/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2011, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHFRUSTUMTEST_H #define INCLUDED_IMATHFRUSTUMTEST_H //------------------------------------------------------------------------- // // This file contains algorithms applied to or in conjunction with // Frustum visibility testing (Imath::Frustum). // // Methods for frustum-based rejection of primitives are contained here. // //------------------------------------------------------------------------- #include "ImathFrustum.h" #include "ImathBox.h" #include "ImathSphere.h" #include "ImathMatrix.h" #include "ImathVec.h" namespace Imath { ///////////////////////////////////////////////////////////////// // FrustumTest // // template class FrustumTest<T> // // This is a helper class, designed to accelerate the case // where many tests are made against the same frustum. // That's a really common case. // // The acceleration is achieved by pre-computing the planes of // the frustum, along with the ablsolute values of the plane normals. // ////////////////////////////////////////////////////////////////// // How to use this // // Given that you already have: // Imath::Frustum myFrustum // IMath::Matrix44 myCameraWorldMatrix // // First, make a frustum test object: // FrustumTest myFrustumTest(myFrustum, myCameraWorldMatrix) // // Whenever the camera or frustum changes, call: // myFrustumTest.setFrustum(myFrustum, myCameraWorldMatrix) // // For each object you want to test for visibility, call: // myFrustumTest.isVisible(myBox) // myFrustumTest.isVisible(mySphere) // myFrustumTest.isVisible(myVec3) // myFrustumTest.completelyContains(myBox) // myFrustumTest.completelyContains(mySphere) // ////////////////////////////////////////////////////////////////// // Explanation of how it works // // // We store six world-space Frustum planes (nx, ny, nz, offset) // // Points: To test a Vec3 for visibility, test it against each plane // using the normal (v dot n - offset) method. (the result is exact) // // BBoxes: To test an axis-aligned bbox, test the center against each plane // using the normal (v dot n - offset) method, but offset by the // box extents dot the abs of the plane normal. (the result is NOT // exact, but will not return false-negatives.) // // Spheres: To test a sphere, test the center against each plane // using the normal (v dot n - offset) method, but offset by the // sphere's radius. (the result is NOT exact, but will not return // false-negatives.) // // // SPECIAL NOTE: "Where are the dot products?" // Actual dot products are currently slow for most SIMD architectures. // In order to keep this code optimization-ready, the dot products // are all performed using vector adds and multipies. // // In order to do this, the plane equations are stored in "transpose" // form, with the X components grouped into an X vector, etc. // template <class T> class FrustumTest { public: FrustumTest() { Frustum<T> frust; Matrix44<T> cameraMat; cameraMat.makeIdentity(); setFrustum(frust, cameraMat); } FrustumTest(Frustum<T> &frustum, const Matrix44<T> &cameraMat) { setFrustum(frustum, cameraMat); } //////////////////////////////////////////////////////////////////// // setFrustum() // This updates the frustum test with a new frustum and matrix. // This should usually be called just once per frame. void setFrustum(Frustum<T> &frustum, const Matrix44<T> &cameraMat); //////////////////////////////////////////////////////////////////// // isVisible() // Check to see if shapes are visible. bool isVisible(const Sphere3<T> &sphere) const; bool isVisible(const Box<Vec3<T> > &box) const; bool isVisible(const Vec3<T> &vec) const; //////////////////////////////////////////////////////////////////// // completelyContains() // Check to see if shapes are entirely contained. bool completelyContains(const Sphere3<T> &sphere) const; bool completelyContains(const Box<Vec3<T> > &box) const; // These next items are kept primarily for debugging tools. // It's useful for drawing the culling environment, and also // for getting an "outside view" of the culling frustum. Imath::Matrix44<T> cameraMat() const {return cameraMatrix;} Imath::Frustum<T> currentFrustum() const {return currFrustum;} protected: // To understand why the planes are stored this way, see // the SPECIAL NOTE above. Vec3<T> planeNormX[2]; // The X compunents from 6 plane equations Vec3<T> planeNormY[2]; // The Y compunents from 6 plane equations Vec3<T> planeNormZ[2]; // The Z compunents from 6 plane equations Vec3<T> planeOffsetVec[2]; // The distance offsets from 6 plane equations // The absolute values are stored to assist with bounding box tests. Vec3<T> planeNormAbsX[2]; // The abs(X) compunents from 6 plane equations Vec3<T> planeNormAbsY[2]; // The abs(X) compunents from 6 plane equations Vec3<T> planeNormAbsZ[2]; // The abs(X) compunents from 6 plane equations // These are kept primarily for debugging tools. Frustum<T> currFrustum; Matrix44<T> cameraMatrix; }; //////////////////////////////////////////////////////////////////// // setFrustum() // This should usually only be called once per frame, or however // often the camera moves. template<class T> void FrustumTest<T>::setFrustum(Frustum<T> &frustum, const Matrix44<T> &cameraMat) { Plane3<T> frustumPlanes[6]; frustum.planes(frustumPlanes, cameraMat); // Here's where we effectively transpose the plane equations. // We stuff all six X's into the two planeNormX vectors, etc. for (int i = 0; i < 2; ++i) { int index = i * 