/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the OpenCV Foundation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include <cstdlib> static void mytest(cv::Ptr<cv::ConjGradSolver> solver,cv::Ptr<cv::MinProblemSolver::Function> ptr_F,cv::Mat& x, cv::Mat& etalon_x,double etalon_res){ solver->setFunction(ptr_F); //int ndim=MAX(step.cols,step.rows); double res=solver->minimize(x); std::cout<<"res:\n\t"<<res<<std::endl; std::cout<<"x:\n\t"<<x<<std::endl; std::cout<<"etalon_res:\n\t"<<etalon_res<<std::endl; std::cout<<"etalon_x:\n\t"<<etalon_x<<std::endl; double tol = 1e-2; ASSERT_TRUE(std::abs(res-etalon_res)<tol); /*for(cv::Mat_<double>::iterator it1=x.begin<double>(),it2=etalon_x.begin<double>();it1!=x.end<double>();it1++,it2++){ ASSERT_TRUE(std::abs((*it1)-(*it2))<tol); }*/ std::cout<<"--------------------------\n"; } class SphereF_CG:public cv::MinProblemSolver::Function{ public: int getDims() const { return 4; } double calc(const double* x)const{ return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+x[3]*x[3]; } // use automatically computed gradient /*void getGradient(const double* x,double* grad){ for(int i=0;i<4;i++){ grad[i]=2*x[i]; } }*/ }; class RosenbrockF_CG:public cv::MinProblemSolver::Function{ int getDims() const { return 2; } double calc(const double* x)const{ return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]); } void getGradient(const double* x,double* grad){ grad[0]=-2*(1-x[0])-400*(x[1]-x[0]*x[0])*x[0]; grad[1]=200*(x[1]-x[0]*x[0]); } }; TEST(Core_ConjGradSolver, regression_basic){ cv::Ptr<cv::ConjGradSolver> solver=cv::ConjGradSolver::create(); #if 1 { cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new SphereF_CG()); cv::Mat x=(cv::Mat_<double>(4,1)<<50.0,10.0,1.0,-10.0), etalon_x=(cv::Mat_<double>(1,4)<<0.0,0.0,0.0,0.0); double etalon_res=0.0; mytest(solver,ptr_F,x,etalon_x,etalon_res); } #endif #if 1 { cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new RosenbrockF_CG()); cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0), etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0); double etalon_res=0.0; mytest(solver,ptr_F,x,etalon_x,etalon_res); } #endif }