This source file includes following definitions.
- ToUMat
- ToUMat
- ToUMat
- randomInt
- randomDouble
- randomDoubleLog
- randomSize
- randomSize
- randomScalar
- randomMat
- randomBorder
- randomSubMat
- checkNormRelative
- checkNormRelativeSparse
#ifndef __OPENCV_TS_OCL_TEST_HPP__
#define __OPENCV_TS_OCL_TEST_HPP__
#include "opencv2/opencv_modules.hpp"
#include "opencv2/ts.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgproc/types_c.h"
#include "opencv2/core/ocl.hpp"
namespace cvtest {
namespace ocl {
using namespace cv;
using namespace testing;
inline std::vector<UMat> ToUMat(const std::vector<Mat>& src)
{
std::vector<UMat> dst;
dst.resize(src.size());
for (size_t i = 0; i < src.size(); ++i)
{
src[i].copyTo(dst[i]);
}
return dst;
}
inline UMat ToUMat(const Mat& src)
{
UMat dst;
src.copyTo(dst);
return dst;
}
inline UMat ToUMat(InputArray src)
{
UMat dst;
src.getMat().copyTo(dst);
return dst;
}
extern int test_loop_times;
#define MAX_VALUE 357
#define EXPECT_MAT_NORM(mat, eps) \
do \
{ \
EXPECT_LE(TestUtils::checkNorm1(mat), eps) \
} while ((void)0, 0)
#define EXPECT_MAT_NEAR(mat1, mat2, eps) \
do \
{ \
ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(TestUtils::checkNorm2(mat1, mat2), eps) \
<< "Size: " << mat1.size() << std::endl; \
} while ((void)0, 0)
#define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \
do \
{ \
ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(TestUtils::checkNormRelative(mat1, mat2), eps) \
<< "Size: " << mat1.size() << std::endl; \
} while ((void)0, 0)
#define EXPECT_MAT_N_DIFF(mat1, mat2, num) \
do \
{ \
ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \
Mat diff; \
absdiff(mat1, mat2, diff); \
EXPECT_LE(countNonZero(diff.reshape(1)), num) \
<< "Size: " << mat1.size() << std::endl; \
} while ((void)0, 0)
#define OCL_EXPECT_MATS_NEAR(name, eps) \
do \
{ \
ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \
ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \
EXPECT_LE(TestUtils::checkNorm2(name ## _roi, u ## name ## _roi), eps) \
<< "Size: " << name ## _roi.size() << std::endl; \
Point _offset; \
Size _wholeSize; \
u ## name ## _roi.locateROI(_wholeSize, _offset); \
Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \
_mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \
ASSERT_EQ(name.type(), u ## name.type()); \
ASSERT_EQ(name.size(), u ## name.size()); \
EXPECT_LE(TestUtils::checkNorm2(name, u ## name, _mask), eps) \
<< "Size: " << name ## _roi.size() << std::endl; \
} while ((void)0, 0)
#define OCL_EXPECT_MATS_NEAR_RELATIVE(name, eps) \
do \
{ \
ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \
ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \
EXPECT_LE(TestUtils::checkNormRelative(name ## _roi, u ## name ## _roi), eps) \
<< "Size: " << name ## _roi.size() << std::endl; \
Point _offset; \
Size _wholeSize; \
name ## _roi.locateROI(_wholeSize, _offset); \
Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \
_mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \
ASSERT_EQ(name.type(), u ## name.type()); \
ASSERT_EQ(name.size(), u ## name.size()); \
EXPECT_LE(TestUtils::checkNormRelative(name, u ## name, _mask), eps) \
<< "Size: " << name ## _roi.size() << std::endl; \
} while ((void)0, 0)
#define OCL_EXPECT_MATS_NEAR_RELATIVE_SPARSE(name, eps) \
do \
{ \
ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \
ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \
EXPECT_LE(TestUtils::checkNormRelativeSparse(name ## _roi, u ## name ## _roi), eps) \
<< "Size: " << name ## _roi.size() << std::endl; \
Point _offset; \
Size _wholeSize; \
name ## _roi.locateROI(_wholeSize, _offset); \
Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \
_mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \
ASSERT_EQ(name.type(), u ## name.type()); \
ASSERT_EQ(name.size(), u ## name.size()); \
EXPECT_LE(TestUtils::checkNormRelativeSparse(name, u ## name, _mask), eps) \
<< "Size: " << name ## _roi.size() << std::endl; \
} while ((void)0, 0)
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \
do \
{ \
ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(checkSimilarity(mat1, mat2), eps) \
<< "Size: " << mat1.size() << std::endl; \
} while ((void)0, 0)
using perf::MatDepth;
using perf::MatType;
#define OCL_RNG_SEED 123456
struct CV_EXPORTS TestUtils
{
cv::RNG rng;
TestUtils()
{
rng = cv::RNG(OCL_RNG_SEED);
}
int randomInt(int minVal, int maxVal)
{
return rng.uniform(minVal, maxVal);
}
double randomDouble(double minVal, double maxVal)
{
return rng.uniform(minVal, maxVal);
}
double randomDoubleLog(double minVal, double maxVal)
{
double logMin = log((double)minVal + 1);
double logMax = log((double)maxVal + 1);
double pow = rng.uniform(logMin, logMax);
double v = exp(pow) - 1;
