root/3rdparty/openexr/IlmImf/ImfHuf.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. invalidNBits
  2. tooMuchData
  3. notEnoughData
  4. invalidCode
  5. invalidTableSize
  6. unexpectedEndOfTable
  7. tableTooLong
  8. invalidTableEntry
  9. hufLength
  10. hufCode
  11. outputBits
  12. getBits
  13. hufCanonicalCodeTable
  14. hufFreeDecTable
  15. outputCode
  16. sendCode
  17. countFrequencies
  18. writeUInt
  19. readUInt
  20. hufCompress
  21. hufUncompress

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////




//-----------------------------------------------------------------------------
//
//      16-bit Huffman compression and decompression.
//
//      The source code in this file is derived from the 8-bit
//      Huffman compression and decompression routines written
//      by Christian Rouet for his PIZ image file format.
//
//-----------------------------------------------------------------------------

#include <ImfHuf.h>
#include <ImfInt64.h>
#include <ImfAutoArray.h>
#include "Iex.h"
#include <string.h>
#include <assert.h>
#include <algorithm>


using namespace std;
using namespace Iex;

namespace Imf {
namespace {


const int HUF_ENCBITS = 16;                     // literal (value) bit length
const int HUF_DECBITS = 14;                     // decoding bit size (>= 8)

const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
const int HUF_DECSIZE =  1 << HUF_DECBITS;      // decoding table size
const int HUF_DECMASK = HUF_DECSIZE - 1;


struct HufDec
{                               // short code           long code
                //-------------------------------
    int         len:8;          // code length          0
    int         lit:24;         // lit                  p size
    int *       p;              // 0                    lits
};


void
invalidNBits ()
{
    throw InputExc ("Error in header for Huffman-encoded data "
            "(invalid number of bits).");
}


void
tooMuchData ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(decoded data are longer than expected).");
}


void
notEnoughData ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(decoded data are shorter than expected).");
}


void
invalidCode ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(invalid code).");
}


void
invalidTableSize ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(invalid code table size).");
}


void
unexpectedEndOfTable ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(unexpected end of code table data).");
}


void
tableTooLong ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(code table is longer than expected).");
}


void
invalidTableEntry ()
{
    throw InputExc ("Error in Huffman-encoded data "
            "(invalid code table entry).");
}


inline Int64
hufLength (Int64 code)
{
    return code & 63;
}


inline Int64
hufCode (Int64 code)
{
    return code >> 6;
}


inline void
outputBits (int nBits, Int64 bits, Int64 &c, int &lc, char *&out)
{
    c <<= nBits;
    lc += nBits;

    c |= bits;

    while (lc >= 8)
    *out++ = (c >> (lc -= 8));
}


inline Int64
getBits (int nBits, Int64 &c, int &lc, const char *&in)
{
    while (lc < nBits)
    {
    c = (c << 8) | *(unsigned char *)(in++);
    lc += 8;
    }

    lc -= nBits;
    return (c >> lc) & ((1 << nBits) - 1);
}


//
// ENCODING TABLE BUILDING & (UN)PACKING
//

//
// Build a "canonical" Huffman code table:
//      - for each (uncompressed) symbol, hcode contains the length
//        of the corresponding code (in the compressed data)
//      - canonical codes are computed and stored in hcode
//      - the rules for constructing canonical codes are as follows:
//        * shorter codes (if filled with zeroes to the right)
//          have a numerically higher value than longer codes
//        * for codes with the same length, numerical values
//          increase with numerical symbol values
//      - because the canonical code table can be constructed from
//        symbol lengths alone, the code table can be transmitted
//        without sending the actual code values
//      - see http://www.compressconsult.com/huffman/
//

void
hufCanonicalCodeTable (Int64 hcode[HUF_ENCSIZE])
{
    Int64 n[59];

    //
    // For each i from 0 through 58, count the
    // number of different codes of length i, and
    // store the count in n[i].
    //

    for (int i = 0; i <= 58; ++i)
    n[i] = 0;

    for (int i = 0; i < HUF_ENCSIZE; ++i)
    n[hcode[i]] += 1;

