root/3rdparty/libwebp/enc/filter.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. InitTables
  2. do_filter2
  3. do_filter4
  4. hev
  5. needs_filter
  6. needs_filter2
  7. SimpleVFilter16
  8. SimpleHFilter16
  9. SimpleVFilter16i
  10. SimpleHFilter16i
  11. FilterLoop24
  12. VFilter16i
  13. HFilter16i
  14. VFilter8i
  15. HFilter8i
  16. GetILevel
  17. DoFilter
  18. VP8SSIMAddStats
  19. VP8SSIMAccumulate
  20. VP8SSIMGet
  21. VP8SSIMGetSquaredError
  22. VP8SSIMAccumulatePlane
  23. GetMBSSIM
  24. VP8InitFilter
  25. VP8StoreFilterStats
  26. VP8AdjustFilterStrength

// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Selecting filter level
//
// Author: somnath@google.com (Somnath Banerjee)

#include "./vp8enci.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

// NOTE: clip1, tables and InitTables are repeated entries of dsp.c
static uint8_t abs0[255 + 255 + 1];     // abs(i)
static uint8_t abs1[255 + 255 + 1];     // abs(i)>>1
static int8_t sclip1[1020 + 1020 + 1];  // clips [-1020, 1020] to [-128, 127]
static int8_t sclip2[112 + 112 + 1];    // clips [-112, 112] to [-16, 15]
static uint8_t clip1[255 + 510 + 1];    // clips [-255,510] to [0,255]

static int tables_ok = 0;

static void InitTables(void) {
  if (!tables_ok) {
    int i;
    for (i = -255; i <= 255; ++i) {
      abs0[255 + i] = (i < 0) ? -i : i;
      abs1[255 + i] = abs0[255 + i] >> 1;
    }
    for (i = -1020; i <= 1020; ++i) {
      sclip1[1020 + i] = (i < -128) ? -128 : (i > 127) ? 127 : i;
    }
    for (i = -112; i <= 112; ++i) {
      sclip2[112 + i] = (i < -16) ? -16 : (i > 15) ? 15 : i;
    }
    for (i = -255; i <= 255 + 255; ++i) {
      clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i;
    }
    tables_ok = 1;
  }
}

//------------------------------------------------------------------------------
// Edge filtering functions

// 4 pixels in, 2 pixels out
static WEBP_INLINE void do_filter2(uint8_t* p, int step) {
  const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
  const int a = 3 * (q0 - p0) + sclip1[1020 + p1 - q1];
  const int a1 = sclip2[112 + ((a + 4) >> 3)];
  const int a2 = sclip2[112 + ((a + 3) >> 3)];
  p[-step] = clip1[255 + p0 + a2];
  p[    0] = clip1[255 + q0 - a1];
}

// 4 pixels in, 4 pixels out
static WEBP_INLINE void do_filter4(uint8_t* p, int step) {
  const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
  const int a = 3 * (q0 - p0);
  const int a1 = sclip2[112 + ((a + 4) >> 3)];
  const int a2 = sclip2[112 + ((a + 3) >> 3)];
  const int a3 = (a1 + 1) >> 1;
  p[-2*step] = clip1[255 + p1 + a3];
  p[-  step] = clip1[255 + p0 + a2];
  p[      0] = clip1[255 + q0 - a1];
  p[   step] = clip1[255 + q1 - a3];
}

// high edge-variance
static WEBP_INLINE int hev(const uint8_t* p, int step, int thresh) {
  const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
  return (abs0[255 + p1 - p0] > thresh) || (abs0[255 + q1 - q0] > thresh);
}

static WEBP_INLINE int needs_filter(const uint8_t* p, int step, int thresh) {
  const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step];
  return (2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) <= thresh;
}

static WEBP_INLINE int needs_filter2(const uint8_t* p,
                                     int step, int t, int it) {
  const int p3 = p[-4*step], p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step];
  const int q0 = p[0], q1 = p[step], q2 = p[2*step], q3 = p[3*step];
  if ((2 * abs0[255 + p0 - q0] + abs1[255 + p1 - q1]) > t)
    return 0;
  return abs0[255 + p3 - p2] <= it && abs0[255 + p2 - p1] <= it &&
         abs0[255 + p1 - p0] <= it && abs0[255 + q3 - q2] <= it &&
         abs0[255 + q2 - q1] <= it && abs0[255 + q1 - q0] <= it;
}

