This source file includes following definitions.
- interNearest
- interLinear
- bicubicCoeff
- interCubic
- interArea
- interArea
#pragma once
#ifndef __OPENCV_CUDEV_PTR2D_INTERPOLATION_HPP__
#define __OPENCV_CUDEV_PTR2D_INTERPOLATION_HPP__
#include "../common.hpp"
#include "../util/vec_traits.hpp"
#include "../util/saturate_cast.hpp"
#include "../util/type_traits.hpp"
#include "../util/limits.hpp"
#include "traits.hpp"
namespace cv { namespace cudev {
template <class SrcPtr> struct NearestInterPtr
{
typedef typename PtrTraits<SrcPtr>::value_type value_type;
typedef float index_type;
SrcPtr src;
__device__ __forceinline__ typename PtrTraits<SrcPtr>::value_type operator ()(float y, float x) const
{
return src(__float2int_rn(y), __float2int_rn(x));
}
};
template <class SrcPtr> struct NearestInterPtrSz : NearestInterPtr<SrcPtr>
{
int rows, cols;
};
template <class SrcPtr>
__host__ NearestInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> interNearest(const SrcPtr& src)
{
NearestInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> i;
i.src = shrinkPtr(src);
i.rows = getRows(src);
i.cols = getCols(src);
return i;
}
template <class SrcPtr> struct PtrTraits< NearestInterPtrSz<SrcPtr> > : PtrTraitsBase<NearestInterPtrSz<SrcPtr>, NearestInterPtr<SrcPtr> >
{
};
template <typename SrcPtr> struct LinearInterPtr
{
typedef typename PtrTraits<SrcPtr>::value_type value_type;
typedef float index_type;
SrcPtr src;
__device__ typename PtrTraits<SrcPtr>::value_type operator ()(float y, float x) const
{
typedef typename PtrTraits<SrcPtr>::value_type src_type;
typedef typename VecTraits<src_type>::elem_type src_elem_type;
typedef typename LargerType<float, src_elem_type>::type work_elem_type;
typedef typename MakeVec<work_elem_type, VecTraits<src_type>::cn>::type work_type;
work_type out = VecTraits<work_type>::all(0);
const int x1 = __float2int_rd(x);
const int y1 = __float2int_rd(y);
const int x2 = x1 + 1;
const int y2 = y1 + 1;
typename PtrTraits<SrcPtr>::value_type src_reg = src(y1, x1);
out = out + src_reg * static_cast<work_elem_type>((x2 - x) * (y2 - y));
src_reg = src(y1, x2);
out = out + src_reg * static_cast<work_elem_type>((x - x1) * (y2 - y));
src_reg = src(y2, x1);
out = out + src_reg * static_cast<work_elem_type>((x2 - x) * (y - y1));
src_reg = src(y2, x2);
out = out + src_reg * static_cast<work_elem_type>((x - x1) * (y - y1));
return saturate_cast<typename PtrTraits<SrcPtr>::value_type>(out);
}
};
template <class SrcPtr> struct LinearInterPtrSz : LinearInterPtr<SrcPtr>
{
int rows, cols;
};
template <class SrcPtr>
__host__ LinearInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> interLinear(const SrcPtr& src)
{
LinearInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> i;
i.src = shrinkPtr(src);
i.rows = getRows(src);
i.cols = getCols(src);
return i;
}
template <class SrcPtr> struct PtrTraits< LinearInterPtrSz<SrcPtr> > : PtrTraitsBase<LinearInterPtrSz<SrcPtr>, LinearInterPtr<SrcPtr> >
{
};
template <typename SrcPtr> struct CubicInterPtr
{
typedef typename PtrTraits<SrcPtr>::value_type value_type;
typedef float index_type;
SrcPtr src;
__device__ static float bicubicCoeff(float x_)
{
