/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHFUN_H #define INCLUDED_IMATHFUN_H //----------------------------------------------------------------------------- // // Miscellaneous utility functions // //----------------------------------------------------------------------------- #include "ImathLimits.h" #include "ImathInt64.h" namespace Imath { template <class T> inline T abs (T a) { return (a > T(0)) ? a : -a; } template <class T> inline int sign (T a) { return (a > T(0))? 1 : ((a < T(0)) ? -1 : 0); } template <class T, class Q> inline T lerp (T a, T b, Q t) { return (T) (a * (1 - t) + b * t); } template <class T, class Q> inline T ulerp (T a, T b, Q t) { return (T) ((a > b)? (a - (a - b) * t): (a + (b - a) * t)); } template <class T> inline T lerpfactor(T m, T a, T b) { // // Return how far m is between a and b, that is return t such that // if: // t = lerpfactor(m, a, b); // then: // m = lerp(a, b, t); // // If a==b, return 0. // T d = b - a; T n = m - a; if (abs(d) > T(1) || abs(n) < limits<T>::max() * abs(d)) return n / d; return T(0); } template <class T> inline T clamp (T a, T l, T h) { return (a < l)? l : ((a > h)? h : a); } template <class T> inline int cmp (T a, T b) { return Imath::sign (a - b); } template <class T> inline int cmpt (T a, T b, T t) { return (Imath::abs (a - b) <= t)? 0 : cmp (a, b); } template <class T> inline bool iszero (T a, T t) { return (Imath::abs (a) <= t) ? 1 : 0; } template <class T1, class T2, class T3> inline bool equal (T1 a, T2 b, T3 t) { return Imath::abs (a - b) <= t; } template <class T> inline int floor (T x) { return (x >= 0)? int (x): -(int (-x) + (-x > int (-x))); } template <class T> inline int ceil (T x) { return -floor (-x); } template <class T> inline int trunc (T x) { return (x >= 0) ? int(x) : -int(-x); } // // Integer division and remainder where the // remainder of x/y has the same sign as x: // // divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y)) // mods(x,y) == x - y * divs(x,y) // inline int divs (int x, int y) { return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)): ((y >= 0)? -(-x / y): (-x / -y)); } inline int mods (int x, int y) { return (x >= 0)? ((y >= 0)? ( x % y): ( x % -y)): ((y >= 0)? -(-x % y): -(-x % -y)); } // // Integer division and remainder where the // remainder of x/y is always positive: // // divp(x,y) == floor (double(x) / double (y)) // modp(x,y) == x - y * divp(x,y) // inline int divp (int x, int y) { return (x >= 0)? ((y >= 0)? ( x / y): -( x / -y)): ((y >= 0)? -((y-1-x) / y): ((-y-1-x) / -y)); } inline int modp (int x, int y) { return x - y * divp (x, y); } //---------------------------------------------------------- // Successor and predecessor for floating-point numbers: // // succf(f) returns float(f+e), where e is the smallest // positive number such that float(f+e) != f. // // predf(f) returns float(f-e), where e is the smallest // positive number such that float(f-e) != f. // // succd(d) returns double(d+e), where e is the smallest // positive number such that double(d+e) != d. // // predd(d) returns double(d-e), where e is the smallest // positive number such that double(d-e) != d. // // Exceptions: If the input value is an infinity or a nan, // succf(), predf(), succd(), and predd() all // return the input value without changing it. // //---------------------------------------------------------- float succf (float f); float predf (float f); double succd (double d); double predd (double d); // // Return true if the number is not a NaN or Infinity. // inline bool finitef (float f) { union {float f; int i;} u; u.f = f; return (u.i & 0x7f800000) != 0x7f800000; } inline bool finited (double d) { union {double d; Int64 i;} u; u.d = d; return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL; } } // namespace Imath #endif