CV_Assert(v >= minVal && (v < maxVal || (v == minVal && v == maxVal)));
return v;
}
Size randomSize(int minVal, int maxVal)
{
#if 1
return cv::Size((int)randomDoubleLog(minVal, maxVal), (int)randomDoubleLog(minVal, maxVal));
#else
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
#endif
}
Size randomSize(int minValX, int maxValX, int minValY, int maxValY)
{
#if 1
return cv::Size((int)randomDoubleLog(minValX, maxValX), (int)randomDoubleLog(minValY, maxValY));
#else
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
#endif
}
Scalar randomScalar(double minVal, double maxVal)
{
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
}
Mat randomMat(Size size, int type, double minVal, double maxVal, bool useRoi = false)
{
RNG dataRng(rng.next());
return cvtest::randomMat(dataRng, size, type, minVal, maxVal, useRoi);
}
struct Border
{
int top, bot, lef, rig;
};
Border randomBorder(int minValue = 0, int maxValue = MAX_VALUE)
{
Border border = {
(int)randomDoubleLog(minValue, maxValue),
(int)randomDoubleLog(minValue, maxValue),
(int)randomDoubleLog(minValue, maxValue),
(int)randomDoubleLog(minValue, maxValue)
};
return border;
}
void randomSubMat(Mat& whole, Mat& subMat, const Size& roiSize, const Border& border, int type, double minVal, double maxVal)
{
Size wholeSize = Size(roiSize.width + border.lef + border.rig, roiSize.height + border.top + border.bot);
whole = randomMat(wholeSize, type, minVal, maxVal, false);
subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height));
}
static double checkRectSimilarity(const cv::Size & sz, std::vector<cv::Rect>& ob1, std::vector<cv::Rect>& ob2);
static cv::Mat readImage(const String &fileName, int flags = cv::IMREAD_COLOR);
static cv::Mat readImageType(const String &fname, int type);
static double checkNorm1(InputArray m, InputArray mask = noArray());
static double checkNorm2(InputArray m1, InputArray m2, InputArray mask = noArray());
static double checkSimilarity(InputArray m1, InputArray m2);
static void showDiff(InputArray _src, InputArray _gold, InputArray _actual, double eps, bool alwaysShow);
static inline double checkNormRelative(InputArray m1, InputArray m2, InputArray mask = noArray())
{
return cvtest::norm(m1.getMat(), m2.getMat(), cv::NORM_INF, mask) /
std::max((double)std::numeric_limits<float>::epsilon(),
(double)std::max(cvtest::norm(m1.getMat(), cv::NORM_INF), cvtest::norm(m2.getMat(), cv::NORM_INF)));
}
static inline double checkNormRelativeSparse(InputArray m1, InputArray m2, InputArray mask = noArray())
{
double norm_inf = cvtest::norm(m1.getMat(), m2.getMat(), cv::NORM_INF, mask);
double norm_rel = norm_inf /
std::max((double)std::numeric_limits<float>::epsilon(),
(double)std::max(cvtest::norm(m1.getMat(), cv::NORM_INF), cvtest::norm(m2.getMat(), cv::NORM_INF)));
return std::min(norm_inf, norm_rel);
}
};
#define TEST_DECLARE_INPUT_PARAMETER(name) Mat name, name ## _roi; UMat u ## name, u ## name ## _roi
#define TEST_DECLARE_OUTPUT_PARAMETER(name) TEST_DECLARE_INPUT_PARAMETER(name)
#define UMAT_UPLOAD_INPUT_PARAMETER(name) \
do \
{ \
name.copyTo(u ## name); \
Size _wholeSize; Point ofs; name ## _roi.locateROI(_wholeSize, ofs); \
u ## name ## _roi = u ## name(Rect(ofs.x, ofs.y, name ## _roi.size().width, name ## _roi.size().height)); \
} while ((void)0, 0)
#define UMAT_UPLOAD_OUTPUT_PARAMETER(name) UMAT_UPLOAD_INPUT_PARAMETER(name)
template <typename T>
struct CV_EXPORTS TSTestWithParam : public TestUtils, public ::testing::TestWithParam<T>
{
};
#define PARAM_TEST_CASE(name, ...) struct name : public TSTestWithParam< std::tr1::tuple< __VA_ARGS__ > >
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
#ifndef IMPLEMENT_PARAM_CLASS
#define IMPLEMENT_PARAM_CLASS(name, type) \
class name \
{ \
public: \
name ( type arg = type ()) : val_(arg) {} \
operator type () const {return val_;} \
private: \
type val_; \
}; \
inline void PrintTo( name param, std::ostream* os) \
{ \
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \
}
IMPLEMENT_PARAM_CLASS(Channels, int)
#endif
#define OCL_TEST_P TEST_P
#define OCL_TEST_F(name, ...) typedef name OCL_##name; TEST_F(OCL_##name, __VA_ARGS__)
#define OCL_TEST(name, ...) TEST(OCL_##name, __VA_ARGS__)
#define OCL_OFF(fn) cv::ocl::setUseOpenCL(false); fn
#define OCL_ON(fn) cv::ocl::setUseOpenCL(true); fn
#define OCL_ALL_DEPTHS Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F)
#define OCL_ALL_CHANNELS Values(1, 2, 3, 4)
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA)
CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV)
CV_ENUM(BorderType, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101)
#define OCL_INSTANTIATE_TEST_CASE_P(prefix, test_case_name, generator) \
INSTANTIATE_TEST_CASE_P(OCL_ ## prefix, test_case_name, generator)
} }
#endif