root/modules/videostab/src/global_motion.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. compactPoints
  2. compactPoints
  3. normalizePoints
  4. estimateGlobMotionLeastSquaresTranslation
  5. estimateGlobMotionLeastSquaresTranslationAndScale
  6. estimateGlobMotionLeastSquaresRotation
  7. estimateGlobMotionLeastSquaresRigid
  8. estimateGlobMotionLeastSquaresSimilarity
  9. estimateGlobMotionLeastSquaresAffine
  10. estimateGlobalMotionLeastSquares
  11. estimateGlobalMotionRansac
  12. estimate
  13. estimate
  14. estimate
  15. motionEstimator_
  16. estimate
  17. motionEstimator_
  18. estimate
  19. motionEstimator_
  20. estimate
  21. estimate
  22. getMotion

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/videostab/global_motion.hpp"
#include "opencv2/videostab/ring_buffer.hpp"
#include "opencv2/videostab/outlier_rejection.hpp"
#include "opencv2/opencv_modules.hpp"
#include "clp.hpp"

#include "opencv2/core/private.cuda.hpp"

#if defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDAOPTFLOW)
    #if !defined HAVE_CUDA || defined(CUDA_DISABLER)
        namespace cv { namespace cuda {
            static void compactPoints(GpuMat&, GpuMat&, const GpuMat&) { throw_no_cuda(); }
        }}
    #else
        namespace cv { namespace cuda { namespace device { namespace globmotion {
            int compactPoints(int N, float *points0, float *points1, const uchar *mask);
        }}}}
        namespace cv { namespace cuda {
            static void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask)
            {
                CV_Assert(points0.rows == 1 && points1.rows == 1 && mask.rows == 1);
                CV_Assert(points0.type() == CV_32FC2 && points1.type() == CV_32FC2 && mask.type() == CV_8U);
                CV_Assert(points0.cols == mask.cols && points1.cols == mask.cols);

                int npoints = points0.cols;
                int remaining = cv::cuda::device::globmotion::compactPoints(
                        npoints, (float*)points0.data, (float*)points1.data, mask.data);

                points0 = points0.colRange(0, remaining);
                points1 = points1.colRange(0, remaining);
            }
        }}
    #endif
#endif

namespace cv
{
namespace videostab
{

// does isotropic normalization
static Mat normalizePoints(int npoints, Point2f *points)
{
    float cx = 0.f, cy = 0.f;
    for (int i = 0; i < npoints; ++i)
    {
        cx += points[i].x;
        cy += points[i].y;
    }
    cx /= npoints;
    cy /= npoints;

    float d = 0.f;
    for (int i = 0; i < npoints; ++i)
    {
        points[i].x -= cx;
        points[i].y -= cy;
        d += std::sqrt(sqr(points[i].x) + sqr(points[i].y));
    }
    d /= npoints;

    float s = std::sqrt(2.f) / d;
    for (int i = 0; i < npoints; ++i)
    {
        points[i].x *= s;
        points[i].y *= s;
    }

    Mat_<float> T = Mat::eye(3, 3, CV_32F);
    T(0,0) = T(1,1) = s;
    T(0,2) = -cx*s;
    T(1,2) = -cy*s;
    return T;
}


static Mat estimateGlobMotionLeastSquaresTranslation(
        int npoints, Point2f *points0, Point2f *points1, float *rmse)
{
    Mat_<float> M = Mat::eye(3, 3, CV_32F);
    for (int i = 0; i < npoints; ++i)
    {
        M(0,2) += points1[i].x - points0[i].x;
        M(1,2) += points1[i].y - points0[i].y;
    }
    M(0,2) /= npoints;
    M(1,2) /= npoints;

    if (rmse)
    {
        *rmse = 0;
        for (int i = 0; i < npoints; ++i)
            *rmse += sqr(points1[i].x - points0[i].x - M(0,2)) +
                     sqr(points1[i].y - points0[i].y - M(1,2));
        *rmse = std::sqrt(*rmse / npoints);
    }

    return M;
}


static Mat estimateGlobMotionLeastSquaresTranslationAndScale(
        int npoints, Point2f *points0, Point2f *points1, float *rmse)
{
    Mat_<float> T0 = normalizePoints(npoints, points0);
    Mat_<float> T1 = normalizePoints(npoints, points1);

