root/modules/features2d/test/test_detectors_regression.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fdetector
  2. emptyDataTest
  3. isSimilarKeypoints
  4. compareKeypointSets
  5. regressionTest
  6. run
  7. TEST
  8. TEST
  9. TEST
  10. TEST
  11. TEST
  12. TEST
  13. TEST
  14. TEST
  15. TEST

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include "opencv2/highgui.hpp"

using namespace std;
using namespace cv;

const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png";
const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors";

/****************************************************************************************\
*            Regression tests for feature detectors comparing keypoints.                 *
\****************************************************************************************/

class CV_FeatureDetectorTest : public cvtest::BaseTest
{
public:
    CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) :
        name(_name), fdetector(_fdetector) {}

protected:
    bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
    void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );

    void emptyDataTest();
    void regressionTest(); // TODO test of detect() with mask

    virtual void run( int );

    string name;
    Ptr<FeatureDetector> fdetector;
};

void CV_FeatureDetectorTest::emptyDataTest()
{
    // One image.
    Mat image;
    vector<KeyPoint> keypoints;
    try
    {
        fdetector->detect( image, keypoints );
    }
    catch(...)
    {
        ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
        ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
    }

    if( !keypoints.empty() )
    {
        ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
        ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
        return;
    }

    // Several images.
    vector<Mat> images;
    vector<vector<KeyPoint> > keypointCollection;
    try
    {
        fdetector->detect( images, keypointCollection );
    }
    catch(...)
    {
        ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" );
        ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
    }
}

bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
{
    const float maxPtDif = 1.f;
    const float maxSizeDif = 1.f;
    const float maxAngleDif = 2.f;
    const float maxResponseDif = 0.1f;

    float dist = (float)norm( p1.pt - p2.pt );
    return (dist < maxPtDif &&
            fabs(p1.size - p2.size) < maxSizeDif &&
            abs(p1.angle - p2.angle) < maxAngleDif &&
            abs(p1.response - p2.response) < maxResponseDif &&
            p1.octave == p2.octave &&
            p1.class_id == p2.class_id );
}

void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
{
    const float maxCountRatioDif = 0.01f;

    // Compare counts of validation and calculated keypoints.
    float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
    if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
    {
        ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n",
                    validKeypoints.size(), calcKeypoints.size() );
        ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
        return;
    }

    int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size());
    int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
    for( size_t v = 0; v < validKeypoints.size(); v++ )
    {
        int nearestIdx = -1;
        float minDist = std::numeric_limits<float>::max();

        for( size_t c = 0; c < calcKeypoints.size(); c++ )
        {
            progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 );
            float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
            if( curDist < minDist )
            {
                minDist = curDist;
                nearestIdx = (int)c;
            }
        }

        assert( minDist >= 0 );
        if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
            badPointCount++;
    }
    ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
                badPointCount, validKeypoints.size(), calcKeypoints.size() );
    if( badPointCount > 0.9 * commonPointCount )
    {
        ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" );
        ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
        return;
    }
    ts->printf( cvtest::TS::LOG, " - OK\n" );
}

void CV_FeatureDetectorTest::regressionTest()
{
    assert( !fdetector.empty() );
    string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
    string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";

    // Read the test image.
    Mat image = imread( imgFilename );
    if( image.empty() )
    {
        ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
        ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
        return;
    }

    FileStorage fs( resFilename, FileStorage::READ );

    // Compute keypoints.
    vector<KeyPoint> calcKeypoints;
    fdetector->detect( image, calcKeypoints );

    if( fs.isOpened() ) // Compare computed and valid keypoints.
    {
        // TODO compare saved feature detector params with current ones

        // Read validation keypoints set.
        vector<KeyPoint> validKeypoints;
        read( fs["keypoints"], validKeypoints );
        if( validKeypoints.empty() )
        {
            ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" );
            ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
            return;
        }

        compareKeypointSets( validKeypoints, calcKeypoints );
    }
    else // Write detector parameters and computed keypoints as validation data.
    {
        fs.open( resFilename, FileStorage::WRITE );
        if( !fs.isOpened() )
        {
            ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() );
            ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
            return;
        }
        else
        {
            fs << "detector_params" << "{";
            fdetector->write( fs );
            fs << "}";

            write( fs, "keypoints", calcKeypoints );
        }
    }
}

void CV_FeatureDetectorTest::run( int /*start_from*/ )
{
    if( !fdetector )
    {
        ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" );
        ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
        return;
    }

    emptyDataTest();
    regressionTest();

    ts->set_failed_test_info( cvtest::TS::OK );
}

/****************************************************************************************\
*                                Tests registrations                                     *
\****************************************************************************************/

TEST( Features2d_Detector_BRISK, regression )
{
    CV_FeatureDetectorTest test( "detector-brisk", BRISK::create() );
    test.safe_run();
}

TEST( Features2d_Detector_FAST, regression )
{
    CV_FeatureDetectorTest test( "detector-fast", FastFeatureDetector::create() );
    test.safe_run();
}

TEST( Features2d_Detector_AGAST, regression )
{
    CV_FeatureDetectorTest test( "detector-agast", AgastFeatureDetector::create() );
    test.safe_run();
}

TEST( Features2d_Detector_GFTT, regression )
{
    CV_FeatureDetectorTest test( "detector-gftt", GFTTDetector::create() );
    test.safe_run();
}

TEST( Features2d_Detector_Harris, regression )
{
    Ptr<GFTTDetector> gftt = GFTTDetector::create();
    gftt->setHarrisDetector(true);
    CV_FeatureDetectorTest test( "detector-harris", gftt);
    test.safe_run();
}

TEST( Features2d_Detector_MSER, DISABLED_regression )
{
    CV_FeatureDetectorTest test( "detector-mser", MSER::create() );
    test.safe_run();
}

TEST( Features2d_Detector_ORB, regression )
{
    CV_FeatureDetectorTest test( "detector-orb", ORB::create() );
    test.safe_run();
}

TEST( Features2d_Detector_KAZE, regression )
{
    CV_FeatureDetectorTest test( "detector-kaze", KAZE::create() );
    test.safe_run();
}

TEST( Features2d_Detector_AKAZE, regression )
{
    CV_FeatureDetectorTest test( "detector-akaze", AKAZE::create() );
    test.safe_run();
}

/* [<][>][^][v][top][bottom][index][help] */