This source file includes following definitions.
- polynomialExpansion
- idx_row_low
- idx_row_high
- idx_col_low
- idx_col_high
- idx_col
- gaussianBlur
- gaussianBlur5
- updateMatrices
- boxFilter5
- updateFlow
#define tx (int)get_local_id(0)
#define ty get_local_id(1)
#define bx get_group_id(0)
#define bdx (int)get_local_size(0)
#define BORDER_SIZE 5
#define MAX_KSIZE_HALF 100
#ifndef polyN
#define polyN 5
#endif
#if USE_DOUBLE
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#define TYPE double
#define VECTYPE double4
#else
#define TYPE float
#define VECTYPE float4
#endif
__kernel void polynomialExpansion(__global __const float * src, int srcStep,
__global float * dst, int dstStep,
const int rows, const int cols,
__global __const float * c_g,
__global __const float * c_xg,
__global __const float * c_xxg,
__local float * smem,
const VECTYPE ig)
{
const int y = get_global_id(1);
const int x = bx * (bdx - 2*polyN) + tx - polyN;
int xWarped;
__local float *row = smem + tx;
if (y < rows && y >= 0)
{
xWarped = min(max(x, 0), cols - 1);
row[0] = src[mad24(y, srcStep, xWarped)] * c_g[0];
row[bdx] = 0.f;
row[2*bdx] = 0.f;
#pragma unroll
for (int k = 1; k <= polyN; ++k)
{
float t0 = src[mad24(max(y - k, 0), srcStep, xWarped)];
float t1 = src[mad24(min(y + k, rows - 1), srcStep, xWarped)];
row[0] += c_g[k] * (t0 + t1);
row[bdx] += c_xg[k] * (t1 - t0);
row[2*bdx] += c_xxg[k] * (t0 + t1);
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (y < rows && y >= 0 && tx >= polyN && tx + polyN < bdx && x < cols)
{
TYPE b1 = c_g[0] * row[0];
TYPE b3 = c_g[0] * row[bdx];
TYPE b5 = c_g[0] * row[2*bdx];
TYPE b2 = 0, b4 = 0, b6 = 0;
#pragma unroll
for (int k = 1; k <= polyN; ++k)
{
b1 += (row[k] + row[-k]) * c_g[k];
b4 += (row[k] + row[-k]) * c_xxg[k];
b2 += (row[k] - row[-k]) * c_xg[k];
b3 += (row[k + bdx] + row[-k + bdx]) * c_g[k];
b6 += (row[k + bdx] - row[-k + bdx]) * c_xg[k];
b5 += (row[k + 2*bdx] + row[-k + 2*bdx]) * c_g[k];
}
dst[mad24(y, dstStep, xWarped)] = (float)(b3*ig.s0);
dst[mad24(rows + y, dstStep, xWarped)] = (float)(b2*ig.s0);
dst[mad24(2*rows + y, dstStep, xWarped)] = (float)(b1*ig.s1 + b5*ig.s2);
dst[mad24(3*rows + y, dstStep, xWarped)] = (float)(b1*ig.s1 + b4*ig.s2);
dst[mad24(4*rows + y, dstStep, xWarped)] = (float)(b6*ig.s3);
}
}
inline int idx_row_low(const int y, const int last_row)
{
return abs(y) % (last_row + 1);
}
inline int idx_row_high(const int y, const int last_row)
{
return abs(last_row - abs(last_row - y)) % (last_row + 1);
}
inline int idx_col_low(const int x, const int last_col)
{
return abs(x) % (last_col + 1);
}
inline int idx_col_high(const int x, const int last_col)
{
return abs(last_col - abs(last_col - x)) % (last_col + 1);
}
inline int idx_col(const int x, const int last_col)
{
return idx_col_low(idx_col_high(x, last_col), last_col);
}
__kernel void gaussianBlur(__global const float * src, int srcStep,
__global float * dst, int dstStep, const int rows, const int cols,
__global const float * c_gKer, const int ksizeHalf,
__local float * smem)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
__local float *row = smem + ty * (bdx + 2*ksizeHalf);
if (y < rows)
{
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = (int)(bx * bdx) + i - ksizeHalf;