    Mat_<float> A(2*npoints, 3), b(2*npoints, 1);
    float *a0, *a1;
    Point2f p0, p1;

    for (int i = 0; i < npoints; ++i)
    {
        a0 = A[2*i];
        a1 = A[2*i+1];
        p0 = points0[i];
        p1 = points1[i];
        a0[0] = p0.x; a0[1] = 1; a0[2] = 0;
        a1[0] = p0.y; a1[1] = 0; a1[2] = 1;
        b(2*i,0) = p1.x;
        b(2*i+1,0) = p1.y;
    }

    Mat_<float> sol;
    solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU);

    if (rmse)
        *rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / std::sqrt(static_cast<double>(npoints)));

    Mat_<float> M = Mat::eye(3, 3, CV_32F);
    M(0,0) = M(1,1) = sol(0,0);
    M(0,2) = sol(1,0);
    M(1,2) = sol(2,0);

    return T1.inv() * M * T0;
}

static Mat estimateGlobMotionLeastSquaresRotation(
        int npoints, Point2f *points0, Point2f *points1, float *rmse)
{
    Point2f p0, p1;
    float A(0), B(0);
    for(int i=0; i<npoints; ++i)
    {
        p0 = points0[i];
        p1 = points1[i];

        A += p0.x*p1.x + p0.y*p1.y;
        B += p0.x*p1.y - p1.x*p0.y;
    }

    // A*sin(alpha) + B*cos(alpha) = 0
    float C = std::sqrt(A*A + B*B);
    Mat_<float> M = Mat::eye(3, 3, CV_32F);
    if ( C != 0 )
    {
        float sinAlpha = - B / C;
        float cosAlpha = A / C;

        M(0,0) = cosAlpha;
        M(1,1) = M(0,0);
        M(0,1) = sinAlpha;
        M(1,0) = - M(0,1);
    }

    if (rmse)
    {
        *rmse = 0;
        for (int i = 0; i < npoints; ++i)
        {
            p0 = points0[i];
            p1 = points1[i];
            *rmse += sqr(p1.x - M(0,0)*p0.x - M(0,1)*p0.y) +
                     sqr(p1.y - M(1,0)*p0.x - M(1,1)*p0.y);
        }
        *rmse = std::sqrt(*rmse / npoints);
    }

    return M;
}

static Mat  estimateGlobMotionLeastSquaresRigid(
        int npoints, Point2f *points0, Point2f *points1, float *rmse)
{
    Point2f mean0(0.f, 0.f);
    Point2f mean1(0.f, 0.f);

    for (int i = 0; i < npoints; ++i)
    {
        mean0 += points0[i];
        mean1 += points1[i];
    }

    mean0 *= 1.f / npoints;
    mean1 *= 1.f / npoints;

    Mat_<float> A = Mat::zeros(2, 2, CV_32F);
    Point2f pt0, pt1;

    for (int i = 0; i < npoints; ++i)
    {
        pt0 = points0[i] - mean0;
        pt1 = points1[i] - mean1;
        A(0,0) += pt1.x * pt0.x;
        A(0,1) += pt1.x * pt0.y;
        A(1,0) += pt1.y * pt0.x;
        A(1,1) += pt1.y * pt0.y;
    }

    Mat_<float> M = Mat::eye(3, 3, CV_32F);

    SVD svd(A);
    Mat_<float> R = svd.u * svd.vt;
    Mat tmp(M(Rect(0,0,2,2)));
    R.copyTo(tmp);

