root/modules/photo/src/tonemap.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. log_
  2. process
  3. getGamma
  4. setGamma
  5. write
  6. read
  7. createTonemap
  8. bias
  9. process
  10. getGamma
  11. setGamma
  12. getSaturation
  13. setSaturation
  14. getBias
  15. setBias
  16. write
  17. read
  18. createTonemapDrago
  19. sigma_space
  20. process
  21. getGamma
  22. setGamma
  23. getSaturation
  24. setSaturation
  25. getContrast
  26. setContrast
  27. getSigmaColor
  28. setSigmaColor
  29. getSigmaSpace
  30. setSigmaSpace
  31. write
  32. read
  33. createTonemapDurand
  34. color_adapt
  35. process
  36. getGamma
  37. setGamma
  38. getIntensity
  39. setIntensity
  40. getLightAdaptation
  41. setLightAdaptation
  42. getColorAdaptation
  43. setColorAdaptation
  44. write
  45. read
  46. createTonemapReinhard
  47. saturation
  48. process
  49. getGamma
  50. setGamma
  51. getScale
  52. setScale
  53. getSaturation
  54. setSaturation
  55. write
  56. read
  57. signedPow
  58. mapContrast
  59. getGradient
  60. getContrast
  61. calculateSum
  62. calculateProduct
  63. createTonemapMantiuk

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "hdr_common.hpp"

namespace cv
{

inline void log_(const Mat& src, Mat& dst)
{
    max(src, Scalar::all(1e-4), dst);
    log(dst, dst);
}

class TonemapImpl : public Tonemap
{
public:
    TonemapImpl(float _gamma) : name("Tonemap"), gamma(_gamma)
    {
    }

    void process(InputArray _src, OutputArray _dst)
    {
        Mat src = _src.getMat();
        CV_Assert(!src.empty());
        _dst.create(src.size(), CV_32FC3);
        Mat dst = _dst.getMat();

        double min, max;
        minMaxLoc(src, &min, &max);
        if(max - min > DBL_EPSILON) {
            dst = (src - min) / (max - min);
        } else {
            src.copyTo(dst);
        }

        pow(dst, 1.0f / gamma, dst);
    }

    float getGamma() const { return gamma; }
    void setGamma(float val) { gamma = val; }

    void write(FileStorage& fs) const
    {
        fs << "name" << name
           << "gamma" << gamma;
    }

    void read(const FileNode& fn)
    {
        FileNode n = fn["name"];
        CV_Assert(n.isString() && String(n) == name);
        gamma = fn["gamma"];
    }

protected:
    String name;
    float gamma;
};

Ptr<Tonemap> createTonemap(float gamma)
{
    return makePtr<TonemapImpl>(gamma);
}

class TonemapDragoImpl : public TonemapDrago
{
public:
    TonemapDragoImpl(float _gamma, float _saturation, float _bias) :
        name("TonemapDrago"),
        gamma(_gamma),
        saturation(_saturation),
        bias(_bias)
    {
    }

    void process(InputArray _src, OutputArray _dst)
    {
        Mat src = _src.getMat();
        CV_Assert(!src.empty());
        _dst.create(src.size(), CV_32FC3);
        Mat img = _dst.getMat();

        Ptr<Tonemap> linear = createTonemap(1.0f);
        linear->process(src, img);

        Mat gray_img;
        cvtColor(img, gray_img, COLOR_RGB2GRAY);
        Mat log_img;
        log_(gray_img, log_img);
        float mean = expf(static_cast<float>(sum(log_img)[0]) / log_img.total());
        gray_img /= mean;
        log_img.release();

        double max;
        minMaxLoc(gray_img, NULL, &max);

