root/modules/photo/src/merge.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. weights
  2. process
  3. process
  4. createMergeDebevec
  5. wexp
  6. process
  7. process
  8. getContrastWeight
  9. setContrastWeight
  10. getSaturationWeight
  11. setSaturationWeight
  12. getExposureWeight
  13. setExposureWeight
  14. write
  15. read
  16. createMergeMertens
  17. weight
  18. process
  19. process
  20. createMergeRobertson

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "hdr_common.hpp"

namespace cv
{

class MergeDebevecImpl : public MergeDebevec
{
public:
    MergeDebevecImpl() :
        name("MergeDebevec"),
        weights(tringleWeights())
    {
    }

    void process(InputArrayOfArrays src, OutputArray dst, InputArray _times, InputArray input_response)
    {
        std::vector<Mat> images;
        src.getMatVector(images);
        Mat times = _times.getMat();

        CV_Assert(images.size() == times.total());
        checkImageDimensions(images);
        CV_Assert(images[0].depth() == CV_8U);

        int channels = images[0].channels();
        Size size = images[0].size();
        int CV_32FCC = CV_MAKETYPE(CV_32F, channels);

        dst.create(images[0].size(), CV_32FCC);
        Mat result = dst.getMat();

        Mat response = input_response.getMat();

        if(response.empty()) {
            response = linearResponse(channels);
            response.at<Vec3f>(0) = response.at<Vec3f>(1);
        }
        log(response, response);
        CV_Assert(response.rows == LDR_SIZE && response.cols == 1 &&
                  response.channels() == channels);

        Mat exp_values(times);
        log(exp_values, exp_values);

        result = Mat::zeros(size, CV_32FCC);
        std::vector<Mat> result_split;
        split(result, result_split);
        Mat weight_sum = Mat::zeros(size, CV_32F);

        for(size_t i = 0; i < images.size(); i++) {
            std::vector<Mat> splitted;
            split(images[i], splitted);

            Mat w = Mat::zeros(size, CV_32F);
            for(int c = 0; c < channels; c++) {
                LUT(splitted[c], weights, splitted[c]);
                w += splitted[c];
            }
            w /= channels;

            Mat response_img;
            LUT(images[i], response, response_img);
            split(response_img, splitted);
            for(int c = 0; c < channels; c++) {
                result_split[c] += w.mul(splitted[c] - exp_values.at<float>((int)i));
            }
            weight_sum += w;
        }
        weight_sum = 1.0f / weight_sum;
        for(int c = 0; c < channels; c++) {
            result_split[c] = result_split[c].mul(weight_sum);
        }
        merge(result_split, result);
        exp(result, result);
    }

    void process(InputArrayOfArrays src, OutputArray dst, InputArray times)
    {
        process(src, dst, times, Mat());
    }

protected:
    String name;
    Mat weights;
};

Ptr<MergeDebevec> createMergeDebevec()
{
    return makePtr<MergeDebevecImpl>();
}

class MergeMertensImpl : public MergeMertens
{
public:
    MergeMertensImpl(float _wcon, float _wsat, float _wexp) :
        name("MergeMertens"),
        wcon(_wcon),
        wsat(_wsat),
        wexp(_wexp)
    {
    }

    void process(InputArrayOfArrays src, OutputArrayOfArrays dst, InputArray, InputArray)
    {
        process(src, dst);
    }

    void process(InputArrayOfArrays src, OutputArray dst)
    {
        std::vector<Mat> images;
        src.getMatVector(images);
        checkImageDimensions(images);

        int channels = images[0].channels();
        CV_Assert(channels == 1 || channels == 3);
        Size size = images[0].size();
        int CV_32FCC = CV_MAKETYPE(CV_32F, channels);

        std::vector<Mat> weights(images.size());
        Mat weight_sum = Mat::zeros(size, CV_32F);

        for(size_t i = 0; i < images.size(); i++) {
            Mat img, gray, contrast, saturation, wellexp;
            std::vector<Mat> splitted(channels);

            images[i].convertTo(img, CV_32F, 1.0f/255.0f);
            if(channels == 3) {
                cvtColor(img, gray, COLOR_RGB2GRAY);
            } else {
                img.copyTo(gray);
            }
            split(img, splitted);

            Laplacian(gray, contrast, CV_32F);
            contrast = abs(contrast);