    M(0,2) = mean1.x - R(0,0)*mean0.x - R(0,1)*mean0.y;
    M(1,2) = mean1.y - R(1,0)*mean0.x - R(1,1)*mean0.y;

    if (rmse)
    {
        *rmse = 0;
        for (int i = 0; i < npoints; ++i)
        {
            pt0 = points0[i];
            pt1 = points1[i];
            *rmse += sqr(pt1.x - M(0,0)*pt0.x - M(0,1)*pt0.y - M(0,2)) +
                     sqr(pt1.y - M(1,0)*pt0.x - M(1,1)*pt0.y - M(1,2));
        }
        *rmse = std::sqrt(*rmse / npoints);
    }

    return M;
}


static Mat estimateGlobMotionLeastSquaresSimilarity(
        int npoints, Point2f *points0, Point2f *points1, float *rmse)
{
    Mat_<float> T0 = normalizePoints(npoints, points0);
    Mat_<float> T1 = normalizePoints(npoints, points1);

    Mat_<float> A(2*npoints, 4), b(2*npoints, 1);
    float *a0, *a1;
    Point2f p0, p1;

    for (int i = 0; i < npoints; ++i)
    {
        a0 = A[2*i];
        a1 = A[2*i+1];
        p0 = points0[i];
        p1 = points1[i];
        a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = 0;
        a1[0] = p0.y; a1[1] = -p0.x; a1[2] = 0; a1[3] = 1;
        b(2*i,0) = p1.x;
        b(2*i+1,0) = p1.y;
    }

    Mat_<float> sol;
    solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU);

    if (rmse)
        *rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / std::sqrt(static_cast<double>(npoints)));

    Mat_<float> M = Mat::eye(3, 3, CV_32F);
    M(0,0) = M(1,1) = sol(0,0);
    M(0,1) = sol(1,0);
    M(1,0) = -sol(1,0);
    M(0,2) = sol(2,0);
    M(1,2) = sol(3,0);

    return T1.inv() * M * T0;
}


static Mat estimateGlobMotionLeastSquaresAffine(
        int npoints, Point2f *points0, Point2f *points1, float *rmse)
{
    Mat_<float> T0 = normalizePoints(npoints, points0);
    Mat_<float> T1 = normalizePoints(npoints, points1);

    Mat_<float> A(2*npoints, 6), b(2*npoints, 1);
    float *a0, *a1;
    Point2f p0, p1;

    for (int i = 0; i < npoints; ++i)
    {
        a0 = A[2*i];
        a1 = A[2*i+1];
        p0 = points0[i];
        p1 = points1[i];
        a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = a0[4] = a0[5] = 0;
        a1[0] = a1[1] = a1[2] = 0; a1[3] = p0.x; a1[4] = p0.y; a1[5] = 1;
        b(2*i,0) = p1.x;
        b(2*i+1,0) = p1.y;
    }

    Mat_<float> sol;
    solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU);

    if (rmse)
        *rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / std::sqrt(static_cast<double>(npoints)));

    Mat_<float> M = Mat::eye(3, 3, CV_32F);
    for (int i = 0, k = 0; i < 2; ++i)
        for (int j = 0; j < 3; ++j, ++k)
            M(i,j) = sol(k,0);

    return T1.inv() * M * T0;
}


Mat estimateGlobalMotionLeastSquares(
        InputOutputArray points0, InputOutputArray points1, int model, float *rmse)
{
    CV_Assert(model <= MM_AFFINE);
    CV_Assert(points0.type() == points1.type());
    const int npoints = points0.getMat().checkVector(2);
    CV_Assert(points1.getMat().checkVector(2) == npoints);

    typedef Mat (*Impl)(int, Point2f*, Point2f*, float*);
    static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
                            estimateGlobMotionLeastSquaresTranslationAndScale,
                            estimateGlobMotionLeastSquaresRotation,
                            estimateGlobMotionLeastSquaresRigid,
                            estimateGlobMotionLeastSquaresSimilarity,
                            estimateGlobMotionLeastSquaresAffine };