        Mat map;
        log(gray_img + 1.0f, map);
        Mat div;
        pow(gray_img / static_cast<float>(max), logf(bias) / logf(0.5f), div);
        log(2.0f + 8.0f * div, div);
        map = map.mul(1.0f / div);
        div.release();

        mapLuminance(img, img, gray_img, map, saturation);

        linear->setGamma(gamma);
        linear->process(img, img);
    }

    float getGamma() const { return gamma; }
    void setGamma(float val) { gamma = val; }

    float getSaturation() const { return saturation; }
    void setSaturation(float val) { saturation = val; }

    float getBias() const { return bias; }
    void setBias(float val) { bias = val; }

    void write(FileStorage& fs) const
    {
        fs << "name" << name
           << "gamma" << gamma
           << "bias" << bias
           << "saturation" << saturation;
    }

    void read(const FileNode& fn)
    {
        FileNode n = fn["name"];
        CV_Assert(n.isString() && String(n) == name);
        gamma = fn["gamma"];
        bias = fn["bias"];
        saturation = fn["saturation"];
    }

protected:
    String name;
    float gamma, saturation, bias;
};

Ptr<TonemapDrago> createTonemapDrago(float gamma, float saturation, float bias)
{
    return makePtr<TonemapDragoImpl>(gamma, saturation, bias);
}

class TonemapDurandImpl : public TonemapDurand
{
public:
    TonemapDurandImpl(float _gamma, float _contrast, float _saturation, float _sigma_color, float _sigma_space) :
        name("TonemapDurand"),
        gamma(_gamma),
        contrast(_contrast),
        saturation(_saturation),
        sigma_color(_sigma_color),
        sigma_space(_sigma_space)
    {
    }

    void process(InputArray _src, OutputArray _dst)
    {
        Mat src = _src.getMat();
        CV_Assert(!src.empty());
        _dst.create(src.size(), CV_32FC3);
        Mat img = _dst.getMat();
        Ptr<Tonemap> linear = createTonemap(1.0f);
        linear->process(src, img);

        Mat gray_img;
        cvtColor(img, gray_img, COLOR_RGB2GRAY);
        Mat log_img;
        log_(gray_img, log_img);
        Mat map_img;
        bilateralFilter(log_img, map_img, -1, sigma_color, sigma_space);

        double min, max;
        minMaxLoc(map_img, &min, &max);
        float scale = contrast / static_cast<float>(max - min);
        exp(map_img * (scale - 1.0f) + log_img, map_img);
        log_img.release();

        mapLuminance(img, img, gray_img, map_img, saturation);
        pow(img, 1.0f / gamma, img);
    }

    float getGamma() const { return gamma; }
    void setGamma(float val) { gamma = val; }

    float getSaturation() const { return saturation; }
    void setSaturation(float val) { saturation = val; }

    float getContrast() const { return contrast; }
    void setContrast(float val) { contrast = val; }

    float getSigmaColor() const { return sigma_color; }
    void setSigmaColor(float val) { sigma_color = val; }

    float getSigmaSpace() const { return sigma_space; }
    void setSigmaSpace(float val) { sigma_space = val; }

    void write(FileStorage& fs) const
    {
        fs << "name" << name
           << "gamma" << gamma
           << "contrast" << contrast
           << "sigma_color" << sigma_color
           << "sigma_space" << sigma_space
           << "saturation" << saturation;
    }

    void read(const FileNode& fn)
    {
        FileNode n = fn["name"];
        CV_Assert(n.isString() && String(n) == name);
        gamma = fn["gamma"];
        contrast = fn["contrast"];
        sigma_color = fn["sigma_color"];
        sigma_space = fn["sigma_space"];
        saturation = fn["saturation"];
    }

protected:
    String name;
    float gamma, contrast, saturation, sigma_color, sigma_space;
};

Ptr<TonemapDurand> createTonemapDurand(float gamma, float contrast, float saturation, float sigma_color, float sigma_space)
{
    return makePtr<TonemapDurandImpl>(gamma, contrast, saturation, sigma_color, sigma_space);
}

class TonemapReinhardImpl : public TonemapReinhard
{
public:
    TonemapReinhardImpl(float _gamma, float _intensity, float _light_adapt, float _color_adapt) :
        name("TonemapReinhard"),
        gamma(_gamma),
        intensity(_intensity),
        light_adapt(_light_adapt),
        color_adapt(_color_adapt)
    {
    }

    void process(InputArray _src, OutputArray _dst)
    {
        Mat src = _src.getMat();
        CV_Assert(!src.empty());
        _dst.create(src.size(), CV_32FC3);
        Mat img = _dst.getMat();
        Ptr<Tonemap> linear = createTonemap(1.0f);
        linear->process(src, img);

