root/modules/video/test/test_ecc.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. isMapCorrect
  2. computeRMS
  3. testTranslation
  4. run
  5. testEuclidean
  6. run
  7. testAffine
  8. run
  9. testHomography
  10. run
  11. testMask
  12. run
  13. TEST
  14. TEST
  15. TEST
  16. TEST
  17. TEST

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

using namespace cv;
using namespace std;

class CV_ECC_BaseTest : public cvtest::BaseTest
{
public:
    CV_ECC_BaseTest();

protected:

    double computeRMS(const Mat& mat1, const Mat& mat2);
    bool isMapCorrect(const Mat& mat);


    double MAX_RMS_ECC;//upper bound for RMS error
    int ntests;//number of tests per motion type
    int ECC_iterations;//number of iterations for ECC
    double ECC_epsilon; //we choose a negative value, so that
    // ECC_iterations are always executed
};

CV_ECC_BaseTest::CV_ECC_BaseTest()
{
    MAX_RMS_ECC=0.1;
    ntests = 3;
    ECC_iterations = 50;
    ECC_epsilon = -1; //-> negative value means that ECC_Iterations will be executed
}


bool CV_ECC_BaseTest::isMapCorrect(const Mat& map)
{
    bool tr = true;
    float mapVal;
    for(int i =0; i<map.rows; i++)
        for(int j=0; j<map.cols; j++){
            mapVal = map.at<float>(i, j);
            tr = tr & (!cvIsNaN(mapVal) && (fabs(mapVal) < 1e9));
        }

        return tr;
}

double CV_ECC_BaseTest::computeRMS(const Mat& mat1, const Mat& mat2){

    CV_Assert(mat1.rows == mat2.rows);
    CV_Assert(mat1.cols == mat2.cols);

    Mat errorMat;
    subtract(mat1, mat2, errorMat);

    return sqrt(errorMat.dot(errorMat)/(mat1.rows*mat1.cols));
}


class CV_ECC_Test_Translation : public CV_ECC_BaseTest
{
public:
    CV_ECC_Test_Translation();
protected:
    void run(int);

    bool testTranslation(int);
};

CV_ECC_Test_Translation::CV_ECC_Test_Translation(){}

bool CV_ECC_Test_Translation::testTranslation(int from)
{
    Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0);


    if (img.empty())
    {
        ts->printf( ts->LOG, "test image can not be read");
        ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
        return false;
    }
    Mat testImg;
    resize(img, testImg, Size(216, 216));

    cv::RNG rng = ts->get_rng();

    int progress=0;

    for (int k=from; k<ntests; k++){

        ts->update_context( this, k, true );
        progress = update_progress(progress, k, ntests, 0);

        Mat translationGround = (Mat_<float>(2,3) << 1, 0, (rng.uniform(10.f, 20.f)),
            0, 1, (rng.uniform(10.f, 20.f)));

        Mat warpedImage;

        warpAffine(testImg, warpedImage, translationGround,
            Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP);

        Mat mapTranslation = (Mat_<float>(2,3) << 1, 0, 0, 0, 1, 0);

        findTransformECC(warpedImage, testImg, mapTranslation, 0,
            TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon));

        if (!isMapCorrect(mapTranslation)){
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
            return false;
        }

        if (computeRMS(mapTranslation, translationGround)>MAX_RMS_ECC){
            ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
            ts->printf( ts->LOG, "RMS = %f",
                computeRMS(mapTranslation, translationGround));
            return false;
        }

    }
    return true;
}

void CV_ECC_Test_Translation::run(int from)
{

    if (!testTranslation(from))
        return;

    ts->set_failed_test_info(cvtest::TS::OK);
}



class CV_ECC_Test_Euclidean : public CV_ECC_BaseTest
{
public:
    CV_ECC_Test_Euclidean();
protected:
    void run(int);

    bool testEuclidean(int);
};