    Point2f *points0_ = points0.getMat().ptr<Point2f>();
    Point2f *points1_ = points1.getMat().ptr<Point2f>();

    return impls[model](npoints, points0_, points1_, rmse);
}


Mat estimateGlobalMotionRansac(
        InputArray points0, InputArray points1, int model, const RansacParams &params,
        float *rmse, int *ninliers)
{
    CV_Assert(model <= MM_AFFINE);
    CV_Assert(points0.type() == points1.type());
    const int npoints = points0.getMat().checkVector(2);
    CV_Assert(points1.getMat().checkVector(2) == npoints);

    if (npoints < params.size)
        return Mat::eye(3, 3, CV_32F);

    const Point2f *points0_ = points0.getMat().ptr<Point2f>();
    const Point2f *points1_ = points1.getMat().ptr<Point2f>();
    const int niters = params.niters();

    // current hypothesis
    std::vector<int> indices(params.size);
    std::vector<Point2f> subset0(params.size);
    std::vector<Point2f> subset1(params.size);

    // best hypothesis
    std::vector<Point2f> subset0best(params.size);
    std::vector<Point2f> subset1best(params.size);
    Mat_<float> bestM;
    int ninliersMax = -1;

    RNG rng(0);
    Point2f p0, p1;
    float x, y;

    for (int iter = 0; iter < niters; ++iter)
    {
        for (int i = 0; i < params.size; ++i)
        {
            bool ok = false;
            while (!ok)
            {
                ok = true;
                indices[i] = static_cast<unsigned>(rng) % npoints;
                for (int j = 0; j < i; ++j)
                    if (indices[i] == indices[j])
                        { ok = false; break; }
            }
        }
        for (int i = 0; i < params.size; ++i)
        {
            subset0[i] = points0_[indices[i]];
            subset1[i] = points1_[indices[i]];
        }

        Mat_<float> M = estimateGlobalMotionLeastSquares(subset0, subset1, model, 0);

        int numinliers = 0;
        for (int i = 0; i < npoints; ++i)
        {
            p0 = points0_[i];
            p1 = points1_[i];
            x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2);
            y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2);
            if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
                numinliers++;
        }
        if (numinliers >= ninliersMax)
        {
            bestM = M;
            ninliersMax = numinliers;
            subset0best.swap(subset0);
            subset1best.swap(subset1);
        }
    }

    if (ninliersMax < params.size)
        // compute RMSE
        bestM = estimateGlobalMotionLeastSquares(subset0best, subset1best, model, rmse);
    else
    {
        subset0.resize(ninliersMax);
        subset1.resize(ninliersMax);
        for (int i = 0, j = 0; i < npoints && j < ninliersMax ; ++i)
        {
            p0 = points0_[i];
            p1 = points1_[i];
            x = bestM(0,0)*p0.x + bestM(0,1)*p0.y + bestM(0,2);
            y = bestM(1,0)*p0.x + bestM(1,1)*p0.y + bestM(1,2);
            if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
            {
                subset0[j] = p0;
                subset1[j] = p1;
                j++;
            }
        }
        bestM = estimateGlobalMotionLeastSquares(subset0, subset1, model, rmse);
    }

    if (ninliers)
        *ninliers = ninliersMax;

    return bestM;
}


MotionEstimatorRansacL2::MotionEstimatorRansacL2(MotionModel model)
    : MotionEstimatorBase(model)
{
    setRansacParams(RansacParams::default2dMotion(model));
    setMinInlierRatio(0.1f);
}


Mat MotionEstimatorRansacL2::estimate(InputArray points0, InputArray points1, bool *ok)
{
    CV_Assert(points0.type() == points1.type());
    const int npoints = points0.getMat().checkVector(2);
    CV_Assert(points1.getMat().checkVector(2) == npoints);

    // find motion

    int ninliers = 0;
    Mat_<float> M;

    if (motionModel() != MM_HOMOGRAPHY)
        M = estimateGlobalMotionRansac(
                points0, points1, motionModel(), ransacParams_, 0, &ninliers);
    else
    {
        std::vector<uchar> mask;
        M = findHomography(points0, points1, mask, LMEDS);
        for (int i  = 0; i < npoints; ++i)
            if (mask[i]) ninliers++;
    }