    //
    // For each i from 58 through 1, compute the
    // numerically lowest code with length i, and
    // store that code in n[i].
    //

    Int64 c = 0;

    for (int i = 58; i > 0; --i)
    {
    Int64 nc = ((c + n[i]) >> 1);
    n[i] = c;
    c = nc;
    }

    //
    // hcode[i] contains the length, l, of the
    // code for symbol i.  Assign the next available
    // code of length l to the symbol and store both
    // l and the code in hcode[i].
    //

    for (int i = 0; i < HUF_ENCSIZE; ++i)
    {
    int l = hcode[i];

    if (l > 0)
        hcode[i] = l | (n[l]++ << 6);
    }
}


//
// Compute Huffman codes (based on frq input) and store them in frq:
//      - code structure is : [63:lsb - 6:msb] | [5-0: bit length];
//      - max code length is 58 bits;
//      - codes outside the range [im-iM] have a null length (unused values);
//      - original frequencies are destroyed;
//      - encoding tables are used by hufEncode() and hufBuildDecTable();
//


struct FHeapCompare
{
    bool operator () (Int64 *a, Int64 *b) {return *a > *b;}
};


void
hufBuildEncTable
    (Int64*     frq,    // io: input frequencies [HUF_ENCSIZE], output table
     int*       im,     //  o: min frq index
     int*       iM)     //  o: max frq index
{
    //
    // This function assumes that when it is called, array frq
    // indicates the frequency of all possible symbols in the data
    // that are to be Huffman-encoded.  (frq[i] contains the number
    // of occurrences of symbol i in the data.)
    //
    // The loop below does three things:
    //
    // 1) Finds the minimum and maximum indices that point
    //    to non-zero entries in frq:
    //
    //     frq[im] != 0, and frq[i] == 0 for all i < im
    //     frq[iM] != 0, and frq[i] == 0 for all i > iM
    //
    // 2) Fills array fHeap with pointers to all non-zero
    //    entries in frq.
    //
    // 3) Initializes array hlink such that hlink[i] == i
    //    for all array entries.
    //

    AutoArray <int, HUF_ENCSIZE> hlink;
    AutoArray <Int64 *, HUF_ENCSIZE> fHeap;

    *im = 0;

    while (!frq[*im])
    (*im)++;

    int nf = 0;

    for (int i = *im; i < HUF_ENCSIZE; i++)
    {
    hlink[i] = i;

    if (frq[i])
    {
        fHeap[nf] = &frq[i];
        nf++;
        *iM = i;
    }
    }

    //
    // Add a pseudo-symbol, with a frequency count of 1, to frq;
    // adjust the fHeap and hlink array accordingly.  Function
    // hufEncode() uses the pseudo-symbol for run-length encoding.
    //

    (*iM)++;
    frq[*iM] = 1;
    fHeap[nf] = &frq[*iM];
    nf++;

    //
    // Build an array, scode, such that scode[i] contains the number
    // of bits assigned to symbol i.  Conceptually this is done by
    // constructing a tree whose leaves are the symbols with non-zero
    // frequency:
    //
    //     Make a heap that contains all symbols with a non-zero frequency,
    //     with the least frequent symbol on top.
    //
    //     Repeat until only one symbol is left on the heap:
    //
    //         Take the two least frequent symbols off the top of the heap.
    //         Create a new node that has first two nodes as children, and
    //         whose frequency is the sum of the frequencies of the first
    //         two nodes.  Put the new node back into the heap.
    //
    // The last node left on the heap is the root of the tree.  For each
    // leaf node, the distance between the root and the leaf is the length
    // of the code for the corresponding symbol.
    //
    // The loop below doesn't actually build the tree; instead we compute
    // the distances of the leaves from the root on the fly.  When a new
    // node is added to the heap, then that node's descendants are linked
    // into a single linear list that starts at the new node, and the code
    // lengths of the descendants (that is, their distance from the root
    // of the tree) are incremented by one.
    //

    make_heap (&fHeap[0], &fHeap[nf], FHeapCompare());