float x = ::fabsf(x_);
if (x <= 1.0f)
{
return x * x * (1.5f * x - 2.5f) + 1.0f;
}
else if (x < 2.0f)
{
return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f;
}
else
{
return 0.0f;
}
}
__device__ typename PtrTraits<SrcPtr>::value_type operator ()(float y, float x) const
{
typedef typename PtrTraits<SrcPtr>::value_type src_type;
typedef typename VecTraits<src_type>::elem_type src_elem_type;
typedef typename LargerType<float, src_elem_type>::type work_elem_type;
typedef typename MakeVec<work_elem_type, VecTraits<src_type>::cn>::type work_type;
const float xmin = ::ceilf(x - 2.0f);
const float xmax = ::floorf(x + 2.0f);
const float ymin = ::ceilf(y - 2.0f);
const float ymax = ::floorf(y + 2.0f);
work_type sum = VecTraits<work_type>::all(0);
float wsum = 0.0f;
for (float cy = ymin; cy <= ymax; cy += 1.0f)
{
for (float cx = xmin; cx <= xmax; cx += 1.0f)
{
typename PtrTraits<SrcPtr>::value_type src_reg = src(__float2int_rd(cy), __float2int_rd(cx));
const float w = bicubicCoeff(x - cx) * bicubicCoeff(y - cy);
sum = sum + static_cast<work_elem_type>(w) * src_reg;
wsum += w;
}
}
work_type res = (wsum > numeric_limits<float>::epsilon()) ? VecTraits<work_type>::all(0) : sum / static_cast<work_elem_type>(wsum);
return saturate_cast<typename PtrTraits<SrcPtr>::value_type>(res);
}
};
template <class SrcPtr> struct CubicInterPtrSz : CubicInterPtr<SrcPtr>
{
int rows, cols;
};
template <class SrcPtr>
__host__ CubicInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> interCubic(const SrcPtr& src)
{
CubicInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> i;
i.src = shrinkPtr(src);
i.rows = getRows(src);
i.cols = getCols(src);
return i;
}
template <class SrcPtr> struct PtrTraits< CubicInterPtrSz<SrcPtr> > : PtrTraitsBase<CubicInterPtrSz<SrcPtr>, CubicInterPtr<SrcPtr> >
{
};
template <typename SrcPtr> struct IntegerAreaInterPtr
{
typedef typename PtrTraits<SrcPtr>::value_type value_type;
typedef float index_type;
SrcPtr src;
int area_width, area_height;
__device__ typename PtrTraits<SrcPtr>::value_type operator ()(float y, float x) const
{
typedef typename PtrTraits<SrcPtr>::value_type src_type;
typedef typename VecTraits<src_type>::elem_type src_elem_type;
typedef typename LargerType<float, src_elem_type>::type work_elem_type;
typedef typename MakeVec<work_elem_type, VecTraits<src_type>::cn>::type work_type;
const int sx1 = __float2int_rd(x);
const int sx2 = sx1 + area_width;
const int sy1 = __float2int_rd(y);
const int sy2 = sy1 + area_height;
work_type out = VecTraits<work_type>::all(0);
for (int dy = sy1; dy < sy2; ++dy)
{
for (int dx = sx1; dx < sx2; ++dx)
{
out = out + saturate_cast<work_type>(src(dy, dx));
}
}
const work_elem_type scale = 1.0f / (area_width * area_height);
return saturate_cast<typename PtrTraits<SrcPtr>::value_type>(out * scale);
}
};
template <class SrcPtr> struct IntegerAreaInterPtrSz : IntegerAreaInterPtr<SrcPtr>
{
int rows, cols;
};
template <class SrcPtr>
__host__ IntegerAreaInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> interArea(const SrcPtr& src, Size areaSize)
{
IntegerAreaInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> i;
i.src = shrinkPtr(src);