3; planeNormX[i] = Vec3<T>(frustumPlanes[index + 0].normal.x, frustumPlanes[index + 1].normal.x, frustumPlanes[index + 2].normal.x); planeNormY[i] = Vec3<T>(frustumPlanes[index + 0].normal.y, frustumPlanes[index + 1].normal.y, frustumPlanes[index + 2].normal.y); planeNormZ[i] = Vec3<T>(frustumPlanes[index + 0].normal.z, frustumPlanes[index + 1].normal.z, frustumPlanes[index + 2].normal.z); planeNormAbsX[i] = Vec3<T>(Imath::abs(planeNormX[i].x), Imath::abs(planeNormX[i].y), Imath::abs(planeNormX[i].z)); planeNormAbsY[i] = Vec3<T>(Imath::abs(planeNormY[i].x), Imath::abs(planeNormY[i].y), Imath::abs(planeNormY[i].z)); planeNormAbsZ[i] = Vec3<T>(Imath::abs(planeNormZ[i].x), Imath::abs(planeNormZ[i].y), Imath::abs(planeNormZ[i].z)); planeOffsetVec[i] = Vec3<T>(frustumPlanes[index + 0].distance, frustumPlanes[index + 1].distance, frustumPlanes[index + 2].distance); } currFrustum = frustum; cameraMatrix = cameraMat; } //////////////////////////////////////////////////////////////////// // isVisible(Sphere) // Returns true if any part of the sphere is inside // the frustum. // The result MAY return close false-positives, but not false-negatives. // template<typename T> bool FrustumTest<T>::isVisible(const Sphere3<T> &sphere) const { Vec3<T> center = sphere.center; Vec3<T> radiusVec = Vec3<T>(sphere.radius, sphere.radius, sphere.radius); // This is a vertical dot-product on three vectors at once. Vec3<T> d0 = planeNormX[0] * center.x + planeNormY[0] * center.y + planeNormZ[0] * center.z - radiusVec - planeOffsetVec[0]; if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0) return false; Vec3<T> d1 = planeNormX[1] * center.x + planeNormY[1] * center.y + planeNormZ[1] * center.z - radiusVec - planeOffsetVec[1]; if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0) return false; return true; } //////////////////////////////////////////////////////////////////// // completelyContains(Sphere) // Returns true if every part of the sphere is inside // the frustum. // The result MAY return close false-negatives, but not false-positives. // template<typename T> bool FrustumTest<T>::completelyContains(const Sphere3<T> &sphere) const { Vec3<T> center = sphere.center; Vec3<T> radiusVec = Vec3<T>(sphere.radius, sphere.radius, sphere.radius); // This is a vertical dot-product on three vectors at once. Vec3<T> d0 = planeNormX[0] * center.x + planeNormY[0] * center.y + planeNormZ[0] * center.z + radiusVec - planeOffsetVec[0]; if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0) return false; Vec3<T> d1 = planeNormX[1] * center.x + planeNormY[1] * center.y + planeNormZ[1] * center.z + radiusVec - planeOffsetVec[1]; if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0) return false; return true; } //////////////////////////////////////////////////////////////////// // isVisible(Box) // Returns true if any part of the axis-aligned box // is inside the frustum. // The result MAY return close false-positives, but not false-negatives. // template<typename T> bool FrustumTest<T>::isVisible(const Box<Vec3<T> > &box) const { Vec3<T> center = (box.min + box.max) / 2; Vec3<T> extent = (box.max - center); // This is a vertical dot-product on three vectors at once. Vec3<T> d0 = planeNormX[0] * center.x + planeNormY[0] * center.y + planeNormZ[0] * center.z - planeNormAbsX[0] * extent.x - planeNormAbsY[0] * extent.y - planeNormAbsZ[0] * extent.z - planeOffsetVec[0]; if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0) return false; Vec3<T> d1 = planeNormX[1] * center.x + planeNormY[1] * center.y + planeNormZ[1] * center.z - planeNormAbsX[1] * extent.x - planeNormAbsY[1] * extent.y - planeNormAbsZ[1] * extent.z - planeOffsetVec[1]; if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0) return false; return true; } //////////////////////////////////////////////////////////////////// // completelyContains(Box) // Returns true if every part of the axis-aligned box // is inside the frustum. // The result MAY return close false-negatives, but not false-positives. // template<typename T> bool FrustumTest<T>::completelyContains(const Box<Vec3<T> > &box) const { Vec3<T> center = (box.min + box.max) / 2; Vec3<T> extent = (box.max - center); // This is a vertical dot-product on three vectors at once. Vec3<T> d0 = planeNormX[0] * center.x + planeNormY[0] * center.y + planeNormZ[0] * center.z + planeNormAbsX[0] * extent.x + planeNormAbsY[0] * extent.y + planeNormAbsZ[0] * extent.z - planeOffsetVec[0]; if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0) return false; Vec3<T> d1 = planeNormX[1] * center.x + planeNormY[1] * center.y + planeNormZ[1] * center.z + planeNormAbsX[1] * extent.x + planeNormAbsY[1] * extent.y + planeNormAbsZ[1] * extent.z - planeOffsetVec[1]; if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0) return false; return true; } //////////////////////////////////////////////////////////////////// // isVisible(Vec3) // Returns true if the point is inside the frustum. // template<typename T> bool FrustumTest<T>::isVisible(const Vec3<T> &vec) const { // This is a vertical dot-product on three vectors at once. Vec3<T> d0 = (planeNormX[0] * vec.x) + (planeNormY[0] * vec.y) + (planeNormZ[0] * vec.z) - planeOffsetVec[0]; if (d0.x >= 0 || d0.y >= 0 || d0.z >= 0) return false; Vec3<T> d1 = (planeNormX[1] * vec.x) + (planeNormY[1] * vec.y) + (planeNormZ[1] * vec.z) - planeOffsetVec[1]; if (d1.x >= 0 || d1.y >= 0 || d1.z >= 0) return false; return true; } typedef FrustumTest<float> FrustumTestf; typedef FrustumTest<double> FrustumTestd; } //namespace Imath #endif