CV_ECC_Test_Euclidean::CV_ECC_Test_Euclidean() { }

bool CV_ECC_Test_Euclidean::testEuclidean(int from)
{
    Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0);


    if (img.empty())
    {
        ts->printf( ts->LOG, "test image can not be read");
        ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
        return false;
    }
    Mat testImg;
    resize(img, testImg, Size(216, 216));

    cv::RNG rng = ts->get_rng();

    int progress = 0;
    for (int k=from; k<ntests; k++){
        ts->update_context( this, k, true );
        progress = update_progress(progress, k, ntests, 0);

        double angle = CV_PI/30 + CV_PI*rng.uniform((double)-2.f, (double)2.f)/180;

        Mat euclideanGround = (Mat_<float>(2,3) << cos(angle), -sin(angle), (rng.uniform(10.f, 20.f)),
            sin(angle), cos(angle), (rng.uniform(10.f, 20.f)));

        Mat warpedImage;

        warpAffine(testImg, warpedImage, euclideanGround,
            Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP);

        Mat mapEuclidean = (Mat_<float>(2,3) << 1, 0, 0, 0, 1, 0);

        findTransformECC(warpedImage, testImg, mapEuclidean, 1,
            TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon));

        if (!isMapCorrect(mapEuclidean)){
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
            return false;
        }

        if (computeRMS(mapEuclidean, euclideanGround)>MAX_RMS_ECC){
            ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
            ts->printf( ts->LOG, "RMS = %f",
                computeRMS(mapEuclidean, euclideanGround));
            return false;
        }

    }
    return true;
}


void CV_ECC_Test_Euclidean::run(int from)
{

    if (!testEuclidean(from))
        return;

    ts->set_failed_test_info(cvtest::TS::OK);
}

class CV_ECC_Test_Affine : public CV_ECC_BaseTest
{
public:
    CV_ECC_Test_Affine();
protected:
    void run(int);

    bool testAffine(int);
};

CV_ECC_Test_Affine::CV_ECC_Test_Affine(){}


bool CV_ECC_Test_Affine::testAffine(int from)
{
    Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0);

    if (img.empty())
    {
        ts->printf( ts->LOG, "test image can not be read");
        ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
        return false;
    }
    Mat testImg;
    resize(img, testImg, Size(216, 216));

    cv::RNG rng = ts->get_rng();

    int progress = 0;
    for (int k=from; k<ntests; k++){
        ts->update_context( this, k, true );
        progress = update_progress(progress, k, ntests, 0);


        Mat affineGround = (Mat_<float>(2,3) << (1-rng.uniform(-0.05f, 0.05f)),
            (rng.uniform(-0.03f, 0.03f)), (rng.uniform(10.f, 20.f)),
            (rng.uniform(-0.03f, 0.03f)), (1-rng.uniform(-0.05f, 0.05f)),
            (rng.uniform(10.f, 20.f)));

        Mat warpedImage;

        warpAffine(testImg, warpedImage, affineGround,
            Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP);

        Mat mapAffine = (Mat_<float>(2,3) << 1, 0, 0, 0, 1, 0);

        findTransformECC(warpedImage, testImg, mapAffine, 2,
            TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon));

        if (!isMapCorrect(mapAffine)){
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
            return false;
        }

        if (computeRMS(mapAffine, affineGround)>MAX_RMS_ECC){
            ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
            ts->printf( ts->LOG, "RMS = %f",
                computeRMS(mapAffine, affineGround));
            return false;
        }

    }

    return true;
}


void CV_ECC_Test_Affine::run(int from)
{

    if (!testAffine(from))
        return;

    ts->set_failed_test_info(cvtest::TS::OK);
}

class CV_ECC_Test_Homography : public CV_ECC_BaseTest
{
public:
    CV_ECC_Test_Homography();
protected:
    void run(int);

    bool testHomography(int);
};

CV_ECC_Test_Homography::CV_ECC_Test_Homography(){}

bool CV_ECC_Test_Homography::testHomography(int from)
{
    Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0);


    if (img.empty())
    {
        ts->printf( ts->LOG, "test image can not be read");
        ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
        return false;
    }
    Mat testImg;
    resize(img, testImg, Size(216, 216));

    cv::RNG rng = ts->get_rng();

    int progress = 0;
    for (int k=from; k<ntests; k++){
        ts->update_context( this, k, true );
        progress = update_progress(progress, k, ntests, 0);

