cols, x + WSZ2 * (1 - 2 * nthread));
left = leftptr + idx;
right = rightptr + (idx - d);
short costdiff = 0;
if (0 == nthread)
{
#pragma unroll
for (int i = 0; i < WSZ; i++)
{
costdiff += abs( left[0] - right[0] );
left += cols;
right += cols;
}
}
else
{
#pragma unroll
for (int i = 0; i < WSZ; i++)
{
costdiff += abs(left[i] - right[i]);
}
}
cost += costdiff - costbuf[head];
costbuf[head] = costdiff;
*h = head + 1;
return cost;
}
short calcCostInside(__global const uchar * leftptr, __global const uchar * rightptr, int x, int y,
int cols, int d, short cost_up_left, short cost_up, short cost_left)
{
__global const uchar * left, * right;
int idx = mad24(y - WSZ2 - 1, cols, x - WSZ2 - 1);
left = leftptr + idx;
right = rightptr + (idx - d);
int idx2 = WSZ*cols;
uchar corrner1 = abs(left[0] - right[0]),
corrner2 = abs(left[WSZ] - right[WSZ]),
corrner3 = abs(left[idx2] - right[idx2]),
corrner4 = abs(left[idx2 + WSZ] - right[idx2 + WSZ]);
return cost_up + cost_left - cost_up_left + corrner1 -
corrner2 - corrner3 + corrner4;
}
__kernel void stereoBM(__global const uchar * leftptr,
__global const uchar * rightptr,
__global uchar * dispptr, int disp_step, int disp_offset,
int rows, int cols,
int textureTreshold, int uniquenessRatio)
{
int lz = get_local_id(0);
int gx = get_global_id(1) * BLOCK_SIZE_X;
int gy = get_global_id(2) * BLOCK_SIZE_Y;
int nthread = lz / NUM_DISP;
int disp_idx = lz % NUM_DISP;
__global short * disp;
__global const uchar * left, * right;
__local short costFunc[2 * BLOCK_SIZE_Y * NUM_DISP];
__local short * cost;
__local int best_disp[2];
__local int best_cost[2];
best_cost[nthread] = MAX_VAL;
best_disp[nthread] = -1;
barrier(CLK_LOCAL_MEM_FENCE);
short costbuf[WSZ];
int head = 0;
int shiftX = WSZ2 + NUM_DISP + MIN_DISP - 1;
int shiftY = WSZ2;
int x = gx + shiftX, y = gy + shiftY, lx = 0, ly = 0;
int costIdx = disp_idx * 2 * BLOCK_SIZE_Y + (BLOCK_SIZE_Y - 1);
cost = costFunc + costIdx;
int tempcost = 0;
if (x < cols - WSZ2 - MIN_DISP && y < rows - WSZ2)
{
if (0 == nthread)
{
#pragma unroll
for (int i = 0; i < WSZ; i++)
{
int idx = mad24(y - WSZ2, cols, x - WSZ2 + i);
left = leftptr + idx;
right = rightptr + (idx - disp_idx);
short costdiff = 0;
for(int j = 0; j < WSZ; j++)
{
costdiff += abs( left[0] - right[0] );
left += cols;
right += cols;
}
costbuf[i] = costdiff;
}
}
else
{
#pragma unroll
for (int i = 0; i < WSZ; i++)
{
int idx = mad24(y - WSZ2 + i, cols, x - WSZ2);
left = leftptr + idx;
right = rightptr + (idx - disp_idx);
short costdiff = 0;
for (int j = 0; j < WSZ; j++)
{
costdiff += abs( left[j] - right[j]);
}
tempcost += costdiff;
costbuf[i] = costdiff;
}
}
}
if (nthread == 1)
{
cost[0] = tempcost;
atomic_min(best_cost + 1, tempcost);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (best_cost[1] == tempcost)
atomic_max(best_disp + 1, disp_idx);
barrier(CLK_LOCAL_MEM_FENCE);
int dispIdx = mad24(gy, disp_step, mad24((int)sizeof(short), gx, disp_offset));
disp = (__global short *)(dispptr + dispIdx);
calcDisp(cost, disp, uniquenessRatio, best_disp + 1, best_cost + 1, disp_idx, x, y, cols, rows);
barrier(CLK_LOCAL_MEM_FENCE);
lx = 1 - nthread;
ly = nthread;
for (int i = 0; i < BLOCK_SIZE_Y * BLOCK_SIZE_X / 2; i++)
{
x = (lx < BLOCK_SIZE_X) ? gx + shiftX + lx : cols;
y = (ly < BLOCK_SIZE_Y) ? gy + shiftY + ly : rows;
best_cost[nthread] = MAX_VAL;
best_disp[nthread] = -1;
barrier(CLK_LOCAL_MEM_FENCE);
costIdx = mad24(2 * BLOCK_SIZE_Y, disp_idx, (BLOCK_SIZE_Y - 1 - ly + lx));
if (0 > costIdx)
costIdx = BLOCK_SIZE_Y - 1;
cost = costFunc + costIdx;
if (x < cols - WSZ2 - MIN_DISP && y < rows - WSZ2)
{
tempcost = (ly * (1 - nthread) + lx * nthread == 0) ?
