root/modules/calib3d/src/ptsetreg.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. RANSACUpdateNumIters
  2. maxIters
  3. findInliers
  4. getSubset
  5. run
  6. setCallback
  7. run
  8. createRANSACPointSetRegistrator
  9. createLMeDSPointSetRegistrator
  10. runKernel
  11. computeError
  12. checkSubset
  13. estimateAffine3D

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#include <algorithm>
#include <iterator>
#include <limits>

namespace cv
{

int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters )
{
    if( modelPoints <= 0 )
        CV_Error( Error::StsOutOfRange, "the number of model points should be positive" );

    p = MAX(p, 0.);
    p = MIN(p, 1.);
    ep = MAX(ep, 0.);
    ep = MIN(ep, 1.);

    // avoid inf's & nan's
    double num = MAX(1. - p, DBL_MIN);
    double denom = 1. - std::pow(1. - ep, modelPoints);
    if( denom < DBL_MIN )
        return 0;

    num = std::log(num);
    denom = std::log(denom);

    return denom >= 0 || -num >= maxIters*(-denom) ? maxIters : cvRound(num/denom);
}


class RANSACPointSetRegistrator : public PointSetRegistrator
{
public:
    RANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
                              int _modelPoints=0, double _threshold=0, double _confidence=0.99, int _maxIters=1000)
    : cb(_cb), modelPoints(_modelPoints), threshold(_threshold), confidence(_confidence), maxIters(_maxIters)
    {
        checkPartialSubsets = false;
    }

    int findInliers( const Mat& m1, const Mat& m2, const Mat& model, Mat& err, Mat& mask, double thresh ) const
    {
        cb->computeError( m1, m2, model, err );
        mask.create(err.size(), CV_8U);

        CV_Assert( err.isContinuous() && err.type() == CV_32F && mask.isContinuous() && mask.type() == CV_8U);
        const float* errptr = err.ptr<float>();
        uchar* maskptr = mask.ptr<uchar>();
        float t = (float)(thresh*thresh);
        int i, n = (int)err.total(), nz = 0;
        for( i = 0; i < n; i++ )
        {
            int f = errptr[i] <= t;
            maskptr[i] = (uchar)f;
            nz += f;
        }
        return nz;
    }

    bool getSubset( const Mat& m1, const Mat& m2,
                    Mat& ms1, Mat& ms2, RNG& rng,
                    int maxAttempts=1000 ) const
    {
        cv::AutoBuffer<int> _idx(modelPoints);
        int* idx = _idx;
        int i = 0, j, k, iters = 0;
        int esz1 = (int)m1.elemSize(), esz2 = (int)m2.elemSize();
        int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
        int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
        int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
        const int *m1ptr = m1.ptr<int>(), *m2ptr = m2.ptr<int>();

        ms1.create(modelPoints, 1, CV_MAKETYPE(m1.depth(), d1));
        ms2.create(modelPoints, 1, CV_MAKETYPE(m2.depth(), d2));

        int *ms1ptr = ms1.ptr<int>(), *ms2ptr = ms2.ptr<int>();

        CV_Assert( count >= modelPoints && count == count2 );
        CV_Assert( (esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0 );
        esz1 /= sizeof(int);
        esz2 /= sizeof(int);

        for(; iters < maxAttempts; iters++)
        {
            for( i = 0; i < modelPoints && iters < maxAttempts; )
            {
                int idx_i = 0;
                for(;;)
                {
                    idx_i = idx[i] = rng.uniform(0, count);
                    for( j = 0; j < i; j++ )
                        if( idx_i == idx[j] )
                            break;
                    if( j == i )
                        break;
                }
                for( k = 0; k < esz1; k++ )
                    ms1ptr[i*esz1 + k] = m1ptr[idx_i*esz1 + k];
                for( k = 0; k < esz2; k++ )
                    ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k];
                if( checkPartialSubsets && !cb->checkSubset( ms1, ms2, i+1 ))
                {
                    // we may have selected some bad points;
                    // so, let's remove some of them randomly
                    i = rng.uniform(0, i+1);
                    iters++;
                    continue;
                }
                i++;
            }
            if( !checkPartialSubsets && i == modelPoints && !cb->checkSubset(ms1, ms2, i))
                continue;
            break;
        }

        return i == modelPoints && iters < maxAttempts;
    }

    bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
    {
        bool result = false;
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        Mat err, mask, model, bestModel, ms1, ms2;

        int iter, niters = MAX(maxIters, 1);
        int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
        int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
        int count = m1.checkVector(d1), count2 = m2.checkVector(d2), maxGoodCount = 0;

        RNG rng((uint64)-1);

        CV_Assert( cb );
        CV_Assert( confidence > 0 && confidence < 1 );