xExt = idx_col(xExt, cols - 1);
row[i] = src[mad24(y, srcStep, xExt)] * c_gKer[0];
for (int j = 1; j <= ksizeHalf; ++j)
row[i] += (src[mad24(idx_row_low(y - j, rows - 1), srcStep, xExt)]
+ src[mad24(idx_row_high(y + j, rows - 1), srcStep, xExt)]) * c_gKer[j];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (y < rows && y >= 0 && x < cols && x >= 0)
{
row += tx + ksizeHalf;
float res = row[0] * c_gKer[0];
for (int i = 1; i <= ksizeHalf; ++i)
res += (row[-i] + row[i]) * c_gKer[i];
dst[mad24(y, dstStep, x)] = res;
}
}
__kernel void gaussianBlur5(__global const float * src, int srcStep,
__global float * dst, int dstStep,
const int rows, const int cols,
__global const float * c_gKer, const int ksizeHalf,
__local float * smem)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
const int smw = bdx + 2*ksizeHalf;
__local volatile float *row = smem + 5 * ty * smw;
if (y < rows)
{
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = (int)(bx * bdx) + i - ksizeHalf;
xExt = idx_col(xExt, cols - 1);
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] = src[mad24(k*rows + y, srcStep, xExt)] * c_gKer[0];
for (int j = 1; j <= ksizeHalf; ++j)
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] +=
(src[mad24(k*rows + idx_row_low(y - j, rows - 1), srcStep, xExt)] +
src[mad24(k*rows + idx_row_high(y + j, rows - 1), srcStep, xExt)]) * c_gKer[j];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (y < rows && y >= 0 && x < cols && x >= 0)
{
row += tx + ksizeHalf;
float res[5];
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] = row[k*smw] * c_gKer[0];
for (int i = 1; i <= ksizeHalf; ++i)
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] += (row[k*smw - i] + row[k*smw + i]) * c_gKer[i];
#pragma unroll
for (int k = 0; k < 5; ++k)
dst[mad24(k*rows + y, dstStep, x)] = res[k];
}
}
__constant float c_border[BORDER_SIZE + 1] = { 0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f, 1.f };
__kernel void updateMatrices(__global const float * flowx, int xStep,
__global const float * flowy, int yStep,
const int rows, const int cols,
__global const float * R0, int R0Step,
__global const float * R1, int R1Step,
__global float * M, int mStep)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
if (y < rows && y >= 0 && x < cols && x >= 0)
{
float dx = flowx[mad24(y, xStep, x)];
float dy = flowy[mad24(y, yStep, x)];
float fx = x + dx;
float fy = y + dy;
int x1 = convert_int(floor(fx));
int y1 = convert_int(floor(fy));
fx -= x1;
fy -= y1;
float r2, r3, r4, r5, r6;
if (x1 >= 0 && y1 >= 0 && x1 < cols - 1 && y1 < rows - 1)
{
float a00 = (1.f - fx) * (1.f - fy);
float a01 = fx * (1.f - fy);
float a10 = (1.f - fx) * fy;
float a11 = fx * fy;
r2 = a00 * R1[mad24(y1, R1Step, x1)] +
a01 * R1[mad24(y1, R1Step, x1 + 1)] +
a10 * R1[mad24(y1 + 1, R1Step, x1)] +
a11 * R1[mad24(y1 + 1, R1Step, x1 + 1)];
r3 = a00 * R1[mad24(rows + y1, R1Step, x1)] +
a01 * R1[mad24(rows + y1, R1Step, x1 + 1)] +
a10 * R1[mad24(rows + y1 + 1, R1Step, x1)] +
a11 * R1[mad24(rows + y1 + 1, R1Step, x1 + 1)];
r4 = a00 * R1[mad24(2*rows + y1, R1Step, x1)] +
a01 * R1[mad24(2*rows + y1, R1Step, x1 + 1)] +
a10 * R1[mad24(2*rows + y1 + 1, R1Step, x1)] +
a11 * R1[mad24(2*rows + y1 + 1, R1Step, x1 + 1)];
