root/modules/core/include/opencv2/core/affine.hpp

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. Identity
  2. rotation
  3. rotation
  4. rotation
  5. linear
  6. translation
  7. rotation
  8. linear
  9. translation
  10. rvec
  11. inv
  12. rotate
  13. rotate
  14. translate
  15. concatenate
  16. cast

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CORE_AFFINE3_HPP__
#define __OPENCV_CORE_AFFINE3_HPP__

#ifdef __cplusplus

#include <opencv2/core.hpp>

namespace cv
{

//! @addtogroup core
//! @{

    /** @brief Affine transform
      @todo document
     */
    template<typename T>
    class Affine3
    {
    public:
        typedef T float_type;
        typedef Matx<float_type, 3, 3> Mat3;
        typedef Matx<float_type, 4, 4> Mat4;
        typedef Vec<float_type, 3> Vec3;

        Affine3();

        //! Augmented affine matrix
        Affine3(const Mat4& affine);

        //! Rotation matrix
        Affine3(const Mat3& R, const Vec3& t = Vec3::all(0));

        //! Rodrigues vector
        Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0));

        //! Combines all contructors above. Supports 4x4, 4x3, 3x3, 1x3, 3x1 sizes of data matrix
        explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0));

        //! From 16th element array
        explicit Affine3(const float_type* vals);

        //! Create identity transform
        static Affine3 Identity();

        //! Rotation matrix
        void rotation(const Mat3& R);

        //! Rodrigues vector
        void rotation(const Vec3& rvec);

        //! Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix;
        void rotation(const Mat& data);

        void linear(const Mat3& L);
        void translation(const Vec3& t);

        Mat3 rotation() const;
        Mat3 linear() const;
        Vec3 translation() const;

        //! Rodrigues vector
        Vec3 rvec() const;

        Affine3 inv(int method = cv::DECOMP_SVD) const;

        //! a.rotate(R) is equivalent to Affine(R, 0) * a;
        Affine3 rotate(const Mat3& R) const;

        //! a.rotate(R) is equivalent to Affine(rvec, 0) * a;
        Affine3 rotate(const Vec3& rvec) const;

        //! a.translate(t) is equivalent to Affine(E, t) * a;
        Affine3 translate(const Vec3& t) const;

        //! a.concatenate(affine) is equivalent to affine * a;
        Affine3 concatenate(const Affine3& affine) const;

        template <typename Y> operator Affine3<Y>() const;

        template <typename Y> Affine3<Y> cast() const;

        Mat4 matrix;

#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
        Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine);
        Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine);
        operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const;
        operator Eigen::Transform<T, 3, Eigen::Affine>() const;
#endif
    };

    template<typename T> static
    Affine3<T> operator*(const Affine3<T>& affine1, const Affine3<T>& affine2);

    template<typename T, typename V> static
    V operator*(const Affine3<T>& affine, const V& vector);

    typedef Affine3<float> Affine3f;
    typedef Affine3<double> Affine3d;

    static Vec3f operator*(const Affine3f& affine, const Vec3f& vector);
    static Vec3d operator*(const Affine3d& affine, const Vec3d& vector);

    template<typename _Tp> class DataType< Affine3<_Tp> >
    {
    public:
        typedef Affine3<_Tp>                               value_type;
        typedef Affine3<typename DataType<_Tp>::work_type> work_type;
        typedef _Tp                                        channel_type;

        enum { generic_type = 0,
               depth        = DataType<channel_type>::depth,
               channels     = 16,
               fmt          = DataType<channel_type>::fmt + ((channels - 1) << 8),
               type         = CV_MAKETYPE(depth, channels)
             };

        typedef Vec<channel_type, channels> vec_type;
    };

//! @} core

}

//! @cond IGNORED

///////////////////////////////////////////////////////////////////////////////////
// Implementaiton

template<typename T> inline
cv::Affine3<T>::Affine3()
    : matrix(Mat4::eye())
{}

template<typename T> inline
cv::Affine3<T>::Affine3(const Mat4& affine)
    : matrix(affine)
{}

template<typename T> inline
cv::Affine3<T>::Affine3(const Mat3& R, const Vec3& t)
{
    rotation(R);
    translation(t);
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
    matrix.val[15] = 1;
}

template<typename T> inline
cv::Affine3<T>::Affine3(const Vec3& _rvec, const Vec3& t)
{
    rotation(_rvec);
    translation(t);
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
    matrix.val[15] = 1;
}

template<typename T> inline
cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
{
    CV_Assert(data.type() == cv::DataType<T>::type);