//------------------------------------------------------------------------------
// Simple In-loop filtering (Paragraph 15.2)

static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
  int i;
  for (i = 0; i < 16; ++i) {
    if (needs_filter(p + i, stride, thresh)) {
      do_filter2(p + i, stride);
    }
  }
}

static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
  int i;
  for (i = 0; i < 16; ++i) {
    if (needs_filter(p + i * stride, 1, thresh)) {
      do_filter2(p + i * stride, 1);
    }
  }
}

static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
  int k;
  for (k = 3; k > 0; --k) {
    p += 4 * stride;
    SimpleVFilter16(p, stride, thresh);
  }
}

static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
  int k;
  for (k = 3; k > 0; --k) {
    p += 4;
    SimpleHFilter16(p, stride, thresh);
  }
}

//------------------------------------------------------------------------------
// Complex In-loop filtering (Paragraph 15.3)

static WEBP_INLINE void FilterLoop24(uint8_t* p,
                                     int hstride, int vstride, int size,
                                     int thresh, int ithresh, int hev_thresh) {
  while (size-- > 0) {
    if (needs_filter2(p, hstride, thresh, ithresh)) {
      if (hev(p, hstride, hev_thresh)) {
        do_filter2(p, hstride);
      } else {
        do_filter4(p, hstride);
      }
    }
    p += vstride;
  }
}

// on three inner edges
static void VFilter16i(uint8_t* p, int stride,
                       int thresh, int ithresh, int hev_thresh) {
  int k;
  for (k = 3; k > 0; --k) {
    p += 4 * stride;
    FilterLoop24(p, stride, 1, 16, thresh, ithresh, hev_thresh);
  }
}

static void HFilter16i(uint8_t* p, int stride,
                       int thresh, int ithresh, int hev_thresh) {
  int k;
  for (k = 3; k > 0; --k) {
    p += 4;
    FilterLoop24(p, 1, stride, 16, thresh, ithresh, hev_thresh);
  }
}

static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
                      int thresh, int ithresh, int hev_thresh) {
  FilterLoop24(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh);
  FilterLoop24(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh);
}

static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
                      int thresh, int ithresh, int hev_thresh) {
  FilterLoop24(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh);
  FilterLoop24(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh);
}

//------------------------------------------------------------------------------

void (*VP8EncVFilter16i)(uint8_t*, int, int, int, int) = VFilter16i;
void (*VP8EncHFilter16i)(uint8_t*, int, int, int, int) = HFilter16i;
void (*VP8EncVFilter8i)(uint8_t*, uint8_t*, int, int, int, int) = VFilter8i;
void (*VP8EncHFilter8i)(uint8_t*, uint8_t*, int, int, int, int) = HFilter8i;

void (*VP8EncSimpleVFilter16i)(uint8_t*, int, int) = SimpleVFilter16i;
void (*VP8EncSimpleHFilter16i)(uint8_t*, int, int) = SimpleHFilter16i;

//------------------------------------------------------------------------------
// Paragraph 15.4: compute the inner-edge filtering strength

static int GetILevel(int sharpness, int level) {
  if (sharpness > 0) {
    if (sharpness > 4) {
      level >>= 2;
    } else {
      level >>= 1;
    }
    if (level > 9 - sharpness) {
      level = 9 - sharpness;
    }
  }
  if (level < 1) level = 1;
  return level;
}

static void DoFilter(const VP8EncIterator* const it, int level) {
  const VP8Encoder* const enc = it->enc_;
  const int ilevel = GetILevel(enc->config_->filter_sharpness, level);
  const int limit = 2 * level + ilevel;

  uint8_t* const y_dst = it->yuv_out2_ + Y_OFF;
  uint8_t* const u_dst = it->yuv_out2_ + U_OFF;
  uint8_t* const v_dst = it->yuv_out2_ + V_OFF;