            Mat mean = Mat::zeros(size, CV_32F);
            for(int c = 0; c < channels; c++) {
                mean += splitted[c];
            }
            mean /= channels;

            saturation = Mat::zeros(size, CV_32F);
            for(int c = 0; c < channels;  c++) {
                Mat deviation = splitted[c] - mean;
                pow(deviation, 2.0f, deviation);
                saturation += deviation;
            }
            sqrt(saturation, saturation);

            wellexp = Mat::ones(size, CV_32F);
            for(int c = 0; c < channels; c++) {
                Mat exp = splitted[c] - 0.5f;
                pow(exp, 2.0f, exp);
                exp = -exp / 0.08f;
                wellexp = wellexp.mul(exp);
            }

            pow(contrast, wcon, contrast);
            pow(saturation, wsat, saturation);
            pow(wellexp, wexp, wellexp);

            weights[i] = contrast;
            if(channels == 3) {
                weights[i] = weights[i].mul(saturation);
            }
            weights[i] = weights[i].mul(wellexp) + 1e-12f;
            weight_sum += weights[i];
        }
        int maxlevel = static_cast<int>(logf(static_cast<float>(min(size.width, size.height))) / logf(2.0f));
        std::vector<Mat> res_pyr(maxlevel + 1);

        for(size_t i = 0; i < images.size(); i++) {
            weights[i] /= weight_sum;
            Mat img;
            images[i].convertTo(img, CV_32F, 1.0f/255.0f);

            std::vector<Mat> img_pyr, weight_pyr;
            buildPyramid(img, img_pyr, maxlevel);
            buildPyramid(weights[i], weight_pyr, maxlevel);

            for(int lvl = 0; lvl < maxlevel; lvl++) {
                Mat up;
                pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
                img_pyr[lvl] -= up;
            }
            for(int lvl = 0; lvl <= maxlevel; lvl++) {
                std::vector<Mat> splitted(channels);
                split(img_pyr[lvl], splitted);
                for(int c = 0; c < channels; c++) {
                    splitted[c] = splitted[c].mul(weight_pyr[lvl]);
                }
                merge(splitted, img_pyr[lvl]);
                if(res_pyr[lvl].empty()) {
                    res_pyr[lvl] = img_pyr[lvl];
                } else {
                    res_pyr[lvl] += img_pyr[lvl];
                }
            }
        }
        for(int lvl = maxlevel; lvl > 0; lvl--) {
            Mat up;
            pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
            res_pyr[lvl - 1] += up;
        }
        dst.create(size, CV_32FCC);
        res_pyr[0].copyTo(dst.getMat());
    }

    float getContrastWeight() const { return wcon; }
    void setContrastWeight(float val) { wcon = val; }

    float getSaturationWeight() const { return wsat; }
    void setSaturationWeight(float val) { wsat = val; }

    float getExposureWeight() const { return wexp; }
    void setExposureWeight(float val) { wexp = val; }

    void write(FileStorage& fs) const
    {
        fs << "name" << name
           << "contrast_weight" << wcon
           << "saturation_weight" << wsat
           << "exposure_weight" << wexp;
    }

    void read(const FileNode& fn)
    {
        FileNode n = fn["name"];
        CV_Assert(n.isString() && String(n) == name);
        wcon = fn["contrast_weight"];
        wsat = fn["saturation_weight"];
        wexp = fn["exposure_weight"];
    }

protected:
    String name;
    float wcon, wsat, wexp;
};

Ptr<MergeMertens> createMergeMertens(float wcon, float wsat, float wexp)
{
    return makePtr<MergeMertensImpl>(wcon, wsat, wexp);
}

class MergeRobertsonImpl : public MergeRobertson
{
public:
    MergeRobertsonImpl() :
        name("MergeRobertson"),
        weight(RobertsonWeights())
    {
    }

    void process(InputArrayOfArrays src, OutputArray dst, InputArray _times, InputArray input_response)
    {
        std::vector<Mat> images;
        src.getMatVector(images);
        Mat times = _times.getMat();

        CV_Assert(images.size() == times.total());
        checkImageDimensions(images);
        CV_Assert(images[0].depth() == CV_8U);

        int channels = images[0].channels();
        int CV_32FCC = CV_MAKETYPE(CV_32F, channels);

        dst.create(images[0].size(), CV_32FCC);
        Mat result = dst.getMat();

        Mat response = input_response.getMat();
        if(response.empty()) {
            float middle = LDR_SIZE / 2.0f;
            response = linearResponse(channels) / middle;
        }
        CV_Assert(response.rows == LDR_SIZE && response.cols == 1 &&
                  response.channels() == channels);

        result = Mat::zeros(images[0].size(), CV_32FCC);
        Mat wsum = Mat::zeros(images[0].size(), CV_32FCC);
        for(size_t i = 0; i < images.size(); i++) {
            Mat im, w;
            LUT(images[i], weight, w);
            LUT(images[i], response, im);

            result += times.at<float>((int)i) * w.mul(im);
            wsum += times.at<float>((int)i) * times.at<float>((int)i) * w;
        }
        result = result.mul(1 / wsum);
    }

    void process(InputArrayOfArrays src, OutputArray dst, InputArray times)
    {
        process(src, dst, times, Mat());
    }

protected:
    String name;
    Mat weight;
};

Ptr<MergeRobertson> createMergeRobertson()
{
    return makePtr<MergeRobertsonImpl>();
}

}

/* [<][>][^][v][top][bottom][index][help] */