calcCostBorder(leftptr, rightptr, x, y, nthread, costbuf, &head, cols, disp_idx, cost[2*nthread-1]) :
calcCostInside(leftptr, rightptr, x, y, cols, disp_idx, cost[0], cost[1], cost[-1]);
}
cost[0] = tempcost;
atomic_min(best_cost + nthread, tempcost);
barrier(CLK_LOCAL_MEM_FENCE);
if (best_cost[nthread] == tempcost)
atomic_max(best_disp + nthread, disp_idx);
barrier(CLK_LOCAL_MEM_FENCE);
dispIdx = mad24(gy + ly, disp_step, mad24((int)sizeof(short), (gx + lx), disp_offset));
disp = (__global short *)(dispptr + dispIdx);
calcDisp(cost, disp, uniquenessRatio, best_disp + nthread, best_cost + nthread, disp_idx, x, y, cols, rows);
barrier(CLK_LOCAL_MEM_FENCE);
if (lx + nthread - 1 == ly)
{
lx = (lx + nthread + 1) * (1 - nthread);
ly = (ly + 1) * nthread;
}
else
{
lx += nthread;
ly = ly - nthread + 1;
}
}
}
#endif
__kernel void prefilter_norm(__global unsigned char *input, __global unsigned char *output,
int rows, int cols, int prefilterCap, int scale_g, int scale_s)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(x < cols && y < rows)
{
int cov1 = input[ max(y-1, 0) * cols + x] * 1 +
input[y * cols + max(x-1,0)] * 1 + input[ y * cols + x] * 4 + input[y * cols + min(x+1, cols-1)] * 1 +
input[min(y+1, rows-1) * cols + x] * 1;
int cov2 = 0;
for(int i = -WSZ2; i < WSZ2+1; i++)
for(int j = -WSZ2; j < WSZ2+1; j++)
cov2 += input[clamp(y+i, 0, rows-1) * cols + clamp(x+j, 0, cols-1)];
int res = (cov1*scale_g - cov2*scale_s)>>10;
res = clamp(res, -prefilterCap, prefilterCap) + prefilterCap;
output[y * cols + x] = res;
}
}
__kernel void prefilter_xsobel(__global unsigned char *input, __global unsigned char *output,
int rows, int cols, int prefilterCap)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(x < cols && y < rows)
{
if (0 < x && !((y == rows-1) & (rows%2==1) ) )
{
int cov = input[ ((y > 0) ? y-1 : y+1) * cols + (x-1)] * (-1) + input[ ((y > 0) ? y-1 : y+1) * cols + ((x<cols-1) ? x+1 : x-1)] * (1) +
input[ (y) * cols + (x-1)] * (-2) + input[ (y) * cols + ((x<cols-1) ? x+1 : x-1)] * (2) +
input[((y<rows-1)?(y+1):(y-1))* cols + (x-1)] * (-1) + input[((y<rows-1)?(y+1):(y-1))* cols + ((x<cols-1) ? x+1 : x-1)] * (1);
cov = clamp(cov, -prefilterCap, prefilterCap) + prefilterCap;
output[y * cols + x] = cov;
}
else
output[y * cols + x] = prefilterCap;
}