root/modules/features2d/src/akaze.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. diffusivity
  2. setDescriptorType
  3. getDescriptorType
  4. setDescriptorSize
  5. getDescriptorSize
  6. setDescriptorChannels
  7. getDescriptorChannels
  8. setThreshold
  9. getThreshold
  10. setNOctaves
  11. getNOctaves
  12. setNOctaveLayers
  13. getNOctaveLayers
  14. setDiffusivity
  15. getDiffusivity
  16. descriptorSize
  17. descriptorType
  18. defaultNorm
  19. detectAndCompute
  20. write
  21. read
  22. create

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/*
OpenCV wrapper of reference implementation of
[1] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces.
Pablo F. Alcantarilla, J. Nuevo and Adrien Bartoli.
In British Machine Vision Conference (BMVC), Bristol, UK, September 2013
http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf
@author Eugene Khvedchenya <ekhvedchenya@gmail.com>
*/

#include "precomp.hpp"
#include "kaze/AKAZEFeatures.h"

#include <iostream>

namespace cv
{
    using namespace std;

    class AKAZE_Impl : public AKAZE
    {
    public:
        AKAZE_Impl(int _descriptor_type, int _descriptor_size, int _descriptor_channels,
                 float _threshold, int _octaves, int _sublevels, int _diffusivity)
        : descriptor(_descriptor_type)
        , descriptor_channels(_descriptor_channels)
        , descriptor_size(_descriptor_size)
        , threshold(_threshold)
        , octaves(_octaves)
        , sublevels(_sublevels)
        , diffusivity(_diffusivity)
        {
        }

        virtual ~AKAZE_Impl()
        {

        }

        void setDescriptorType(int dtype) { descriptor = dtype; }
        int getDescriptorType() const { return descriptor; }

        void setDescriptorSize(int dsize) { descriptor_size = dsize; }
        int getDescriptorSize() const { return descriptor_size; }

        void setDescriptorChannels(int dch) { descriptor_channels = dch; }
        int getDescriptorChannels() const { return descriptor_channels; }

        void setThreshold(double threshold_) { threshold = (float)threshold_; }
        double getThreshold() const { return threshold; }

        void setNOctaves(int octaves_) { octaves = octaves_; }
        int getNOctaves() const { return octaves; }

        void setNOctaveLayers(int octaveLayers_) { sublevels = octaveLayers_; }
        int getNOctaveLayers() const { return sublevels; }

        void setDiffusivity(int diff_) { diffusivity = diff_; }
        int getDiffusivity() const { return diffusivity; }

        // returns the descriptor size in bytes
        int descriptorSize() const
        {
            switch (descriptor)
            {
            case DESCRIPTOR_KAZE:
            case DESCRIPTOR_KAZE_UPRIGHT:
                return 64;

            case DESCRIPTOR_MLDB:
            case DESCRIPTOR_MLDB_UPRIGHT:
                // We use the full length binary descriptor -> 486 bits
                if (descriptor_size == 0)
                {
                    int t = (6 + 36 + 120) * descriptor_channels;
                    return (int)ceil(t / 8.);
                }
                else
                {
                    // We use the random bit selection length binary descriptor
                    return (int)ceil(descriptor_size / 8.);
                }

            default:
                return -1;
            }
        }

        // returns the descriptor type
        int descriptorType() const
        {
            switch (descriptor)
            {
            case DESCRIPTOR_KAZE:
            case DESCRIPTOR_KAZE_UPRIGHT:
                    return CV_32F;

            case DESCRIPTOR_MLDB:
            case DESCRIPTOR_MLDB_UPRIGHT:
                    return CV_8U;

                default:
                    return -1;
            }
        }

        // returns the default norm type
        int defaultNorm() const
        {
            switch (descriptor)
            {
            case DESCRIPTOR_KAZE:
            case DESCRIPTOR_KAZE_UPRIGHT:
                return NORM_L2;

            case DESCRIPTOR_MLDB:
            case DESCRIPTOR_MLDB_UPRIGHT:
                return NORM_HAMMING;

            default:
                return -1;
            }
        }

        void detectAndCompute(InputArray image, InputArray mask,
                              std::vector<KeyPoint>& keypoints,
                              OutputArray descriptors,
                              bool useProvidedKeypoints)
        {
            Mat img = image.getMat();
            if (img.type() != CV_8UC1)
                cvtColor(image, img, COLOR_BGR2GRAY);

            Mat img1_32;
            if ( img.depth() == CV_32F )
                img1_32 = img;
            else if ( img.depth() == CV_8U )
                img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
            else if ( img.depth() == CV_16U )
                img.convertTo(img1_32, CV_32F, 1.0 / 65535.0, 0);

            CV_Assert( ! img1_32.empty() );

            AKAZEOptions options;
            options.descriptor = descriptor;
            options.descriptor_channels = descriptor_channels;
            options.descriptor_size = descriptor_size;
            options.img_width = img.cols;
            options.img_height = img.rows;
            options.dthreshold = threshold;
            options.omax = octaves;
            options.nsublevels = sublevels;
            options.diffusivity = diffusivity;

            AKAZEFeatures impl(options);
            impl.Create_Nonlinear_Scale_Space(img1_32);

            if (!useProvidedKeypoints)
            {
                impl.Feature_Detection(keypoints);
            }

            if (!mask.empty())
            {
                KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
            }

            if( descriptors.needed() )
            {
                Mat& desc = descriptors.getMatRef();
                impl.Compute_Descriptors(keypoints, desc);

                CV_Assert((!desc.rows || desc.cols == descriptorSize()));
                CV_Assert((!desc.rows || (desc.type() == descriptorType())));
            }
        }

        void write(FileStorage& fs) const
        {
            fs << "descriptor" << descriptor;
            fs << "descriptor_channels" << descriptor_channels;
            fs << "descriptor_size" << descriptor_size;
            fs << "threshold" << threshold;
            fs << "octaves" << octaves;
            fs << "sublevels" << sublevels;
            fs << "diffusivity" << diffusivity;
        }

        void read(const FileNode& fn)
        {
            descriptor = (int)fn["descriptor"];
            descriptor_channels = (int)fn["descriptor_channels"];
            descriptor_size = (int)fn["descriptor_size"];
            threshold = (float)fn["threshold"];
            octaves = (int)fn["octaves"];
            sublevels = (int)fn["sublevels"];
            diffusivity = (int)fn["diffusivity"];
        }

        int descriptor;
        int descriptor_channels;
        int descriptor_size;
        float threshold;
        int octaves;
        int sublevels;
        int diffusivity;
    };

    Ptr<AKAZE> AKAZE::create(int descriptor_type,
                             int descriptor_size, int descriptor_channels,
                             float threshold, int octaves,
                             int sublevels, int diffusivity)
    {
        return makePtr<AKAZE_Impl>(descriptor_type, descriptor_size, descriptor_channels,
                                   threshold, octaves, sublevels, diffusivity);
    }
}

/* [<][>][^][v][top][bottom][index][help] */