/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHMATH_H #define INCLUDED_IMATHMATH_H //---------------------------------------------------------------------------- // // ImathMath.h // // This file contains template functions which call the double- // precision math functions defined in math.h (sin(), sqrt(), // exp() etc.), with specializations that call the faster // single-precision versions (sinf(), sqrtf(), expf() etc.) // when appropriate. // // Example: // // double x = Math<double>::sqrt (3); // calls ::sqrt(double); // float y = Math<float>::sqrt (3); // calls ::sqrtf(float); // // When would I want to use this? // // You may be writing a template which needs to call some function // defined in math.h, for example to extract a square root, but you // don't know whether to call the single- or the double-precision // version of this function (sqrt() or sqrtf()): // // template <class T> // T // glorp (T x) // { // return sqrt (x + 1); // should call ::sqrtf(float) // } // if x is a float, but we // // don't know if it is // // Using the templates in this file, you can make sure that // the appropriate version of the math function is called: // // template <class T> // T // glorp (T x, T y) // { // return Math<T>::sqrt (x + 1); // calls ::sqrtf(float) if x // } // is a float, ::sqrt(double) // // otherwise // //---------------------------------------------------------------------------- #include "ImathPlatform.h" #include "ImathLimits.h" #include <math.h> namespace Imath { template <class T> struct Math { static T acos (T x) {return ::acos (double(x));} static T asin (T x) {return ::asin (double(x));} static T atan (T x) {return ::atan (double(x));} static T atan2 (T x, T y) {return ::atan2 (double(x), double(y));} static T cos (T x) {return ::cos (double(x));} static T sin (T x) {return ::sin (double(x));} static T tan (T x) {return ::tan (double(x));} static T cosh (T x) {return ::cosh (double(x));} static T sinh (T x) {return ::sinh (double(x));} static T tanh (T x) {return ::tanh (double(x));} static T exp (T x) {return ::exp (double(x));} static T log (T x) {return ::log (double(x));} static T log10 (T x) {return ::log10 (double(x));} static T modf (T x, T *iptr) { double ival; T rval( ::modf (double(x),&ival)); *iptr = ival; return rval; } static T pow (T x, T y) {return ::pow (double(x), double(y));} static T sqrt (T x) {return ::sqrt (double(x));} static T ceil (T x) {return ::ceil (double(x));} static T fabs (T x) {return ::fabs (double(x));} static T floor (T x) {return ::floor (double(x));} static T fmod (T x, T y) {return ::fmod (double(x), double(y));} static T hypot (T x, T y) {return ::hypot (double(x), double(y));} }; template <> struct Math<float> { static float acos (float x) {return ::acosf (x);} static float asin (float x) {return ::asinf (x);} static float atan (float x) {return ::atanf (x);} static float atan2 (float x, float y) {return ::atan2f (x, y);} static float cos (float x) {return ::cosf (x);} static float sin (float x) {return ::sinf (x);} static float tan (float x) {return ::tanf (x);} static float cosh (float x) {return ::coshf (x);} static float sinh (float x) {return ::sinhf (x);} static float tanh (float x) {return ::tanhf (x);} static float exp (float x) {return ::expf (x);} static float log (float x) {return ::logf (x);} static float log10 (float x) {return ::log10f (x);} static float modf (float x, float *y) {return ::modff (x, y);} static float pow (float x, float y) {return ::powf (x, y);} static float sqrt (float x) {return ::sqrtf (x);} static float ceil (float x) {return ::ceilf (x);} static float fabs (float x) {return ::fabsf (x);} static float floor (float x) {return ::floorf (x);} static float fmod (float x, float y) {return ::fmodf (x, y);} #if !defined(_MSC_VER) static float hypot (float x, float y) {return ::hypotf (x, y);} #else static float hypot (float x, float y) {return ::sqrtf(x*x + y*y);} #endif }; //-------------------------------------------------------------------------- // Don Hatch's version of sin(x)/x, which is accurate for very small x. // Returns 1 for x == 0. //-------------------------------------------------------------------------- template <class T> inline T sinx_over_x (T x) { if (x * x < limits<T>::epsilon()) return T (1); else return Math<T>::sin (x) / x; } //-------------------------------------------------------------------------- // Compare two numbers and test if they are "approximately equal": // // equalWithAbsError (x1, x2, e) // // Returns true if x1 is the same as x2 with an absolute error of // no more than e, // // abs (x1 - x2) <= e // // equalWithRelError (x1, x2, e) // // Returns true if x1 is the same as x2 with an relative error of // no more than e, // // abs (x1 - x2) <= e * x1 // //-------------------------------------------------------------------------- template <class T> inline bool equalWithAbsError (T x1, T x2, T e) { return ((x1 > x2)? x1 - x2: x2 - x1) <= e; } template <class T> inline bool equalWithRelError (T x1, T x2, T e) { return ((x1 > x2)? x1 - x2: x2 - x1) <= e * ((x1 > 0)? x1: -x1); } } // namespace Imath #endif