    AutoArray <Int64, HUF_ENCSIZE> scode;
    memset (scode, 0, sizeof (Int64) * HUF_ENCSIZE);

    while (nf > 1)
    {
    //
    // Find the indices, mm and m, of the two smallest non-zero frq
    // values in fHeap, add the smallest frq to the second-smallest
    // frq, and remove the smallest frq value from fHeap.
    //

    int mm = fHeap[0] - frq;
    pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare());
    --nf;

    int m = fHeap[0] - frq;
    pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare());

    frq[m ] += frq[mm];
    push_heap (&fHeap[0], &fHeap[nf], FHeapCompare());

    //
    // The entries in scode are linked into lists with the
    // entries in hlink serving as "next" pointers and with
    // the end of a list marked by hlink[j] == j.
    //
    // Traverse the lists that start at scode[m] and scode[mm].
    // For each element visited, increment the length of the
    // corresponding code by one bit. (If we visit scode[j]
    // during the traversal, then the code for symbol j becomes
    // one bit longer.)
    //
    // Merge the lists that start at scode[m] and scode[mm]
    // into a single list that starts at scode[m].
    //

    //
    // Add a bit to all codes in the first list.
    //

    for (int j = m; true; j = hlink[j])
    {
        scode[j]++;

        assert (scode[j] <= 58);

        if (hlink[j] == j)
        {
        //
        // Merge the two lists.
        //

        hlink[j] = mm;
        break;
        }
    }

    //
    // Add a bit to all codes in the second list
    //

    for (int j = mm; true; j = hlink[j])
    {
        scode[j]++;

        assert (scode[j] <= 58);

        if (hlink[j] == j)
        break;
    }
    }

    //
    // Build a canonical Huffman code table, replacing the code
    // lengths in scode with (code, code length) pairs.  Copy the
    // code table from scode into frq.
    //

    hufCanonicalCodeTable (scode);
    memcpy (frq, scode, sizeof (Int64) * HUF_ENCSIZE);
}


//
// Pack an encoding table:
//      - only code lengths, not actual codes, are stored
//      - runs of zeroes are compressed as follows:
//
//        unpacked              packed
//        --------------------------------
//        1 zero                0       (6 bits)
//        2 zeroes              59
//        3 zeroes              60
//        4 zeroes              61
//        5 zeroes              62
//        n zeroes (6 or more)  63 n-6  (6 + 8 bits)
//

const int SHORT_ZEROCODE_RUN = 59;
const int LONG_ZEROCODE_RUN  = 63;
const int SHORTEST_LONG_RUN  = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
const int LONGEST_LONG_RUN   = 255 + SHORTEST_LONG_RUN;


void
hufPackEncTable
    (const Int64*       hcode,          // i : encoding table [HUF_ENCSIZE]
     int                im,             // i : min hcode index
     int                iM,             // i : max hcode index
     char**             pcode)          //  o: ptr to packed table (updated)
{
    char *p = *pcode;
    Int64 c = 0;
    int lc = 0;

    for (; im <= iM; im++)
    {
    int l = hufLength (hcode[im]);

    if (l == 0)
    {
        int zerun = 1;

        while ((im < iM) && (zerun < LONGEST_LONG_RUN))
        {
        if (hufLength (hcode[im+1]) > 0 )
            break;
        im++;
        zerun++;
        }

        if (zerun >= 2)
        {
        if (zerun >= SHORTEST_LONG_RUN)
        {
            outputBits (6, LONG_ZEROCODE_RUN, c, lc, p);
            outputBits (8, zerun - SHORTEST_LONG_RUN, c, lc, p);
        }
        else
        {
            outputBits (6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);
        }
        continue;
        }
    }

    outputBits (6, l, c, lc, p);
    }

    if (lc > 0)
    *p++ = (unsigned char) (c << (8 - lc));