        Mat gray_img;
        cvtColor(img, gray_img, COLOR_RGB2GRAY);
        Mat log_img;
        log_(gray_img, log_img);

        float log_mean = static_cast<float>(sum(log_img)[0] / log_img.total());
        double log_min, log_max;
        minMaxLoc(log_img, &log_min, &log_max);
        log_img.release();

        double key = static_cast<float>((log_max - log_mean) / (log_max - log_min));
        float map_key = 0.3f + 0.7f * pow(static_cast<float>(key), 1.4f);
        intensity = exp(-intensity);
        Scalar chan_mean = mean(img);
        float gray_mean = static_cast<float>(mean(gray_img)[0]);

        std::vector<Mat> channels(3);
        split(img, channels);

        for(int i = 0; i < 3; i++) {
            float global = color_adapt * static_cast<float>(chan_mean[i]) + (1.0f - color_adapt) * gray_mean;
            Mat adapt = color_adapt * channels[i] + (1.0f - color_adapt) * gray_img;
            adapt = light_adapt * adapt + (1.0f - light_adapt) * global;
            pow(intensity * adapt, map_key, adapt);
            channels[i] = channels[i].mul(1.0f / (adapt + channels[i]));
        }
        gray_img.release();
        merge(channels, img);

        linear->setGamma(gamma);
        linear->process(img, img);
    }

    float getGamma() const { return gamma; }
    void setGamma(float val) { gamma = val; }

    float getIntensity() const { return intensity; }
    void setIntensity(float val) { intensity = val; }

    float getLightAdaptation() const { return light_adapt; }
    void setLightAdaptation(float val) { light_adapt = val; }

    float getColorAdaptation() const { return color_adapt; }
    void setColorAdaptation(float val) { color_adapt = val; }

    void write(FileStorage& fs) const
    {
        fs << "name" << name
           << "gamma" << gamma
           << "intensity" << intensity
           << "light_adapt" << light_adapt
           << "color_adapt" << color_adapt;
    }

    void read(const FileNode& fn)
    {
        FileNode n = fn["name"];
        CV_Assert(n.isString() && String(n) == name);
        gamma = fn["gamma"];
        intensity = fn["intensity"];
        light_adapt = fn["light_adapt"];
        color_adapt = fn["color_adapt"];
    }

protected:
    String name;
    float gamma, intensity, light_adapt, color_adapt;
};

Ptr<TonemapReinhard> createTonemapReinhard(float gamma, float contrast, float sigma_color, float sigma_space)
{
    return makePtr<TonemapReinhardImpl>(gamma, contrast, sigma_color, sigma_space);
}

class TonemapMantiukImpl : public TonemapMantiuk
{
public:
    TonemapMantiukImpl(float _gamma, float _scale, float _saturation) :
        name("TonemapMantiuk"),
        gamma(_gamma),
        scale(_scale),
        saturation(_saturation)
    {
    }

    void process(InputArray _src, OutputArray _dst)
    {
        Mat src = _src.getMat();
        CV_Assert(!src.empty());
        _dst.create(src.size(), CV_32FC3);
        Mat img = _dst.getMat();
        Ptr<Tonemap> linear = createTonemap(1.0f);
        linear->process(src, img);

        Mat gray_img;
        cvtColor(img, gray_img, COLOR_RGB2GRAY);
        Mat log_img;
        log_(gray_img, log_img);

        std::vector<Mat> x_contrast, y_contrast;
        getContrast(log_img, x_contrast, y_contrast);

        for(size_t i = 0; i < x_contrast.size(); i++) {
            mapContrast(x_contrast[i]);
            mapContrast(y_contrast[i]);
        }

        Mat right(src.size(), CV_32F);
        calculateSum(x_contrast, y_contrast, right);