i.area_width = areaSize.width;
i.area_height = areaSize.height;
i.rows = getRows(src);
i.cols = getCols(src);
return i;
}
template <class SrcPtr> struct PtrTraits< IntegerAreaInterPtrSz<SrcPtr> > : PtrTraitsBase<IntegerAreaInterPtrSz<SrcPtr>, IntegerAreaInterPtr<SrcPtr> >
{
};
template <typename SrcPtr> struct CommonAreaInterPtr
{
typedef typename PtrTraits<SrcPtr>::value_type value_type;
typedef float index_type;
SrcPtr src;
float area_width, area_height;
__device__ typename PtrTraits<SrcPtr>::value_type operator ()(float y, float x) const
{
typedef typename PtrTraits<SrcPtr>::value_type src_type;
typedef typename VecTraits<src_type>::elem_type src_elem_type;
typedef typename LargerType<float, src_elem_type>::type work_elem_type;
typedef typename MakeVec<work_elem_type, VecTraits<src_type>::cn>::type work_type;
const float fsx1 = x;
const float fsx2 = fsx1 + area_width;
const int sx1 = __float2int_rd(fsx1);
const int sx2 = __float2int_ru(fsx2);
const float fsy1 = y;
const float fsy2 = fsy1 + area_height;
const int sy1 = __float2int_rd(fsy1);
const int sy2 = __float2int_ru(fsy2);
work_type out = VecTraits<work_type>::all(0);
for (int dy = sy1; dy < sy2; ++dy)
{
for (int dx = sx1; dx < sx2; ++dx)
out = out + saturate_cast<work_type>(src(dy, dx));
if (sx1 > fsx1)
out = out + saturate_cast<work_type>(src(dy, sx1 - 1)) * static_cast<work_elem_type>(sx1 - fsx1);
if (sx2 < fsx2)
out = out + saturate_cast<work_type>(src(dy, sx2)) * static_cast<work_elem_type>(fsx2 - sx2);
}
if (sy1 > fsy1)
{
for (int dx = sx1; dx < sx2; ++dx)
out = out + saturate_cast<work_type>(src(sy1 - 1, dx)) * static_cast<work_elem_type>(sy1 - fsy1);
}
if (sy2 < fsy2)
{
for (int dx = sx1; dx < sx2; ++dx)
out = out + saturate_cast<work_type>(src(sy2, dx)) * static_cast<work_elem_type>(fsy2 - sy2);
}
if ((sy1 > fsy1) && (sx1 > fsx1))
out = out + saturate_cast<work_type>(src(sy1 - 1, sx1 - 1)) * static_cast<work_elem_type>((sy1 - fsy1) * (sx1 - fsx1));
if ((sy1 > fsy1) && (sx2 < fsx2))
out = out + saturate_cast<work_type>(src(sy1 - 1, sx2)) * static_cast<work_elem_type>((sy1 - fsy1) * (fsx2 - sx2));
if ((sy2 < fsy2) && (sx2 < fsx2))
out = out + saturate_cast<work_type>(src(sy2, sx2)) * static_cast<work_elem_type>((fsy2 - sy2) * (fsx2 - sx2));
if ((sy2 < fsy2) && (sx1 > fsx1))
out = out + saturate_cast<work_type>(src(sy2, sx1 - 1)) * static_cast<work_elem_type>((fsy2 - sy2) * (sx1 - fsx1));
const work_elem_type scale = 1.0f / (area_width * area_height);
return saturate_cast<typename PtrTraits<SrcPtr>::value_type>(out * scale);
}
};
template <class SrcPtr> struct CommonAreaInterPtrSz : CommonAreaInterPtr<SrcPtr>
{
int rows, cols;
};
template <class SrcPtr>
__host__ CommonAreaInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> interArea(const SrcPtr& src, Size2f areaSize)
{
CommonAreaInterPtrSz<typename PtrTraits<SrcPtr>::ptr_type> i;
i.src = shrinkPtr(src);
i.area_width = areaSize.width;
i.area_height = areaSize.height;
i.rows = getRows(src);
i.cols = getCols(src);
return i;
}
template <class SrcPtr> struct PtrTraits< CommonAreaInterPtrSz<SrcPtr> > : PtrTraitsBase<CommonAreaInterPtrSz<SrcPtr>, CommonAreaInterPtr<SrcPtr> >
{
};
}}
#endif