    *pcode = p;
}


//
// Unpack an encoding table packed by hufPackEncTable():
//

void
hufUnpackEncTable
    (const char**       pcode,          // io: ptr to packed table (updated)
     int                ni,             // i : input size (in bytes)
     int                im,             // i : min hcode index
     int                iM,             // i : max hcode index
     Int64*             hcode)          //  o: encoding table [HUF_ENCSIZE]
{
    memset (hcode, 0, sizeof (Int64) * HUF_ENCSIZE);

    const char *p = *pcode;
    Int64 c = 0;
    int lc = 0;

    for (; im <= iM; im++)
    {
    if (p - *pcode > ni)
        unexpectedEndOfTable();

    Int64 l = hcode[im] = getBits (6, c, lc, p); // code length

    if (l == (Int64) LONG_ZEROCODE_RUN)
    {
        if (p - *pcode > ni)
        unexpectedEndOfTable();

        int zerun = getBits (8, c, lc, p) + SHORTEST_LONG_RUN;

        if (im + zerun > iM + 1)
        tableTooLong();

        while (zerun--)
        hcode[im++] = 0;

        im--;
    }
    else if (l >= (Int64) SHORT_ZEROCODE_RUN)
    {
        int zerun = l - SHORT_ZEROCODE_RUN + 2;

        if (im + zerun > iM + 1)
        tableTooLong();

        while (zerun--)
        hcode[im++] = 0;

        im--;
    }
    }

    *pcode = (char *) p;

    hufCanonicalCodeTable (hcode);
}


//
// DECODING TABLE BUILDING
//

//
// Clear a newly allocated decoding table so that it contains only zeroes.
//

void
hufClearDecTable
    (HufDec *           hdecod)         // io: (allocated by caller)
                        //     decoding table [HUF_DECSIZE]
{
    memset (hdecod, 0, sizeof (HufDec) * HUF_DECSIZE);
}


//
// Build a decoding hash table based on the encoding table hcode:
//      - short codes (<= HUF_DECBITS) are resolved with a single table access;
//      - long code entry allocations are not optimized, because long codes are
//        unfrequent;
//      - decoding tables are used by hufDecode();
//

void
hufBuildDecTable
    (const Int64*       hcode,          // i : encoding table
     int                im,             // i : min index in hcode
     int                iM,             // i : max index in hcode
     HufDec *           hdecod)         //  o: (allocated by caller)
                        //     decoding table [HUF_DECSIZE]
{
    //
    // Init hashtable & loop on all codes.
    // Assumes that hufClearDecTable(hdecod) has already been called.
    //

    for (; im <= iM; im++)
    {
    Int64 c = hufCode (hcode[im]);
    int l = hufLength (hcode[im]);

    if (c >> l)
    {
        //
        // Error: c is supposed to be an l-bit code,
        // but c contains a value that is greater
        // than the largest l-bit number.
        //

        invalidTableEntry();
    }

    if (l > HUF_DECBITS)
    {
        //
        // Long code: add a secondary entry
        //

        HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));

        if (pl->len)
        {
        //
        // Error: a short code has already
        // been stored in table entry *pl.
        //

        invalidTableEntry();
        }

        pl->lit++;

        if (pl->p)
        {
        int *p = pl->p;
        pl->p = new int [pl->lit];

        for (int i = 0; i < pl->lit - 1; ++i)
            pl->p[i] = p[i];

        delete [] p;
        }
        else
        {
        pl->p = new int [1];
        }

        pl->p[pl->lit - 1]= im;
    }
    else if (l)
    {
        //
        // Short code: init all primary entries
        //

        HufDec *pl = hdecod + (c << (HUF_DECBITS - l));

        for (Int64 i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++)
        {
        if (pl->len || pl->p)
        {
            //
            // Error: a short code or a long code has
            // already been stored in table entry *pl.
            //

            invalidTableEntry();
        }

        pl->len = l;
        pl->lit = im;
        }
    }
    }
}


//
// Free the long code entries of a decoding table built by hufBuildDecTable()
//

void
hufFreeDecTable (HufDec *hdecod)        // io: Decoding table
{
    for (int i = 0; i < HUF_DECSIZE; i++)
    {
    if (hdecod[i].p)
    {
        delete [] hdecod[i].p;
        hdecod[i].p = 0;
    }
    }
}


