This source file includes following definitions.
- corner
#ifdef BORDER_CONSTANT
#elif defined BORDER_REPLICATE
#define EXTRAPOLATE(x, maxV) \
{ \
x = max(min(x, maxV - 1), 0); \
}
#elif defined BORDER_WRAP
#define EXTRAPOLATE(x, maxV) \
{ \
if (x < 0) \
x -= ((x - maxV + 1) / maxV) * maxV; \
if (x >= maxV) \
x %= maxV; \
}
#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT101)
#define EXTRAPOLATE_(x, maxV, delta) \
{ \
if (maxV == 1) \
x = 0; \
else \
do \
{ \
if ( x < 0 ) \
x = -x - 1 + delta; \
else \
x = maxV - 1 - (x - maxV) - delta; \
} \
while (x >= maxV || x < 0); \
}
#ifdef BORDER_REFLECT
#define EXTRAPOLATE(x, maxV) EXTRAPOLATE_(x, maxV, 0)
#else
#define EXTRAPOLATE(x, maxV) EXTRAPOLATE_(x, maxV, 1)
#endif
#else
#error No extrapolation method
#endif
#define THREADS 256
__kernel void corner(__global const float * Dx, int dx_step, int dx_offset, int dx_whole_rows, int dx_whole_cols,
__global const float * Dy, int dy_step, int dy_offset, int dy_whole_rows, int dy_whole_cols,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols, float k)
{
int col = get_local_id(0);
int gX = get_group_id(0);
int gY = get_group_id(1);
int gly = get_global_id(1);
int dx_x_off = (dx_offset % dx_step) >> 2;
int dx_y_off = dx_offset / dx_step;
int dy_x_off = (dy_offset % dy_step) >> 2;
int dy_y_off = dy_offset / dy_step;
int dst_x_off = (dst_offset % dst_step) >> 2;
int dst_y_off = dst_offset / dst_step;
int dx_startX = gX * (THREADS-ksX+1) - anX + dx_x_off;
int dx_startY = (gY << 1) - anY + dx_y_off;
int dy_startX = gX * (THREADS-ksX+1) - anX + dy_x_off;
int dy_startY = (gY << 1) - anY + dy_y_off;
int dst_startX = gX * (THREADS-ksX+1) + dst_x_off;
int dst_startY = (gY << 1) + dst_y_off;
float data[3][ksY+1];
__local float temp[6][THREADS];
#ifdef BORDER_CONSTANT
for (int i=0; i < ksY+1; i++)
{
bool dx_con = dx_startX+col >= 0 && dx_startX+col < dx_whole_cols && dx_startY+i >= 0 && dx_startY+i < dx_whole_rows;
int indexDx = mad24(dx_startY+i, dx_step>>2, dx_startX+col);
float dx_s = dx_con ? Dx[indexDx] : 0.0f;
bool dy_con = dy_startX+col >= 0 && dy_startX+col < dy_whole_cols && dy_startY+i >= 0 && dy_startY+i < dy_whole_rows;
int indexDy = mad24(dy_startY+i, dy_step>>2, dy_startX+col);
float dy_s = dy_con ? Dy[indexDy] : 0.0f;
data[0][i] = dx_s * dx_s;
data[1][i] = dx_s * dy_s;
data[2][i] = dy_s * dy_s;
}
#else
int clamped_col = min(2*dst_cols, col);
for (int i=0; i < ksY+1; i++)
{
int dx_selected_row = dx_startY+i, dx_selected_col = dx_startX+clamped_col;
EXTRAPOLATE(dx_selected_row, dx_whole_rows)
EXTRAPOLATE(dx_selected_col, dx_whole_cols)
float dx_s = Dx[mad24(dx_selected_row, dx_step>>2, dx_selected_col)];
int dy_selected_row = dy_startY+i, dy_selected_col = dy_startX+clamped_col;
EXTRAPOLATE(dy_selected_row, dy_whole_rows)
EXTRAPOLATE(dy_selected_col, dy_whole_cols)
float dy_s = Dy[mad24(dy_selected_row, dy_step>>2, dy_selected_col)];
data[0][i] = dx_s * dx_s;
data[1][i] = dx_s * dy_s;
data[2][i] = dy_s * dy_s;
}
#endif
float sum0 = 0.0f, sum1 = 0.0f, sum2 = 0.0f;
for (int i=1; i < ksY; i++)
{
sum0 += data[0][i];
sum1 += data[1][i];
sum2 += data[2][i];
}
float sum01 = sum0 + data[0][0];
float sum02 = sum0 + data[0][ksY];
temp[0][col] = sum01;
temp[1][col] = sum02;
float sum11 = sum1 + data[1][0];
float sum12 = sum1 + data[1][ksY];
temp[2][col] = sum11;
temp[3][col] = sum12;
float sum21 = sum2 + data[2][0];
float sum22 = sum2 + data[2][ksY];
temp[4][col] = sum21;
temp[5][col] = sum22;
barrier(CLK_LOCAL_MEM_FENCE);
if (col < (THREADS - (ksX - 1)))
{
col += anX;
int posX = dst_startX - dst_x_off + col - anX;
int posY = (gly << 1);
int till = (ksX + 1) & 1;
float tmp_sum[6] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
for (int k=0; k<6; k++)
{
float temp_sum = 0;
for (int i=-anX; i<=anX - till; i++)
temp_sum += temp[k][col+i];
tmp_sum[k] = temp_sum;
}
#ifdef CORNER_HARRIS
if (posX < dst_cols && (posY) < dst_rows)
{
int dst_index = mad24(dst_step, dst_startY, (int)sizeof(float) * (dst_startX + col - anX));
*(__global float *)(dst + dst_index) =
tmp_sum[0] * tmp_sum[4] - tmp_sum[2] * tmp_sum[2] - k * (tmp_sum[0] + tmp_sum[4]) * (tmp_sum[0] + tmp_sum[4]);
}
if (posX < dst_cols && (posY + 1) < dst_rows)
{
int dst_index = mad24(dst_step, dst_startY + 1, (int)sizeof(float) * (dst_startX + col - anX));
*(__global float *)(dst + dst_index) =
tmp_sum[1] * tmp_sum[5] - tmp_sum[3] * tmp_sum[3] - k * (tmp_sum[1] + tmp_sum[5]) * (tmp_sum[1] + tmp_sum[5]);
}
#elif defined CORNER_MINEIGENVAL
if (posX < dst_cols && (posY) < dst_rows)
{
int dst_index = mad24(dst_step, dst_startY, (int)sizeof(float) * (dst_startX + col - anX));
float a = tmp_sum[0] * 0.5f;
float b = tmp_sum[2];
float c = tmp_sum[4] * 0.5f;
*(__global float *)(dst + dst_index) = (float)((a+c) - native_sqrt((a-c)*(a-c) + b*b));
}
if (posX < dst_cols && (posY + 1) < dst_rows)
{
int dst_index = mad24(dst_step, dst_startY + 1, (int)sizeof(float) * (dst_startX + col - anX));
float a = tmp_sum[1] * 0.5f;
float b = tmp_sum[3];
float c = tmp_sum[5] * 0.5f;
*(__global float *)(dst + dst_index) = (float)((a+c) - native_sqrt((a-c)*(a-c) + b*b));
}
#else
#error "No such corners type"
#endif
}
}