        Mat p, r, product, x = log_img;
        calculateProduct(x, r);
        r = right - r;
        r.copyTo(p);

        const float target_error = 1e-3f;
        float target_norm = static_cast<float>(right.dot(right)) * powf(target_error, 2.0f);
        int max_iterations = 100;
        float rr = static_cast<float>(r.dot(r));

        for(int i = 0; i < max_iterations; i++)
        {
            calculateProduct(p, product);
            float alpha = rr / static_cast<float>(p.dot(product));

            r -= alpha * product;
            x += alpha * p;

            float new_rr = static_cast<float>(r.dot(r));
            p = r + (new_rr / rr) * p;
            rr = new_rr;

            if(rr < target_norm) {
                break;
            }
        }
        exp(x, x);
        mapLuminance(img, img, gray_img, x, saturation);

        linear = createTonemap(gamma);
        linear->process(img, img);
    }

    float getGamma() const { return gamma; }
    void setGamma(float val) { gamma = val; }

    float getScale() const { return scale; }
    void setScale(float val) { scale = val; }

    float getSaturation() const { return saturation; }
    void setSaturation(float val) { saturation = val; }

    void write(FileStorage& fs) const
    {
        fs << "name" << name
           << "gamma" << gamma
           << "scale" << scale
           << "saturation" << saturation;
    }

    void read(const FileNode& fn)
    {
        FileNode n = fn["name"];
        CV_Assert(n.isString() && String(n) == name);
        gamma = fn["gamma"];
        scale = fn["scale"];
        saturation = fn["saturation"];
    }

protected:
    String name;
    float gamma, scale, saturation;

    void signedPow(Mat src, float power, Mat& dst)
    {
        Mat sign = (src > 0);
        sign.convertTo(sign, CV_32F, 1.0f/255.0f);
        sign = sign * 2.0f - 1.0f;
        pow(abs(src), power, dst);
        dst = dst.mul(sign);
    }

    void mapContrast(Mat& contrast)
    {
        const float response_power = 0.4185f;
        signedPow(contrast, response_power, contrast);
        contrast *= scale;
        signedPow(contrast, 1.0f / response_power, contrast);
    }

    void getGradient(Mat src, Mat& dst, int pos)
    {
        dst = Mat::zeros(src.size(), CV_32F);
        Mat a, b;
        Mat grad = src.colRange(1, src.cols) - src.colRange(0, src.cols - 1);
        grad.copyTo(dst.colRange(pos, src.cols + pos - 1));
        if(pos == 1) {
            src.col(0).copyTo(dst.col(0));
        }
    }

    void getContrast(Mat src, std::vector<Mat>& x_contrast, std::vector<Mat>& y_contrast)
    {
        int levels = static_cast<int>(logf(static_cast<float>(min(src.rows, src.cols))) / logf(2.0f));
        x_contrast.resize(levels);
        y_contrast.resize(levels);

        Mat layer;
        src.copyTo(layer);
        for(int i = 0; i < levels; i++) {
            getGradient(layer, x_contrast[i], 0);
            getGradient(layer.t(), y_contrast[i], 0);
            resize(layer, layer, Size(layer.cols / 2, layer.rows / 2));
        }
    }

    void calculateSum(std::vector<Mat>& x_contrast, std::vector<Mat>& y_contrast, Mat& sum)
    {
        sum = Mat::zeros(x_contrast[x_contrast.size() - 1].size(), CV_32F);
        for(int i = (int)x_contrast.size() - 1; i >= 0; i--)
        {
            Mat grad_x, grad_y;
            getGradient(x_contrast[i], grad_x, 1);
            getGradient(y_contrast[i], grad_y, 1);
            resize(sum, sum, x_contrast[i].size());
            sum += grad_x + grad_y.t();
        }
    }

    void calculateProduct(Mat src, Mat& dst)
    {
        std::vector<Mat> x_contrast, y_contrast;
        getContrast(src, x_contrast, y_contrast);
        calculateSum(x_contrast, y_contrast, dst);
    }
};

Ptr<TonemapMantiuk> createTonemapMantiuk(float gamma, float scale, float saturation)
{
    return makePtr<TonemapMantiukImpl>(gamma, scale, saturation);
}

}

/* [<][>][^][v][top][bottom][index][help] */