        CV_Assert( count >= 0 && count2 == count );
        if( count < modelPoints )
            return false;

        Mat bestMask0, bestMask;

        if( _mask.needed() )
        {
            _mask.create(count, 1, CV_8U, -1, true);
            bestMask0 = bestMask = _mask.getMat();
            CV_Assert( (bestMask.cols == 1 || bestMask.rows == 1) && (int)bestMask.total() == count );
        }
        else
        {
            bestMask.create(count, 1, CV_8U);
            bestMask0 = bestMask;
        }

        if( count == modelPoints )
        {
            if( cb->runKernel(m1, m2, bestModel) <= 0 )
                return false;
            bestModel.copyTo(_model);
            bestMask.setTo(Scalar::all(1));
            return true;
        }

        for( iter = 0; iter < niters; iter++ )
        {
            int i, goodCount, nmodels;
            if( count > modelPoints )
            {
                bool found = getSubset( m1, m2, ms1, ms2, rng, 10000 );
                if( !found )
                {
                    if( iter == 0 )
                        return false;
                    break;
                }
            }

            nmodels = cb->runKernel( ms1, ms2, model );
            if( nmodels <= 0 )
                continue;
            CV_Assert( model.rows % nmodels == 0 );
            Size modelSize(model.cols, model.rows/nmodels);

            for( i = 0; i < nmodels; i++ )
            {
                Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
                goodCount = findInliers( m1, m2, model_i, err, mask, threshold );

                if( goodCount > MAX(maxGoodCount, modelPoints-1) )
                {
                    std::swap(mask, bestMask);
                    model_i.copyTo(bestModel);
                    maxGoodCount = goodCount;
                    niters = RANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters );
                }
            }
        }

        if( maxGoodCount > 0 )
        {
            if( bestMask.data != bestMask0.data )
            {
                if( bestMask.size() == bestMask0.size() )
                    bestMask.copyTo(bestMask0);
                else
                    transpose(bestMask, bestMask0);
            }
            bestModel.copyTo(_model);
            result = true;
        }
        else
            _model.release();

        return result;
    }

    void setCallback(const Ptr<PointSetRegistrator::Callback>& _cb) { cb = _cb; }

    Ptr<PointSetRegistrator::Callback> cb;
    int modelPoints;
    bool checkPartialSubsets;
    double threshold;
    double confidence;
    int maxIters;
};

class LMeDSPointSetRegistrator : public RANSACPointSetRegistrator
{
public:
    LMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
                              int _modelPoints=0, double _confidence=0.99, int _maxIters=1000)
    : RANSACPointSetRegistrator(_cb, _modelPoints, 0, _confidence, _maxIters) {}

    bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
    {
        const double outlierRatio = 0.45;
        bool result = false;
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        Mat ms1, ms2, err, errf, model, bestModel, mask, mask0;

        int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
        int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
        int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
        double minMedian = DBL_MAX, sigma;

        RNG rng((uint64)-1);

        CV_Assert( cb );
        CV_Assert( confidence > 0 && confidence < 1 );

        CV_Assert( count >= 0 && count2 == count );
        if( count < modelPoints )
            return false;

        if( _mask.needed() )
        {
            _mask.create(count, 1, CV_8U, -1, true);
            mask0 = mask = _mask.getMat();
            CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == count );
        }

        if( count == modelPoints )
        {
            if( cb->runKernel(m1, m2, bestModel) <= 0 )
                return false;
            bestModel.copyTo(_model);
            mask.setTo(Scalar::all(1));
            return true;
        }

        int iter, niters = RANSACUpdateNumIters(confidence, outlierRatio, modelPoints, maxIters);
        niters = MAX(niters, 3);

        for( iter = 0; iter < niters; iter++ )
        {
            int i, nmodels;
            if( count > modelPoints )
            {
                bool found = getSubset( m1, m2, ms1, ms2, rng );
                if( !found )
                {
                    if( iter == 0 )
                        return false;
                    break;
                }
            }

            nmodels = cb->runKernel( ms1, ms2, model );
            if( nmodels <= 0 )
                continue;

            CV_Assert( model.rows % nmodels == 0 );
            Size modelSize(model.cols, model.rows/nmodels);

            for( i = 0; i < nmodels; i++ )
            {
                Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
                cb->computeError( m1, m2, model_i, err );
                if( err.depth() != CV_32F )
                    err.convertTo(errf, CV_32F);
                else
                    errf = err;
                CV_Assert( errf.isContinuous() && errf.type() == CV_32F && (int)errf.total() == count );
                std::sort(errf.ptr<int>(), errf.ptr<int>() + count);

                double median = count % 2 != 0 ?
                errf.at<float>(count/2) : (errf.at<float>(count/2-1) + errf.at<float>(count/2))*0.5;

                if( median < minMedian )
                {
                    minMedian = median;
                    model_i.copyTo(bestModel);
                }
            }
        }

        if( minMedian < DBL_MAX )
        {
            sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian);
            sigma = MAX( sigma, 0.001 );

            count = findInliers( m1, m2, bestModel, err, mask, sigma );
            if( _mask.needed() && mask0.data != mask.data )
            {
                if( mask0.size() == mask.size() )
                    mask.copyTo(mask0);
                else
                    transpose(mask, mask0);
            }
            bestModel.copyTo(_model);
            result = count >= modelPoints;
        }
        else
            _model.release();

        return result;
    }

};

Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
                                                         int _modelPoints, double _threshold,
                                                         double _confidence, int _maxIters)
{
    return Ptr<PointSetRegistrator>(
        new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters));
}


Ptr<PointSetRegistrator> createLMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
                             int _modelPoints, double _confidence, int _maxIters)
{
    return Ptr<PointSetRegistrator>(
        new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters));
}


class Affine3DEstimatorCallback : public PointSetRegistrator::Callback
{
public:
    int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
    {
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        const Point3f* from = m1.ptr<Point3f>();
        const Point3f* to   = m2.ptr<Point3f>();

        const int N = 12;
        double buf[N*N + N + N];
        Mat A(N, N, CV_64F, &buf[0]);
        Mat B(N, 1, CV_64F, &buf[0] + N*N);
        Mat X(N, 1, CV_64F, &buf[0] + N*N + N);
        double* Adata = A.ptr<double>();
        double* Bdata = B.ptr<double>();
        A = Scalar::all(0);

        for( int i = 0; i < (N/3); i++ )
        {
            Bdata[i*3] = to[i].x;
            Bdata[i*3+1] = to[i].y;
            Bdata[i*3+2] = to[i].z;

            double *aptr = Adata + i*3*N;
            for(int k = 0; k < 3; ++k)
            {
                aptr[0] = from[i].x;
                aptr[1] = from[i].y;
                aptr[2] = from[i].z;
                aptr[3] = 1.0;
                aptr += 16;
            }
        }

        solve(A, B, X, DECOMP_SVD);
        X.reshape(1, 3).copyTo(_model);

        return 1;
    }

    void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
    {
        Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
        const Point3f* from = m1.ptr<Point3f>();
        const Point3f* to   = m2.ptr<Point3f>();
        const double* F = model.ptr<double>();

        int count = m1.checkVector(3);
        CV_Assert( count > 0 );

        _err.create(count, 1, CV_32F);
        Mat err = _err.getMat();
        float* errptr = err.ptr<float>();

        for(int i = 0; i < count; i++ )
        {
            const Point3f& f = from[i];
            const Point3f& t = to[i];

            double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x;
            double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y;
            double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z;

            errptr[i] = (float)std::sqrt(a*a + b*b + c*c);
        }
    }

    bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
    {
        const float threshold = 0.996f;
        Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();

        for( int inp = 1; inp <= 2; inp++ )
        {
            int j, k, i = count - 1;
            const Mat* msi = inp == 1 ? &ms1 : &ms2;
            const Point3f* ptr = msi->ptr<Point3f>();

            CV_Assert( count <= msi->rows );

            // check that the i-th selected point does not belong
            // to a line connecting some previously selected points
            for(j = 0; j < i; ++j)
            {
                Point3f d1 = ptr[j] - ptr[i];
                float n1 = d1.x*d1.x + d1.y*d1.y;

                for(k = 0; k < j; ++k)
                {
                    Point3f d2 = ptr[k] - ptr[i];
                    float denom = (d2.x*d2.x + d2.y*d2.y)*n1;
                    float num = d1.x*d2.x + d1.y*d2.y;

                    if( num*num > threshold*threshold*denom )
                        return false;
                }
            }
        }
        return true;
    }
};

}

int cv::estimateAffine3D(InputArray _from, InputArray _to,
                         OutputArray _out, OutputArray _inliers,
                         double param1, double param2)
{
    Mat from = _from.getMat(), to = _to.getMat();
    int count = from.checkVector(3);

    CV_Assert( count >= 0 && to.checkVector(3) == count );

    Mat dFrom, dTo;
    from.convertTo(dFrom, CV_32F);
    to.convertTo(dTo, CV_32F);
    dFrom = dFrom.reshape(3, count);
    dTo = dTo.reshape(3, count);

    const double epsilon = DBL_EPSILON;
    param1 = param1 <= 0 ? 3 : param1;
    param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;

    return createRANSACPointSetRegistrator(makePtr<Affine3DEstimatorCallback>(), 4, param1, param2)->run(dFrom, dTo, _out, _inliers);
}

/* [<][>][^][v][top][bottom][index][help] */