  // copy current block to yuv_out2_
  memcpy(y_dst, it->yuv_out_, YUV_SIZE * sizeof(uint8_t));

  if (enc->filter_hdr_.simple_ == 1) {   // simple
    VP8EncSimpleHFilter16i(y_dst, BPS, limit);
    VP8EncSimpleVFilter16i(y_dst, BPS, limit);
  } else {    // complex
    const int hev_thresh = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
    VP8EncHFilter16i(y_dst, BPS, limit, ilevel, hev_thresh);
    VP8EncHFilter8i(u_dst, v_dst, BPS, limit, ilevel, hev_thresh);
    VP8EncVFilter16i(y_dst, BPS, limit, ilevel, hev_thresh);
    VP8EncVFilter8i(u_dst, v_dst, BPS, limit, ilevel, hev_thresh);
  }
}

//------------------------------------------------------------------------------
// SSIM metric

enum { KERNEL = 3 };
static const double kMinValue = 1.e-10;  // minimal threshold

void VP8SSIMAddStats(const DistoStats* const src, DistoStats* const dst) {
  dst->w   += src->w;
  dst->xm  += src->xm;
  dst->ym  += src->ym;
  dst->xxm += src->xxm;
  dst->xym += src->xym;
  dst->yym += src->yym;
}

static void VP8SSIMAccumulate(const uint8_t* src1, int stride1,
                              const uint8_t* src2, int stride2,
                              int xo, int yo, int W, int H,
                              DistoStats* const stats) {
  const int ymin = (yo - KERNEL < 0) ? 0 : yo - KERNEL;
  const int ymax = (yo + KERNEL > H - 1) ? H - 1 : yo + KERNEL;
  const int xmin = (xo - KERNEL < 0) ? 0 : xo - KERNEL;
  const int xmax = (xo + KERNEL > W - 1) ? W - 1 : xo + KERNEL;
  int x, y;
  src1 += ymin * stride1;
  src2 += ymin * stride2;
  for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) {
    for (x = xmin; x <= xmax; ++x) {
      const int s1 = src1[x];
      const int s2 = src2[x];
      stats->w   += 1;
      stats->xm  += s1;
      stats->ym  += s2;
      stats->xxm += s1 * s1;
      stats->xym += s1 * s2;
      stats->yym += s2 * s2;
    }
  }
}

double VP8SSIMGet(const DistoStats* const stats) {
  const double xmxm = stats->xm * stats->xm;
  const double ymym = stats->ym * stats->ym;
  const double xmym = stats->xm * stats->ym;
  const double w2 = stats->w * stats->w;
  double sxx = stats->xxm * stats->w - xmxm;
  double syy = stats->yym * stats->w - ymym;
  double sxy = stats->xym * stats->w - xmym;
  double C1, C2;
  double fnum;
  double fden;
  // small errors are possible, due to rounding. Clamp to zero.
  if (sxx < 0.) sxx = 0.;
  if (syy < 0.) syy = 0.;
  C1 = 6.5025 * w2;
  C2 = 58.5225 * w2;
  fnum = (2 * xmym + C1) * (2 * sxy + C2);
  fden = (xmxm + ymym + C1) * (sxx + syy + C2);
  return (fden != 0.) ? fnum / fden : kMinValue;
}

double VP8SSIMGetSquaredError(const DistoStats* const s) {
  if (s->w > 0.) {
    const double iw2 = 1. / (s->w * s->w);
    const double sxx = s->xxm * s->w - s->xm * s->xm;
    const double syy = s->yym * s->w - s->ym * s->ym;
    const double sxy = s->xym * s->w - s->xm * s->ym;
    const double SSE = iw2 * (sxx + syy - 2. * sxy);
    if (SSE > kMinValue) return SSE;
  }
  return kMinValue;
}

void VP8SSIMAccumulatePlane(const uint8_t* src1, int stride1,
                            const uint8_t* src2, int stride2,
                            int W, int H, DistoStats* const stats) {
  int x, y;
  for (y = 0; y < H; ++y) {
    for (x = 0; x < W; ++x) {
      VP8SSIMAccumulate(src1, stride1, src2, stride2, x, y, W, H, stats);
    }
  }
}

static double GetMBSSIM(const uint8_t* yuv1, const uint8_t* yuv2) {
  int x, y;
  DistoStats s = { .0, .0, .0, .0, .0, .0 };