    // check if we're confident enough in estimated motion

    if (ok) *ok = true;
    if (static_cast<float>(ninliers) / npoints < minInlierRatio_)
    {
        M = Mat::eye(3, 3, CV_32F);
        if (ok) *ok = false;
    }

    return M;
}


MotionEstimatorL1::MotionEstimatorL1(MotionModel model)
    : MotionEstimatorBase(model)
{
}


// TODO will estimation of all motions as one LP problem be faster?
Mat MotionEstimatorL1::estimate(InputArray points0, InputArray points1, bool *ok)
{
    CV_Assert(points0.type() == points1.type());
    const int npoints = points0.getMat().checkVector(2);
    CV_Assert(points1.getMat().checkVector(2) == npoints);

#ifndef HAVE_CLP

    CV_Error(Error::StsError, "The library is built without Clp support");
    if (ok) *ok = false;
    return Mat::eye(3, 3, CV_32F);

#else

    CV_Assert(motionModel() <= MM_AFFINE && motionModel() != MM_RIGID);

    if(npoints <= 0)
        return Mat::eye(3, 3, CV_32F);

    // prepare LP problem

    const Point2f *points0_ = points0.getMat().ptr<Point2f>();
    const Point2f *points1_ = points1.getMat().ptr<Point2f>();

    int ncols = 6 + 2*npoints;
    int nrows = 4*npoints;

    if (motionModel() == MM_SIMILARITY)
        nrows += 2;
    else if (motionModel() == MM_TRANSLATION_AND_SCALE)
        nrows += 3;
    else if (motionModel() == MM_TRANSLATION)
        nrows += 4;

    rows_.clear();
    cols_.clear();
    elems_.clear();
    obj_.assign(ncols, 0);
    collb_.assign(ncols, -INF);
    colub_.assign(ncols, INF);

    int c = 6;

    for (int i = 0; i < npoints; ++i, c += 2)
    {
        obj_[c] = 1;
        collb_[c] = 0;

        obj_[c+1] = 1;
        collb_[c+1] = 0;
    }

    elems_.clear();
    rowlb_.assign(nrows, -INF);
    rowub_.assign(nrows, INF);

    int r = 0;
    Point2f p0, p1;

    for (int i = 0; i < npoints; ++i, r += 4)
    {
        p0 = points0_[i];
        p1 = points1_[i];

        set(r, 0, p0.x); set(r, 1, p0.y); set(r, 2, 1); set(r, 6+2*i, -1);
        rowub_[r] = p1.x;

        set(r+1, 3, p0.x); set(r+1, 4, p0.y); set(r+1, 5, 1); set(r+1, 6+2*i+1, -1);
        rowub_[r+1] = p1.y;

        set(r+2, 0, p0.x); set(r+2, 1, p0.y); set(r+2, 2, 1); set(r+2, 6+2*i, 1);
        rowlb_[r+2] = p1.x;

        set(r+3, 3, p0.x); set(r+3, 4, p0.y); set(r+3, 5, 1); set(r+3, 6+2*i+1, 1);
        rowlb_[r+3] = p1.y;
    }

    if (motionModel() == MM_SIMILARITY)
    {
        set(r, 0, 1); set(r, 4, -1); rowlb_[r] = rowub_[r] = 0;
        set(r+1, 1, 1); set(r+1, 3, 1); rowlb_[r+1] = rowub_[r+1] = 0;
    }
    else if (motionModel() == MM_TRANSLATION_AND_SCALE)
    {
        set(r, 0, 1); set(r, 4, -1); rowlb_[r] = rowub_[r] = 0;
        set(r+1, 1, 1); rowlb_[r+1] = rowub_[r+1] = 0;
        set(r+2, 3, 1); rowlb_[r+2] = rowub_[r+2] = 0;
    }
    else if (motionModel() == MM_TRANSLATION)
    {
        set(r, 0, 1); rowlb_[r] = rowub_[r] = 1;
        set(r+1, 1, 1); rowlb_[r+1] = rowub_[r+1] = 0;
        set(r+2, 3, 1); rowlb_[r+2] = rowub_[r+2] = 0;
        set(r+3, 4, 1); rowlb_[r+3] = rowub_[r+3] = 1;
    }

