This source file includes following definitions.
- make_point_list
- fill_accum_global
- fill_accum_local
- get_lines
- get_lines
#define ACCUM(ptr) *((__global int*)(ptr))
#ifdef MAKE_POINTS_LIST
__kernel void make_point_list(__global const uchar * src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * list_ptr, int list_step, int list_offset, __global int* global_offset)
{
int x = get_local_id(0);
int y = get_group_id(1);
__local int l_index, l_offset;
__local int l_points[LOCAL_SIZE];
__global const uchar * src = src_ptr + mad24(y, src_step, src_offset);
__global int * list = (__global int*)(list_ptr + list_offset);
if (x == 0)
l_index = 0;
barrier(CLK_LOCAL_MEM_FENCE);
if (y < src_rows)
{
y <<= 16;
for (int i=x; i < src_cols; i+=GROUP_SIZE)
{
if (src[i])
{
int val = y | i;
int index = atomic_inc(&l_index);
l_points[index] = val;
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x == 0)
l_offset = atomic_add(global_offset, l_index);
barrier(CLK_LOCAL_MEM_FENCE);
list += l_offset;
for (int i=x; i < l_index; i+=GROUP_SIZE)
{
list[i] = l_points[i];
}
}
#elif defined FILL_ACCUM_GLOBAL
__kernel void fill_accum_global(__global const uchar * list_ptr, int list_step, int list_offset,
__global uchar * accum_ptr, int accum_step, int accum_offset,
int total_points, float irho, float theta, int numrho, int numangle)
{
int theta_idx = get_global_id(1);
int count_idx = get_global_id(0);
int glob_size = get_global_size(0);
float cosVal;
float sinVal = sincos(theta * ((float)theta_idx), &cosVal);
sinVal *= irho;
cosVal *= irho;
__global const int * list = (__global const int*)(list_ptr + list_offset);
__global int* accum = (__global int*)(accum_ptr + mad24(theta_idx + 1, accum_step, accum_offset));
const int shift = (numrho - 1) / 2;
if (theta_idx < numangle)
{
for (int i = count_idx; i < total_points; i += glob_size)
{
const int val = list[i];
const int x = (val & 0xFFFF);
const int y = (val >> 16) & 0xFFFF;
int r = convert_int_rte(mad(x, cosVal, y * sinVal)) + shift;
atomic_inc(accum + r + 1);
}
}
}
#elif defined FILL_ACCUM_LOCAL
__kernel void fill_accum_local(__global const uchar * list_ptr, int list_step, int list_offset,
__global uchar * accum_ptr, int accum_step, int accum_offset,
int total_points, float irho, float theta, int numrho, int numangle)
{
int theta_idx = get_group_id(1);
int count_idx = get_local_id(0);
if (theta_idx > 0 && theta_idx < numangle + 1)
{
float cosVal;
float sinVal = sincos(theta * (float) (theta_idx-1), &cosVal);
sinVal *= irho;
cosVal *= irho;
__local int l_accum[BUFFER_SIZE];
for (int i=count_idx; i<BUFFER_SIZE; i+=LOCAL_SIZE)
l_accum[i] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
__global const int * list = (__global const int*)(list_ptr + list_offset);
const int shift = (numrho - 1) / 2;
for (int i = count_idx; i < total_points; i += LOCAL_SIZE)
{
const int point = list[i];
const int x = (point & 0xFFFF);
const int y = point >> 16;
int r = convert_int_rte(mad(x, cosVal, y * sinVal)) + shift;
atomic_inc(l_accum + r + 1);
}
barrier(CLK_LOCAL_MEM_FENCE);
__global int* accum = (__global int*)(accum_ptr + mad24(theta_idx, accum_step, accum_offset));
for (int i=count_idx; i<BUFFER_SIZE; i+=LOCAL_SIZE)
accum[i] = l_accum[i];
}
else if (theta_idx < numangle + 2)
{
__global int* accum = (__global int*)(accum_ptr + mad24(theta_idx, accum_step, accum_offset));
for (int i=count_idx; i<BUFFER_SIZE; i+=LOCAL_SIZE)
accum[i] = 0;
}
}
#elif defined GET_LINES
__kernel void get_lines(__global uchar * accum_ptr, int accum_step, int accum_offset, int accum_rows, int accum_cols,
__global uchar * lines_ptr, int lines_step, int lines_offset, __global int* lines_index_ptr,
int linesMax, int threshold, float rho, float theta)
{
int x0 = get_global_id(0);
int y = get_global_id(1);
int glob_size = get_global_size(0);
if (y < accum_rows-2)
{