  // compute SSIM in a 10 x 10 window
  for (x = 3; x < 13; x++) {
    for (y = 3; y < 13; y++) {
      VP8SSIMAccumulate(yuv1 + Y_OFF, BPS, yuv2 + Y_OFF, BPS, x, y, 16, 16, &s);
    }
  }
  for (x = 1; x < 7; x++) {
    for (y = 1; y < 7; y++) {
      VP8SSIMAccumulate(yuv1 + U_OFF, BPS, yuv2 + U_OFF, BPS, x, y, 8, 8, &s);
      VP8SSIMAccumulate(yuv1 + V_OFF, BPS, yuv2 + V_OFF, BPS, x, y, 8, 8, &s);
    }
  }
  return VP8SSIMGet(&s);
}

//------------------------------------------------------------------------------
// Exposed APIs: Encoder should call the following 3 functions to adjust
// loop filter strength

void VP8InitFilter(VP8EncIterator* const it) {
  int s, i;
  if (!it->lf_stats_) return;

  InitTables();
  for (s = 0; s < NUM_MB_SEGMENTS; s++) {
    for (i = 0; i < MAX_LF_LEVELS; i++) {
      (*it->lf_stats_)[s][i] = 0;
    }
  }
}

void VP8StoreFilterStats(VP8EncIterator* const it) {
  int d;
  const int s = it->mb_->segment_;
  const int level0 = it->enc_->dqm_[s].fstrength_;  // TODO: ref_lf_delta[]

  // explore +/-quant range of values around level0
  const int delta_min = -it->enc_->dqm_[s].quant_;
  const int delta_max = it->enc_->dqm_[s].quant_;
  const int step_size = (delta_max - delta_min >= 4) ? 4 : 1;

  if (!it->lf_stats_) return;

  // NOTE: Currently we are applying filter only across the sublock edges
  // There are two reasons for that.
  // 1. Applying filter on macro block edges will change the pixels in
  // the left and top macro blocks. That will be hard to restore
  // 2. Macro Blocks on the bottom and right are not yet compressed. So we
  // cannot apply filter on the right and bottom macro block edges.
  if (it->mb_->type_ == 1 && it->mb_->skip_) return;

  // Always try filter level  zero
  (*it->lf_stats_)[s][0] += GetMBSSIM(it->yuv_in_, it->yuv_out_);

  for (d = delta_min; d <= delta_max; d += step_size) {
    const int level = level0 + d;
    if (level <= 0 || level >= MAX_LF_LEVELS) {
      continue;
    }
    DoFilter(it, level);
    (*it->lf_stats_)[s][level] += GetMBSSIM(it->yuv_in_, it->yuv_out2_);
  }
}

void VP8AdjustFilterStrength(VP8EncIterator* const it) {
  int s;
  VP8Encoder* const enc = it->enc_;

  if (!it->lf_stats_) {
    return;
  }
  for (s = 0; s < NUM_MB_SEGMENTS; s++) {
    int i, best_level = 0;
    // Improvement over filter level 0 should be at least 1e-5 (relatively)
    double best_v = 1.00001 * (*it->lf_stats_)[s][0];
    for (i = 1; i < MAX_LF_LEVELS; i++) {
      const double v = (*it->lf_stats_)[s][i];
      if (v > best_v) {
        best_v = v;
        best_level = i;
      }
    }
    enc->dqm_[s].fstrength_ = best_level;
  }
}

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif

/* [<][>][^][v][top][bottom][index][help] */