    // solve

    CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size());
    A.setDimensions(nrows, ncols);

    ClpSimplex model(false);
    model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]);

    ClpDualRowSteepest dualSteep(1);
    model.setDualRowPivotAlgorithm(dualSteep);
    model.scaling(1);

    model.dual();

    // extract motion

    const double *sol = model.getColSolution();

    Mat_<float> M = Mat::eye(3, 3, CV_32F);
    M(0,0) = sol[0];
    M(0,1) = sol[1];
    M(0,2) = sol[2];
    M(1,0) = sol[3];
    M(1,1) = sol[4];
    M(1,2) = sol[5];

    if (ok) *ok = true;
    return M;
#endif
}


FromFileMotionReader::FromFileMotionReader(const String &path)
    : ImageMotionEstimatorBase(MM_UNKNOWN)
{
    file_.open(path.c_str());
    CV_Assert(file_.is_open());
}


Mat FromFileMotionReader::estimate(const Mat &/*frame0*/, const Mat &/*frame1*/, bool *ok)
{
    Mat_<float> M(3, 3);
    bool ok_;
    file_ >> M(0,0) >> M(0,1) >> M(0,2)
          >> M(1,0) >> M(1,1) >> M(1,2)
          >> M(2,0) >> M(2,1) >> M(2,2) >> ok_;
    if (ok) *ok = ok_;
    return M;
}


ToFileMotionWriter::ToFileMotionWriter(const String &path, Ptr<ImageMotionEstimatorBase> estimator)
    : ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator)
{
    file_.open(path.c_str());
    CV_Assert(file_.is_open());
}


Mat ToFileMotionWriter::estimate(const Mat &frame0, const Mat &frame1, bool *ok)
{
    bool ok_;
    Mat_<float> M = motionEstimator_->estimate(frame0, frame1, &ok_);
    file_ << M(0,0) << " " << M(0,1) << " " << M(0,2) << " "
          << M(1,0) << " " << M(1,1) << " " << M(1,2) << " "
          << M(2,0) << " " << M(2,1) << " " << M(2,2) << " " << ok_ << std::endl;
    if (ok) *ok = ok_;
    return M;
}


KeypointBasedMotionEstimator::KeypointBasedMotionEstimator(Ptr<MotionEstimatorBase> estimator)
    : ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator)
{
    setDetector(GFTTDetector::create());
    setOpticalFlowEstimator(makePtr<SparsePyrLkOptFlowEstimator>());
    setOutlierRejector(makePtr<NullOutlierRejector>());
}


Mat KeypointBasedMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, bool *ok)
{
    // find keypoints
    detector_->detect(frame0, keypointsPrev_);
    if (keypointsPrev_.empty())
        return Mat::eye(3, 3, CV_32F);

    // extract points from keypoints
    pointsPrev_.resize(keypointsPrev_.size());
    for (size_t i = 0; i < keypointsPrev_.size(); ++i)
        pointsPrev_[i] = keypointsPrev_[i].pt;

    // find correspondences
    optFlowEstimator_->run(frame0, frame1, pointsPrev_, points_, status_, noArray());

    // leave good correspondences only

    pointsPrevGood_.clear(); pointsPrevGood_.reserve(points_.size());
    pointsGood_.clear(); pointsGood_.reserve(points_.size());

    for (size_t i = 0; i < points_.size(); ++i)
    {
        if (status_[i])
        {
            pointsPrevGood_.push_back(pointsPrev_[i]);
            pointsGood_.push_back(points_[i]);
        }
    }