        Mat homoGround = (Mat_<float>(3,3) << (1-rng.uniform(-0.05f, 0.05f)),
            (rng.uniform(-0.03f, 0.03f)), (rng.uniform(10.f, 20.f)),
            (rng.uniform(-0.03f, 0.03f)), (1-rng.uniform(-0.05f, 0.05f)),(rng.uniform(10.f, 20.f)),
            (rng.uniform(0.0001f, 0.0003f)), (rng.uniform(0.0001f, 0.0003f)), 1.f);

        Mat warpedImage;

        warpPerspective(testImg, warpedImage, homoGround,
            Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP);

        Mat mapHomography = Mat::eye(3, 3, CV_32F);

        findTransformECC(warpedImage, testImg, mapHomography, 3,
            TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon));

        if (!isMapCorrect(mapHomography)){
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
            return false;
        }

        if (computeRMS(mapHomography, homoGround)>MAX_RMS_ECC){
            ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
            ts->printf( ts->LOG, "RMS = %f",
                computeRMS(mapHomography, homoGround));
            return false;
        }

    }
    return true;
}

void CV_ECC_Test_Homography::run(int from)
{
    if (!testHomography(from))
        return;

    ts->set_failed_test_info(cvtest::TS::OK);
}

class CV_ECC_Test_Mask : public CV_ECC_BaseTest
{
public:
    CV_ECC_Test_Mask();
protected:
    void run(int);

    bool testMask(int);
};

CV_ECC_Test_Mask::CV_ECC_Test_Mask(){}

bool CV_ECC_Test_Mask::testMask(int from)
{
    Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0);


    if (img.empty())
    {
        ts->printf( ts->LOG, "test image can not be read");
        ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
        return false;
    }
    Mat scaledImage;
    resize(img, scaledImage, Size(216, 216));

    Mat_<float> testImg;
    scaledImage.convertTo(testImg, testImg.type());

    cv::RNG rng = ts->get_rng();

    int progress=0;

    for (int k=from; k<ntests; k++){

        ts->update_context( this, k, true );
        progress = update_progress(progress, k, ntests, 0);

        Mat translationGround = (Mat_<float>(2,3) << 1, 0, (rng.uniform(10.f, 20.f)),
            0, 1, (rng.uniform(10.f, 20.f)));

        Mat warpedImage;

        warpAffine(testImg, warpedImage, translationGround,
            Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP);

        Mat mapTranslation = (Mat_<float>(2,3) << 1, 0, 0, 0, 1, 0);

        Mat_<unsigned char> mask = Mat_<unsigned char>::ones(testImg.rows, testImg.cols);
        for (int i=testImg.rows*2/3; i<testImg.rows; i++) {
          for (int j=testImg.cols*2/3; j<testImg.cols; j++) {
            testImg(i, j) = 0;
            mask(i, j) = 0;
          }
        }

        findTransformECC(warpedImage, testImg, mapTranslation, 0,
            TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon), mask);

        if (!isMapCorrect(mapTranslation)){
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
            return false;
        }

        if (computeRMS(mapTranslation, translationGround)>MAX_RMS_ECC){
            ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
            ts->printf( ts->LOG, "RMS = %f",
                computeRMS(mapTranslation, translationGround));
            return false;
        }

    }
    return true;
}

void CV_ECC_Test_Mask::run(int from)
{
    if (!testMask(from))
        return;

    ts->set_failed_test_info(cvtest::TS::OK);
}

TEST(Video_ECC_Translation, accuracy) { CV_ECC_Test_Translation test; test.safe_run();}
TEST(Video_ECC_Euclidean, accuracy) { CV_ECC_Test_Euclidean test; test.safe_run(); }
TEST(Video_ECC_Affine, accuracy) { CV_ECC_Test_Affine test; test.safe_run(); }
TEST(Video_ECC_Homography, accuracy) { CV_ECC_Test_Homography test; test.safe_run(); }
TEST(Video_ECC_Mask, accuracy) { CV_ECC_Test_Mask test; test.safe_run(); }

/* [<][>][^][v][top][bottom][index][help] */