/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef _ncv_alg_hpp_ #define _ncv_alg_hpp_ #include "opencv2/cudalegacy/NCV.hpp" template <class T> static void swap(T &p1, T &p2) { T tmp = p1; p1 = p2; p2 = tmp; } template<typename T> static T divUp(T a, T b) { return (a + b - 1) / b; } template<typename T> struct functorAddValues { static __device__ __inline__ void assign(volatile T *dst, volatile T *src) { //Works only for integral types. If you see compiler error here, then you have to specify how to copy your object as a set of integral fields. *dst = *src; } static __device__ __inline__ void reduce(volatile T &in1out, const volatile T &in2) { in1out += in2; } }; template<typename T> struct functorMinValues { static __device__ __inline__ void assign(volatile T *dst, volatile T *src) { //Works only for integral types. If you see compiler error here, then you have to specify how to copy your object as a set of integral fields. *dst = *src; } static __device__ __inline__ void reduce(volatile T &in1out, const volatile T &in2) { in1out = in1out > in2 ? in2 : in1out; } }; template<typename T> struct functorMaxValues { static __device__ __inline__ void assign(volatile T *dst, volatile T *src) { //Works only for integral types. If you see compiler error here, then you have to specify how to copy your object as a set of integral fields. *dst = *src; } static __device__ __inline__ void reduce(volatile T &in1out, const volatile T &in2) { in1out = in1out > in2 ? in1out : in2; } }; template<typename Tdata, class Tfunc, Ncv32u nThreads> static __device__ Tdata subReduce(Tdata threadElem) { Tfunc functor; __shared__ Tdata _reduceArr[nThreads]; volatile Tdata *reduceArr = _reduceArr; functor.assign(reduceArr + threadIdx.x, &threadElem); __syncthreads(); if (nThreads >= 256 && threadIdx.x < 128) { functor.reduce(reduceArr[threadIdx.x], reduceArr[threadIdx.x + 128]); } __syncthreads(); if (nThreads >= 128 && threadIdx.x < 64) { functor.reduce(reduceArr[threadIdx.x], reduceArr[threadIdx.x + 64]); } __syncthreads(); if (threadIdx.x < 32) { if (nThreads >= 64) { functor.reduce(reduceArr[threadIdx.x], reduceArr[threadIdx.x + 32]); } if (nThreads >= 32 && threadIdx.x < 16) { functor.reduce(reduceArr[threadIdx.x], reduceArr[threadIdx.x + 16]); functor.reduce(reduceArr[threadIdx.x], reduceArr[threadIdx.x + 8]); functor.reduce(reduceArr[threadIdx.x], reduceArr[threadIdx.x + 4]); functor.reduce(reduceArr[threadIdx.x], reduceArr[threadIdx.x + 2]); functor.reduce(reduceArr[threadIdx.x], reduceArr[threadIdx.x + 1]); } } __syncthreads(); Tdata reduceRes; functor.assign(&reduceRes, reduceArr); return reduceRes; } #endif //_ncv_alg_hpp_