    // perform outlier rejection

    IOutlierRejector *outlRejector = outlierRejector_.get();
    if (!dynamic_cast<NullOutlierRejector*>(outlRejector))
    {
        pointsPrev_.swap(pointsPrevGood_);
        points_.swap(pointsGood_);

        outlierRejector_->process(frame0.size(), pointsPrev_, points_, status_);

        pointsPrevGood_.clear();
        pointsPrevGood_.reserve(points_.size());

        pointsGood_.clear();
        pointsGood_.reserve(points_.size());

        for (size_t i = 0; i < points_.size(); ++i)
        {
            if (status_[i])
            {
                pointsPrevGood_.push_back(pointsPrev_[i]);
                pointsGood_.push_back(points_[i]);
            }
        }
    }

    // estimate motion
    return motionEstimator_->estimate(pointsPrevGood_, pointsGood_, ok);
}

#if defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDAOPTFLOW)

KeypointBasedMotionEstimatorGpu::KeypointBasedMotionEstimatorGpu(Ptr<MotionEstimatorBase> estimator)
    : ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator)
{
    detector_ = cuda::createGoodFeaturesToTrackDetector(CV_8UC1);

    CV_Assert(cuda::getCudaEnabledDeviceCount() > 0);
    setOutlierRejector(makePtr<NullOutlierRejector>());
}


Mat KeypointBasedMotionEstimatorGpu::estimate(const Mat &frame0, const Mat &frame1, bool *ok)
{
    frame0_.upload(frame0);
    frame1_.upload(frame1);
    return estimate(frame0_, frame1_, ok);
}


Mat KeypointBasedMotionEstimatorGpu::estimate(const cuda::GpuMat &frame0, const cuda::GpuMat &frame1, bool *ok)
{
    // convert frame to gray if it's color

    cuda::GpuMat grayFrame0;
    if (frame0.channels() == 1)
        grayFrame0 = frame0;
    else
    {
        cuda::cvtColor(frame0, grayFrame0_, COLOR_BGR2GRAY);
        grayFrame0 = grayFrame0_;
    }

    // find keypoints
    detector_->detect(grayFrame0, pointsPrev_);

    // find correspondences
    optFlowEstimator_.run(frame0, frame1, pointsPrev_, points_, status_);

    // leave good correspondences only
    cuda::compactPoints(pointsPrev_, points_, status_);

    pointsPrev_.download(hostPointsPrev_);
    points_.download(hostPoints_);

    // perform outlier rejection

    IOutlierRejector *rejector = outlierRejector_.get();
    if (!dynamic_cast<NullOutlierRejector*>(rejector))
    {
        outlierRejector_->process(frame0.size(), hostPointsPrev_, hostPoints_, rejectionStatus_);

        hostPointsPrevTmp_.clear();
        hostPointsPrevTmp_.reserve(hostPoints_.cols);

        hostPointsTmp_.clear();
        hostPointsTmp_.reserve(hostPoints_.cols);

        for (int i = 0; i < hostPoints_.cols; ++i)
        {
            if (rejectionStatus_[i])
            {
                hostPointsPrevTmp_.push_back(hostPointsPrev_.at<Point2f>(0,i));
                hostPointsTmp_.push_back(hostPoints_.at<Point2f>(0,i));
            }
        }

        hostPointsPrev_ = Mat(1, (int)hostPointsPrevTmp_.size(), CV_32FC2, &hostPointsPrevTmp_[0]);
        hostPoints_ = Mat(1, (int)hostPointsTmp_.size(), CV_32FC2, &hostPointsTmp_[0]);
    }

    // estimate motion
    return motionEstimator_->estimate(hostPointsPrev_, hostPoints_, ok);
}

#endif // defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDAOPTFLOW)


Mat getMotion(int from, int to, const std::vector<Mat> &motions)
{
    Mat M = Mat::eye(3, 3, CV_32F);
    if (to > from)
    {
        for (int i = from; i < to; ++i)
            M = at(i, motions) * M;
    }
    else if (from > to)
    {
        for (int i = to; i < from; ++i)
            M = at(i, motions) * M;
        M = M.inv();
    }
    return M;
}

} // namespace videostab
} // namespace cv

/* [<][>][^][v][top][bottom][index][help] */