    if (data.cols == 4 && data.rows == 4)
    {
        data.copyTo(matrix);
        return;
    }
    else if (data.cols == 4 && data.rows == 3)
    {
        rotation(data(Rect(0, 0, 3, 3)));
        translation(data(Rect(3, 0, 1, 3)));
        return;
    }

    rotation(data);
    translation(t);
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
    matrix.val[15] = 1;
}

template<typename T> inline
cv::Affine3<T>::Affine3(const float_type* vals) : matrix(vals)
{}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::Identity()
{
    return Affine3<T>(cv::Affine3<T>::Mat4::eye());
}

template<typename T> inline
void cv::Affine3<T>::rotation(const Mat3& R)
{
    linear(R);
}

template<typename T> inline
void cv::Affine3<T>::rotation(const Vec3& _rvec)
{
    double rx = _rvec[0], ry = _rvec[1], rz = _rvec[2];
    double theta = std::sqrt(rx*rx + ry*ry + rz*rz);

    if (theta < DBL_EPSILON)
        rotation(Mat3::eye());
    else
    {
        const double I[] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };

        double c = std::cos(theta);
        double s = std::sin(theta);
        double c1 = 1. - c;
        double itheta = (theta != 0) ? 1./theta : 0.;

        rx *= itheta; ry *= itheta; rz *= itheta;

        double rrt[] = { rx*rx, rx*ry, rx*rz, rx*ry, ry*ry, ry*rz, rx*rz, ry*rz, rz*rz };
        double _r_x_[] = { 0, -rz, ry, rz, 0, -rx, -ry, rx, 0 };
        Mat3 R;

        // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
        // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
        for(int k = 0; k < 9; ++k)
            R.val[k] = static_cast<float_type>(c*I[k] + c1*rrt[k] + s*_r_x_[k]);

        rotation(R);
    }
}

//Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix;
template<typename T> inline
void cv::Affine3<T>::rotation(const cv::Mat& data)
{
    CV_Assert(data.type() == cv::DataType<T>::type);

    if (data.cols == 3 && data.rows == 3)
    {
        Mat3 R;
        data.copyTo(R);
        rotation(R);
    }
    else if ((data.cols == 3 && data.rows == 1) || (data.cols == 1 && data.rows == 3))
    {
        Vec3 _rvec;
        data.reshape(1, 3).copyTo(_rvec);
        rotation(_rvec);
    }
    else
        CV_Assert(!"Input marix can be 3x3, 1x3 or 3x1");
}

template<typename T> inline
void cv::Affine3<T>::linear(const Mat3& L)
{
    matrix.val[0] = L.val[0]; matrix.val[1] = L.val[1];  matrix.val[ 2] = L.val[2];
    matrix.val[4] = L.val[3]; matrix.val[5] = L.val[4];  matrix.val[ 6] = L.val[5];
    matrix.val[8] = L.val[6]; matrix.val[9] = L.val[7];  matrix.val[10] = L.val[8];
}

template<typename T> inline
void cv::Affine3<T>::translation(const Vec3& t)
{
    matrix.val[3] = t[0]; matrix.val[7] = t[1]; matrix.val[11] = t[2];
}

template<typename T> inline
typename cv::Affine3<T>::Mat3 cv::Affine3<T>::rotation() const
{
    return linear();
}

template<typename T> inline
typename cv::Affine3<T>::Mat3 cv::Affine3<T>::linear() const
{
    typename cv::Affine3<T>::Mat3 R;
    R.val[0] = matrix.val[0];  R.val[1] = matrix.val[1];  R.val[2] = matrix.val[ 2];
    R.val[3] = matrix.val[4];  R.val[4] = matrix.val[5];  R.val[5] = matrix.val[ 6];
    R.val[6] = matrix.val[8];  R.val[7] = matrix.val[9];  R.val[8] = matrix.val[10];
    return R;
}

template<typename T> inline
typename cv::Affine3<T>::Vec3 cv::Affine3<T>::translation() const
{
    return Vec3(matrix.val[3], matrix.val[7], matrix.val[11]);
}

template<typename T> inline
typename cv::Affine3<T>::Vec3 cv::Affine3<T>::rvec() const
{
    cv::Vec3d w;
    cv::Matx33d u, vt, R = rotation();
    cv::SVD::compute(R, w, u, vt, cv::SVD::FULL_UV + cv::SVD::MODIFY_A);
    R = u * vt;

