This source file includes following definitions.
- allocator
- allocator
- allocator
- reshape
- locateROI
- adjustROI
- createContinuousImpl
- createContinuous
- ensureSizeIsEnoughImpl
- ensureSizeIsEnough
- getInputMat
- getOutputMat
- syncOutput
- defaultAllocator
- setDefaultAllocator
- create
- release
- upload
- upload
- download
- download
- copyTo
- copyTo
- copyTo
- setTo
- setTo
- convertTo
- convertTo
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
cv::cuda::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((const uchar*)data_),
allocator(defaultAllocator())
{
size_t minstep = cols * elemSize();
if (step == Mat::AUTO_STEP)
{
step = minstep;
flags |= Mat::CONTINUOUS_FLAG;
}
else
{
if (rows == 1)
step = minstep;
CV_DbgAssert( step >= minstep );
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
}
dataend += step * (rows - 1) + minstep;
}
cv::cuda::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((const uchar*)data_),
allocator(defaultAllocator())
{
size_t minstep = cols * elemSize();
if (step == Mat::AUTO_STEP)
{
step = minstep;
flags |= Mat::CONTINUOUS_FLAG;
}
else
{
if (rows == 1)
step = minstep;
CV_DbgAssert( step >= minstep );
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
}
dataend += step * (rows - 1) + minstep;
}
cv::cuda::GpuMat::GpuMat(const GpuMat& m, Range rowRange_, Range colRange_)
{
flags = m.flags;
step = m.step; refcount = m.refcount;
data = m.data; datastart = m.datastart; dataend = m.dataend;
allocator = m.allocator;
if (rowRange_ == Range::all())
{
rows = m.rows;
}
else
{
CV_Assert( 0 <= rowRange_.start && rowRange_.start <= rowRange_.end && rowRange_.end <= m.rows );
rows = rowRange_.size();
data += step*rowRange_.start;
}
if (colRange_ == Range::all())
{
cols = m.cols;
}
else
{
CV_Assert( 0 <= colRange_.start && colRange_.start <= colRange_.end && colRange_.end <= m.cols );
cols = colRange_.size();
data += colRange_.start*elemSize();
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
}
if (rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
}
cv::cuda::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
flags(m.flags), rows(roi.height), cols(roi.width),
step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
datastart(m.datastart), dataend(m.dataend),
allocator(m.allocator)
{
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
data += roi.x * elemSize();
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
}
GpuMat cv::cuda::GpuMat::reshape(int new_cn, int new_rows) const
{
GpuMat hdr = *this;
int cn = channels();
if (new_cn == 0)
new_cn = cn;
int total_width = cols * cn;
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
new_rows = rows * total_width / new_cn;
if (new_rows != 0 && new_rows != rows)
{
int total_size = total_width * rows;
if (!isContinuous())
CV_Error(cv::Error::BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
if ((unsigned)new_rows > (unsigned)total_size)
CV_Error(cv::Error::StsOutOfRange, "Bad new number of rows");
total_width = total_size / new_rows;
if (total_width * new_rows != total_size)
CV_Error(cv::Error::StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
hdr.rows = new_rows;
hdr.step = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if (new_width * new_cn != total_width)
CV_Error(cv::Error::BadNumChannels, "The total width is not divisible by the new number of channels");
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
return hdr;
}
void cv::cuda::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
{
CV_DbgAssert( step > 0 );
size_t esz = elemSize();
ptrdiff_t delta1 = data - datastart;
ptrdiff_t delta2 = dataend - datastart;
if (delta1 == 0)
{
ofs.x = ofs.y = 0;
}
else
{
ofs.y = static_cast<int>(delta1 / step);
ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
CV_DbgAssert( data == datastart + ofs.y * step + ofs.x * esz );
}
size_t minstep = (ofs.x + cols) * esz;
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
}
GpuMat& cv::cuda::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
{
Size wholeSize;
Point ofs;
locateROI(wholeSize, ofs);
size_t esz = elemSize();
int row1 = std::max(ofs.y - dtop, 0);
int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
int col1 = std::max(ofs.x - dleft, 0);
int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
rows = row2 - row1;
cols = col2 - col1;
if (esz * cols == step || rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
else
flags &= ~Mat::CONTINUOUS_FLAG;
return *this;
}
namespace
{
template <class ObjType>
void createContinuousImpl(int rows, int cols, int type, ObjType& obj)
{
const int area = rows * cols;