//
// ENCODING
//

inline void
outputCode (Int64 code, Int64 &c, int &lc, char *&out)
{
    outputBits (hufLength (code), hufCode (code), c, lc, out);
}


inline void
sendCode (Int64 sCode, int runCount, Int64 runCode,
      Int64 &c, int &lc, char *&out)
{
    static const int RLMIN = 32; // min count to activate run-length coding

    if (runCount > RLMIN)
    {
    outputCode (sCode, c, lc, out);
    outputCode (runCode, c, lc, out);
    outputBits (8, runCount, c, lc, out);
    }
    else
    {
    while (runCount-- >= 0)
        outputCode (sCode, c, lc, out);
    }
}


//
// Encode (compress) ni values based on the Huffman encoding table hcode:
//

int
hufEncode                               // return: output size (in bits)
    (const Int64*           hcode,      // i : encoding table
     const unsigned short*  in,         // i : uncompressed input buffer
     const int              ni,         // i : input buffer size (in bytes)
     int                    rlc,        // i : rl code
     char*                  out)        //  o: compressed output buffer
{
    char *outStart = out;
    Int64 c = 0;        // bits not yet written to out
    int lc = 0;         // number of valid bits in c (LSB)
    int s = in[0];
    int cs = 0;

    //
    // Loop on input values
    //

    for (int i = 1; i < ni; i++)
    {
    //
    // Count same values or send code
    //

    if (s == in[i] && cs < 255)
    {
        cs++;
    }
    else
    {
        sendCode (hcode[s], cs, hcode[rlc], c, lc, out);
        cs=0;
    }

    s = in[i];
    }

    //
    // Send remaining code
    //

    sendCode (hcode[s], cs, hcode[rlc], c, lc, out);

    if (lc)
    *out = (c << (8 - lc)) & 0xff;

    return (out - outStart) * 8 + lc;
}


//
// DECODING
//

//
// In order to force the compiler to inline them,
// getChar() and getCode() are implemented as macros
// instead of "inline" functions.
//

#define getChar(c, lc, in)                      \
{                                               \
    c = (c << 8) | *(unsigned char *)(in++);    \
    lc += 8;                                    \
}


#define getCode(po, rlc, c, lc, in, out, oe)    \
{                                               \
    if (po == rlc)                              \
    {                                           \
    if (lc < 8)                         \
        getChar(c, lc, in);                     \
                        \
    lc -= 8;                            \
                        \
    unsigned char cs = (c >> lc);               \
                        \
    if (out + cs > oe)                  \
        tooMuchData();                  \
                        \
    unsigned short s = out[-1];         \
                        \
    while (cs-- > 0)                    \
        *out++ = s;                             \
    }                                           \
    else if (out < oe)                          \
    {                                           \
    *out++ = po;                                \
    }                                           \
    else                                        \
    {                                           \
    tooMuchData();                              \
    }                                           \
}


//
// Decode (uncompress) ni bits based on encoding & decoding tables:
//

void
hufDecode
    (const Int64 *      hcode,  // i : encoding table
     const HufDec *     hdecod, // i : decoding table
     const char*        in,     // i : compressed input buffer
     int                ni,     // i : input size (in bits)
     int                rlc,    // i : run-length code
     int                no,     // i : expected output size (in bytes)
     unsigned short*    out)    //  o: uncompressed output buffer
{
    Int64 c = 0;
    int lc = 0;
    unsigned short * outb = out;
    unsigned short * oe = out + no;
    const char * ie = in + (ni + 7) / 8; // input byte size

    //
    // Loop on input bytes
    //

    while (in < ie)
    {
    getChar (c, lc, in);

    //
    // Access decoding table
    //

    while (lc >= HUF_DECBITS)
    {
        const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK];

        if (pl.len)
        {
        //
        // Get short code
        //

        lc -= pl.len;
        getCode (pl.lit, rlc, c, lc, in, out, oe);
        }
        else
        {
        if (!pl.p)
            invalidCode(); // wrong code