__global uchar* accum = accum_ptr + mad24(y+1, accum_step, mad24(x0+1, (int) sizeof(int), accum_offset));
__global float2* lines = (__global float2*)(lines_ptr + lines_offset);
__global int* lines_index = lines_index_ptr + 1;
for (int x=x0; x<accum_cols-2; x+=glob_size)
{
int curVote = ACCUM(accum);
if (curVote > threshold && curVote > ACCUM(accum - sizeof(int)) && curVote >= ACCUM(accum + sizeof(int)) &&
curVote > ACCUM(accum - accum_step) && curVote >= ACCUM(accum + accum_step))
{
int index = atomic_inc(lines_index);
if (index < linesMax)
{
float radius = (x - (accum_cols - 3) * 0.5f) * rho;
float angle = y * theta;
lines[index] = (float2)(radius, angle);
}
}
accum += glob_size * (int) sizeof(int);
}
}
}
#elif GET_LINES_PROBABOLISTIC
__kernel void get_lines(__global const uchar * accum_ptr, int accum_step, int accum_offset, int accum_rows, int accum_cols,
__global const uchar * src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * lines_ptr, int lines_step, int lines_offset, __global int* lines_index_ptr,
int linesMax, int threshold, int lineLength, int lineGap, float rho, float theta)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (y < accum_rows-2)
{
__global uchar* accum = accum_ptr + mad24(y+1, accum_step, mad24(x+1, (int) sizeof(int), accum_offset));
__global int4* lines = (__global int4*)(lines_ptr + lines_offset);
__global int* lines_index = lines_index_ptr + 1;
int curVote = ACCUM(accum);
if (curVote >= threshold &&
curVote > ACCUM(accum - accum_step - sizeof(int)) &&
curVote > ACCUM(accum - accum_step) &&
curVote > ACCUM(accum - accum_step + sizeof(int)) &&
curVote > ACCUM(accum - sizeof(int)) &&
curVote > ACCUM(accum + sizeof(int)) &&
curVote > ACCUM(accum + accum_step - sizeof(int)) &&
curVote > ACCUM(accum + accum_step) &&
curVote > ACCUM(accum + accum_step + sizeof(int)))
{
const float radius = (x - (accum_cols - 2 - 1) * 0.5f) * rho;
const float angle = y * theta;
float cosa;
float sina = sincos(angle, &cosa);
float2 p0 = (float2)(cosa * radius, sina * radius);
float2 dir = (float2)(-sina, cosa);
float2 pb[4] = { (float2)(-1, -1), (float2)(-1, -1), (float2)(-1, -1), (float2)(-1, -1) };
float a;
if (dir.x != 0)
{
a = -p0.x / dir.x;
pb[0].x = 0;
pb[0].y = p0.y + a * dir.y;
a = (src_cols - 1 - p0.x) / dir.x;
pb[1].x = src_cols - 1;
pb[1].y = p0.y + a * dir.y;
}
if (dir.y != 0)
{
a = -p0.y / dir.y;
pb[2].x = p0.x + a * dir.x;
pb[2].y = 0;
a = (src_rows - 1 - p0.y) / dir.y;
pb[3].x = p0.x + a * dir.x;
pb[3].y = src_rows - 1;
}
if (pb[0].x == 0 && (pb[0].y >= 0 && pb[0].y < src_rows))
{
p0 = pb[0];
if (dir.x < 0)
dir = -dir;
}
else if (pb[1].x == src_cols - 1 && (pb[1].y >= 0 && pb[1].y < src_rows))
{
p0 = pb[1];
if (dir.x > 0)
dir = -dir;
}
else if (pb[2].y == 0 && (pb[2].x >= 0 && pb[2].x < src_cols))
{
p0 = pb[2];
if (dir.y < 0)
dir = -dir;
}
else if (pb[3].y == src_rows - 1 && (pb[3].x >= 0 && pb[3].x < src_cols))
{
p0 = pb[3];
if (dir.y > 0)
dir = -dir;
}
dir /= max(fabs(dir.x), fabs(dir.y));
float2 line_end[2];
int gap;
bool inLine = false;
if (p0.x < 0 || p0.x >= src_cols || p0.y < 0 || p0.y >= src_rows)
return;
for (;;)
{
if (*(src_ptr + mad24(p0.y, src_step, p0.x + src_offset)))
{
gap = 0;
if (!inLine)
{
line_end[0] = p0;
line_end[1] = p0;
inLine = true;
}
else
{
line_end[1] = p0;
}
}
else if (inLine)
{
if (++gap > lineGap)
{
bool good_line = fabs(line_end[1].x - line_end[0].x) >= lineLength ||
fabs(line_end[1].y - line_end[0].y) >= lineLength;
if (good_line)
{
int index = atomic_inc(lines_index);
if (index < linesMax)
lines[index] = (int4)(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y);
}
gap = 0;
inLine = false;
}
}
p0 = p0 + dir;
if (p0.x < 0 || p0.x >= src_cols || p0.y < 0 || p0.y >= src_rows)
{
if (inLine)
{
bool good_line = fabs(line_end[1].x - line_end[0].x) >= lineLength ||
fabs(line_end[1].y - line_end[0].y) >= lineLength;
if (good_line)
{
int index = atomic_inc(lines_index);
if (index < linesMax)
lines[index] = (int4)(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y);
}
}
break;
}
}
}
}
}