r5 = a00 * R1[mad24(3*rows + y1, R1Step, x1)] +
a01 * R1[mad24(3*rows + y1, R1Step, x1 + 1)] +
a10 * R1[mad24(3*rows + y1 + 1, R1Step, x1)] +
a11 * R1[mad24(3*rows + y1 + 1, R1Step, x1 + 1)];
r6 = a00 * R1[mad24(4*rows + y1, R1Step, x1)] +
a01 * R1[mad24(4*rows + y1, R1Step, x1 + 1)] +
a10 * R1[mad24(4*rows + y1 + 1, R1Step, x1)] +
a11 * R1[mad24(4*rows + y1 + 1, R1Step, x1 + 1)];
r4 = (R0[mad24(2*rows + y, R0Step, x)] + r4) * 0.5f;
r5 = (R0[mad24(3*rows + y, R0Step, x)] + r5) * 0.5f;
r6 = (R0[mad24(4*rows + y, R0Step, x)] + r6) * 0.25f;
}
else
{
r2 = r3 = 0.f;
r4 = R0[mad24(2*rows + y, R0Step, x)];
r5 = R0[mad24(3*rows + y, R0Step, x)];
r6 = R0[mad24(4*rows + y, R0Step, x)] * 0.5f;
}
r2 = (R0[mad24(y, R0Step, x)] - r2) * 0.5f;
r3 = (R0[mad24(rows + y, R0Step, x)] - r3) * 0.5f;
r2 += r4*dy + r6*dx;
r3 += r6*dy + r5*dx;
float scale =
c_border[min(x, BORDER_SIZE)] *
c_border[min(y, BORDER_SIZE)] *
c_border[min(cols - x - 1, BORDER_SIZE)] *
c_border[min(rows - y - 1, BORDER_SIZE)];
r2 *= scale;
r3 *= scale;
r4 *= scale;
r5 *= scale;
r6 *= scale;
M[mad24(y, mStep, x)] = r4*r4 + r6*r6;
M[mad24(rows + y, mStep, x)] = (r4 + r5)*r6;
M[mad24(2*rows + y, mStep, x)] = r5*r5 + r6*r6;
M[mad24(3*rows + y, mStep, x)] = r4*r2 + r6*r3;
M[mad24(4*rows + y, mStep, x)] = r6*r2 + r5*r3;
}
}
__kernel void boxFilter5(__global const float * src, int srcStep,
__global float * dst, int dstStep,
const int rows, const int cols,
const int ksizeHalf,
__local float * smem)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
const float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
const int smw = bdx + 2*ksizeHalf;
__local float *row = smem + 5 * ty * smw;
if (y < rows)
{
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
{
int xExt = (int)(bx * bdx) + i - ksizeHalf;
xExt = min(max(xExt, 0), cols - 1);
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] = src[mad24(k*rows + y, srcStep, xExt)];
for (int j = 1; j <= ksizeHalf; ++j)
#pragma unroll
for (int k = 0; k < 5; ++k)
row[k*smw + i] +=
src[mad24(k*rows + max(y - j, 0), srcStep, xExt)] +
src[mad24(k*rows + min(y + j, rows - 1), srcStep, xExt)];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (y < rows && y >= 0 && x < cols && x >= 0)
{
row += tx + ksizeHalf;
float res[5];
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] = row[k*smw];
for (int i = 1; i <= ksizeHalf; ++i)
#pragma unroll
for (int k = 0; k < 5; ++k)
res[k] += row[k*smw - i] + row[k*smw + i];
#pragma unroll
for (int k = 0; k < 5; ++k)
dst[mad24(k*rows + y, dstStep, x)] = res[k] * boxAreaInv;
}
}
__kernel void updateFlow(__global const float * M, int mStep,
__global float * flowx, int xStep,
__global float * flowy, int yStep,
const int rows, const int cols)
{
const int y = get_global_id(1);
const int x = get_global_id(0);
if (y < rows && y >= 0 && x < cols && x >= 0)
{
float g11 = M[mad24(y, mStep, x)];
float g12 = M[mad24(rows + y, mStep, x)];
float g22 = M[mad24(2*rows + y, mStep, x)];
float h1 = M[mad24(3*rows + y, mStep, x)];
float h2 = M[mad24(4*rows + y, mStep, x)];
float detInv = 1.f / (g11*g22 - g12*g12 + 1e-3f);
flowx[mad24(y, xStep, x)] = (g11*h2 - g12*h1) * detInv;
flowy[mad24(y, yStep, x)] = (g22*h1 - g12*h2) * detInv;
}
}