        //
        // Search long code
        //

        int j;

        for (j = 0; j < pl.lit; j++)
        {
            int l = hufLength (hcode[pl.p[j]]);

            while (lc < l && in < ie)   // get more bits
            getChar (c, lc, in);

            if (lc >= l)
            {
            if (hufCode (hcode[pl.p[j]]) ==
                ((c >> (lc - l)) & ((Int64(1) << l) - 1)))
            {
                //
                // Found : get long code
                //

                lc -= l;
                getCode (pl.p[j], rlc, c, lc, in, out, oe);
                break;
            }
            }
        }

        if (j == pl.lit)
            invalidCode(); // Not found
        }
    }
    }

    //
    // Get remaining (short) codes
    //

    int i = (8 - ni) & 7;
    c >>= i;
    lc -= i;

    while (lc > 0)
    {
    const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];

    if (pl.len)
    {
        lc -= pl.len;
        getCode (pl.lit, rlc, c, lc, in, out, oe);
    }
    else
    {
        invalidCode(); // wrong (long) code
    }
    }

    if (out - outb != no)
    notEnoughData ();
}


void
countFrequencies (Int64 freq[HUF_ENCSIZE],
          const unsigned short data[/*n*/],
          int n)
{
    for (int i = 0; i < HUF_ENCSIZE; ++i)
    freq[i] = 0;

    for (int i = 0; i < n; ++i)
    ++freq[data[i]];
}


void
writeUInt (char buf[4], unsigned int i)
{
    unsigned char *b = (unsigned char *) buf;

    b[0] = i;
    b[1] = i >> 8;
    b[2] = i >> 16;
    b[3] = i >> 24;
}


unsigned int
readUInt (const char buf[4])
{
    const unsigned char *b = (const unsigned char *) buf;

    return ( b[0]        & 0x000000ff) |
       ((b[1] <<  8) & 0x0000ff00) |
       ((b[2] << 16) & 0x00ff0000) |
       ((b[3] << 24) & 0xff000000);
}

} // namespace


//
// EXTERNAL INTERFACE
//


int
hufCompress (const unsigned short raw[],
         int nRaw,
         char compressed[])
{
    if (nRaw == 0)
    return 0;

    AutoArray <Int64, HUF_ENCSIZE> freq;

    countFrequencies (freq, raw, nRaw);

    int im, iM;
    hufBuildEncTable (freq, &im, &iM);

    char *tableStart = compressed + 20;
    char *tableEnd   = tableStart;
    hufPackEncTable (freq, im, iM, &tableEnd);
    int tableLength = tableEnd - tableStart;

    char *dataStart = tableEnd;
    int nBits = hufEncode (freq, raw, nRaw, iM, dataStart);
    int dataLength = (nBits + 7) / 8;

    writeUInt (compressed,      im);
    writeUInt (compressed +  4, iM);
    writeUInt (compressed +  8, tableLength);
    writeUInt (compressed + 12, nBits);
    writeUInt (compressed + 16, 0);     // room for future extensions

    return dataStart + dataLength - compressed;
}


void
hufUncompress (const char compressed[],
           int nCompressed,
           unsigned short raw[],
           int nRaw)
{
    if (nCompressed == 0)
    {
    if (nRaw != 0)
        notEnoughData();

    return;
    }

    int im = readUInt (compressed);
    int iM = readUInt (compressed + 4);
    // int tableLength = readUInt (compressed + 8);
    int nBits = readUInt (compressed + 12);

    if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE)
    invalidTableSize();

    const char *ptr = compressed + 20;

    AutoArray <Int64, HUF_ENCSIZE> freq;
    AutoArray <HufDec, HUF_DECSIZE> hdec;

    hufClearDecTable (hdec);

    hufUnpackEncTable (&ptr, nCompressed - (ptr - compressed), im, iM, freq);

    try
    {
    if (nBits > 8 * (nCompressed - (ptr - compressed)))
        invalidNBits();

    hufBuildDecTable (freq, im, iM, hdec);
    hufDecode (freq, hdec, ptr, nBits, iM, nRaw, raw);
    }
    catch (...)
    {
    hufFreeDecTable (hdec);
    throw;
    }

    hufFreeDecTable (hdec);
}


} // namespace Imf

/* [<][>][^][v][top][bottom][index][help] */