    double rx = R.val[7] - R.val[5];
    double ry = R.val[2] - R.val[6];
    double rz = R.val[3] - R.val[1];

    double s = std::sqrt((rx*rx + ry*ry + rz*rz)*0.25);
    double c = (R.val[0] + R.val[4] + R.val[8] - 1) * 0.5;
    c = c > 1.0 ? 1.0 : c < -1.0 ? -1.0 : c;
    double theta = acos(c);

    if( s < 1e-5 )
    {
        if( c > 0 )
            rx = ry = rz = 0;
        else
        {
            double t;
            t = (R.val[0] + 1) * 0.5;
            rx = std::sqrt(std::max(t, 0.0));
            t = (R.val[4] + 1) * 0.5;
            ry = std::sqrt(std::max(t, 0.0)) * (R.val[1] < 0 ? -1.0 : 1.0);
            t = (R.val[8] + 1) * 0.5;
            rz = std::sqrt(std::max(t, 0.0)) * (R.val[2] < 0 ? -1.0 : 1.0);

            if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R.val[5] > 0) != (ry*rz > 0) )
                rz = -rz;
            theta /= std::sqrt(rx*rx + ry*ry + rz*rz);
            rx *= theta;
            ry *= theta;
            rz *= theta;
        }
    }
    else
    {
        double vth = 1/(2*s);
        vth *= theta;
        rx *= vth; ry *= vth; rz *= vth;
    }

    return cv::Vec3d(rx, ry, rz);
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::inv(int method) const
{
    return matrix.inv(method);
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::rotate(const Mat3& R) const
{
    Mat3 Lc = linear();
    Vec3 tc = translation();
    Mat4 result;
    result.val[12] = result.val[13] = result.val[14] = 0;
    result.val[15] = 1;

    for(int j = 0; j < 3; ++j)
    {
        for(int i = 0; i < 3; ++i)
        {
            float_type value = 0;
            for(int k = 0; k < 3; ++k)
                value += R(j, k) * Lc(k, i);
            result(j, i) = value;
        }

        result(j, 3) = R.row(j).dot(tc.t());
    }
    return result;
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::rotate(const Vec3& _rvec) const
{
    return rotate(Affine3f(_rvec).rotation());
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::translate(const Vec3& t) const
{
    Mat4 m = matrix;
    m.val[ 3] += t[0];
    m.val[ 7] += t[1];
    m.val[11] += t[2];
    return m;
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::concatenate(const Affine3<T>& affine) const
{
    return (*this).rotate(affine.rotation()).translate(affine.translation());
}

template<typename T> template <typename Y> inline
cv::Affine3<T>::operator Affine3<Y>() const
{
    return Affine3<Y>(matrix);
}

template<typename T> template <typename Y> inline
cv::Affine3<Y> cv::Affine3<T>::cast() const
{
    return Affine3<Y>(matrix);
}

template<typename T> inline
cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2)
{
    return affine2.concatenate(affine1);
}

template<typename T, typename V> inline
V cv::operator*(const cv::Affine3<T>& affine, const V& v)
{
    const typename Affine3<T>::Mat4& m = affine.matrix;

    V r;
    r.x = m.val[0] * v.x + m.val[1] * v.y + m.val[ 2] * v.z + m.val[ 3];
    r.y = m.val[4] * v.x + m.val[5] * v.y + m.val[ 6] * v.z + m.val[ 7];
    r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11];
    return r;
}

static inline
cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v)
{
    const cv::Matx44f& m = affine.matrix;
    cv::Vec3f r;
    r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
    r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
    r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
    return r;
}

static inline
cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v)
{
    const cv::Matx44d& m = affine.matrix;
    cv::Vec3d r;
    r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
    r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
    r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
    return r;
}



#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H

template<typename T> inline
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine)
{
    cv::Mat(4, 4, cv::DataType<T>::type, affine.matrix().data()).copyTo(matrix);
}

template<typename T> inline
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine)
{
    Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> a = affine;
    cv::Mat(4, 4, cv::DataType<T>::type, a.matrix().data()).copyTo(matrix);
}

template<typename T> inline
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const
{
    Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> r;
    cv::Mat hdr(4, 4, cv::DataType<T>::type, r.matrix().data());
    cv::Mat(matrix, false).copyTo(hdr);
    return r;
}

template<typename T> inline
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine>() const
{
    return this->operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>();
}

#endif /* defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H */

//! @endcond

#endif /* __cplusplus */

#endif /* __OPENCV_CORE_AFFINE3_HPP__ */

/* [<][>][^][v][top][bottom][index][help] */