if (obj.empty() || obj.type() != type || !obj.isContinuous() || obj.size().area() < area)
obj.create(1, area, type);
obj = obj.reshape(obj.channels(), rows);
}
}
void cv::cuda::createContinuous(int rows, int cols, int type, OutputArray arr)
{
switch (arr.kind())
{
case _InputArray::MAT:
::createContinuousImpl(rows, cols, type, arr.getMatRef());
break;
case _InputArray::CUDA_GPU_MAT:
::createContinuousImpl(rows, cols, type, arr.getGpuMatRef());
break;
case _InputArray::CUDA_HOST_MEM:
::createContinuousImpl(rows, cols, type, arr.getHostMemRef());
break;
default:
arr.create(rows, cols, type);
}
}
namespace
{
template <class ObjType>
void ensureSizeIsEnoughImpl(int rows, int cols, int type, ObjType& obj)
{
if (obj.empty() || obj.type() != type || obj.data != obj.datastart)
{
obj.create(rows, cols, type);
}
else
{
const size_t esz = obj.elemSize();
const ptrdiff_t delta2 = obj.dataend - obj.datastart;
const size_t minstep = obj.cols * esz;
Size wholeSize;
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / static_cast<size_t>(obj.step) + 1), obj.rows);
wholeSize.width = std::max(static_cast<int>((delta2 - static_cast<size_t>(obj.step) * (wholeSize.height - 1)) / esz), obj.cols);
if (wholeSize.height < rows || wholeSize.width < cols)
{
obj.create(rows, cols, type);
}
else
{
obj.cols = cols;
obj.rows = rows;
}
}
}
}
void cv::cuda::ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr)
{
switch (arr.kind())
{
case _InputArray::MAT:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getMatRef());
break;
case _InputArray::CUDA_GPU_MAT:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getGpuMatRef());
break;
case _InputArray::CUDA_HOST_MEM:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getHostMemRef());
break;
default:
arr.create(rows, cols, type);
}
}
GpuMat cv::cuda::getInputMat(InputArray _src, Stream& stream)
{
GpuMat src;
#ifndef HAVE_CUDA
(void) _src;
(void) stream;
throw_no_cuda();
#else
if (_src.kind() == _InputArray::CUDA_GPU_MAT)
{
src = _src.getGpuMat();
}
else if (!_src.empty())
{
BufferPool pool(stream);
src = pool.getBuffer(_src.size(), _src.type());
src.upload(_src, stream);
}
#endif
return src;
}
GpuMat cv::cuda::getOutputMat(OutputArray _dst, int rows, int cols, int type, Stream& stream)
{
GpuMat dst;
#ifndef HAVE_CUDA
(void) _dst;
(void) rows;
(void) cols;
(void) type;
(void) stream;
throw_no_cuda();
#else
if (_dst.kind() == _InputArray::CUDA_GPU_MAT)
{
_dst.create(rows, cols, type);
dst = _dst.getGpuMat();
}
else
{
BufferPool pool(stream);
dst = pool.getBuffer(rows, cols, type);
}
#endif
return dst;
}
void cv::cuda::syncOutput(const GpuMat& dst, OutputArray _dst, Stream& stream)
{
#ifndef HAVE_CUDA
(void) dst;
(void) _dst;
(void) stream;
throw_no_cuda();
#else
if (_dst.kind() != _InputArray::CUDA_GPU_MAT)
{
if (stream)
dst.download(_dst, stream);
else
dst.download(_dst);
}
#endif
}
#ifndef HAVE_CUDA
GpuMat::Allocator* cv::cuda::GpuMat::defaultAllocator()
{
return 0;
}
void cv::cuda::GpuMat::setDefaultAllocator(Allocator* allocator)
{
(void) allocator;
throw_no_cuda();
}
void cv::cuda::GpuMat::create(int _rows, int _cols, int _type)
{
(void) _rows;
(void) _cols;
(void) _type;
throw_no_cuda();
}
void cv::cuda::GpuMat::release()
{
}
void cv::cuda::GpuMat::upload(InputArray arr)
{
(void) arr;
throw_no_cuda();
}
void cv::cuda::GpuMat::upload(InputArray arr, Stream& _stream)
{
(void) arr;
(void) _stream;
throw_no_cuda();
}
void cv::cuda::GpuMat::download(OutputArray _dst) const
{
(void) _dst;
throw_no_cuda();
}
void cv::cuda::GpuMat::download(OutputArray _dst, Stream& _stream) const
{
(void) _dst;
(void) _stream;
throw_no_cuda();
}
void cv::cuda::GpuMat::copyTo(OutputArray _dst) const
{
(void) _dst;
throw_no_cuda();
}
void cv::cuda::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
{
(void) _dst;
(void) _stream;
throw_no_cuda();
}
void cv::cuda::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& _stream) const
{
(void) _dst;
(void) _mask;
(void) _stream;
throw_no_cuda();
}
GpuMat& cv::cuda::GpuMat::setTo(Scalar s, Stream& _stream)
{
(void) s;
(void) _stream;
throw_no_cuda();
return *this;
}
GpuMat& cv::cuda::GpuMat::setTo(Scalar s, InputArray _mask, Stream& _stream)
{
(void) s;
(void) _mask;
(void) _stream;
throw_no_cuda();
return *this;
}
void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& _stream) const
{
(void) _dst;
(void) rtype;
(void) _stream;
throw_no_cuda();
}
void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& _stream) const
{
(void) _dst;
(void) rtype;
(void) alpha;
(void) beta;
(void) _stream;
throw_no_cuda();
}
#endif