root/modules/core/include/opencv2/core/cuda.inl.hpp

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. allocator
  2. allocator
  3. allocator
  4. allocator
  5. allocator
  6. allocator
  7. allocator
  8. create
  9. swap
  10. clone
  11. copyTo
  12. setTo
  13. setTo
  14. convertTo
  15. convertTo
  16. convertTo
  17. assignTo
  18. ptr
  19. ptr
  20. ptr
  21. ptr
  22. row
  23. col
  24. rowRange
  25. rowRange
  26. colRange
  27. colRange
  28. isContinuous
  29. elemSize
  30. elemSize1
  31. type
  32. depth
  33. channels
  34. step1
  35. size
  36. empty
  37. createContinuous
  38. createContinuous
  39. createContinuous
  40. ensureSizeIsEnough
  41. swap
  42. alloc_type
  43. alloc_type
  44. alloc_type
  45. alloc_type
  46. alloc_type
  47. swap
  48. clone
  49. create
  50. createMatHeader
  51. isContinuous
  52. elemSize
  53. elemSize1
  54. type
  55. depth
  56. channels
  57. step1
  58. size
  59. empty
  60. swap
  61. has
  62. hasEqualOrGreater
  63. deviceID
  64. freeMemory
  65. totalMemory
  66. supports
  67. size

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CORE_CUDAINL_HPP__
#define __OPENCV_CORE_CUDAINL_HPP__

#include "opencv2/core/cuda.hpp"

//! @cond IGNORED

namespace cv { namespace cuda {

//===================================================================================
// GpuMat
//===================================================================================

inline
GpuMat::GpuMat(Allocator* allocator_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{}

inline
GpuMat::GpuMat(int rows_, int cols_, int type_, Allocator* allocator_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
    if (rows_ > 0 && cols_ > 0)
        create(rows_, cols_, type_);
}

inline
GpuMat::GpuMat(Size size_, int type_, Allocator* allocator_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
    if (size_.height > 0 && size_.width > 0)
        create(size_.height, size_.width, type_);
}

inline
GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_, Allocator* allocator_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
    if (rows_ > 0 && cols_ > 0)
    {
        create(rows_, cols_, type_);
        setTo(s_);
    }
}

inline
GpuMat::GpuMat(Size size_, int type_, Scalar s_, Allocator* allocator_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
    if (size_.height > 0 && size_.width > 0)
    {
        create(size_.height, size_.width, type_);
        setTo(s_);
    }
}

inline
GpuMat::GpuMat(const GpuMat& m)
    : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), allocator(m.allocator)
{
    if (refcount)
        CV_XADD(refcount, 1);
}

inline
GpuMat::GpuMat(InputArray arr, Allocator* allocator_) :
    flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
    upload(arr);
}

inline
GpuMat::~GpuMat()
{
    release();
}

inline
GpuMat& GpuMat::operator =(const GpuMat& m)
{
    if (this != &m)
    {
        GpuMat temp(m);
        swap(temp);
    }

    return *this;
}

inline
void GpuMat::create(Size size_, int type_)
{
    create(size_.height, size_.width, type_);
}

inline
void GpuMat::swap(GpuMat& b)
{
    std::swap(flags, b.flags);
    std::swap(rows, b.rows);
    std::swap(cols, b.cols);
    std::swap(step, b.step);
    std::swap(data, b.data);
    std::swap(datastart, b.datastart);
    std::swap(dataend, b.dataend);
    std::swap(refcount, b.refcount);
    std::swap(allocator, b.allocator);
}

inline
GpuMat GpuMat::clone() const
{
    GpuMat m;
    copyTo(m);
    return m;
}

inline
void GpuMat::copyTo(OutputArray dst, InputArray mask) const
{
    copyTo(dst, mask, Stream::Null());
}

inline
GpuMat& GpuMat::setTo(Scalar s)
{
    return setTo(s, Stream::Null());
}

inline
GpuMat& GpuMat::setTo(Scalar s, InputArray mask)
{
    return setTo(s, mask, Stream::Null());
}

inline
void GpuMat::convertTo(OutputArray dst, int rtype) const
{
    convertTo(dst, rtype, Stream::Null());
}

inline
void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, double beta) const
{
    convertTo(dst, rtype, alpha, beta, Stream::Null());
}

inline
void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const
{
    convertTo(dst, rtype, alpha, 0.0, stream);
}

inline
void GpuMat::assignTo(GpuMat& m, int _type) const
{
    if (_type < 0)
        m = *this;
    else
        convertTo(m, _type);
}

inline
uchar* GpuMat::ptr(int y)
{
    CV_DbgAssert( (unsigned)y < (unsigned)rows );
    return data + step * y;
}

inline
const uchar* GpuMat::ptr(int y) const
{
    CV_DbgAssert( (unsigned)y < (unsigned)rows );
    return data + step * y;
}

template<typename _Tp> inline
_Tp* GpuMat::ptr(int y)
{
    return (_Tp*)ptr(y);
}

template<typename _Tp> inline
const _Tp* GpuMat::ptr(int y) const
{
    return (const _Tp*)ptr(y);
}

template <class T> inline
GpuMat::operator PtrStepSz<T>() const
{
    return PtrStepSz<T>(rows, cols, (T*)data, step);
}

template <class T> inline
GpuMat::operator PtrStep<T>() const
{
    return PtrStep<T>((T*)data, step);
}

inline
GpuMat GpuMat::row(int y) const
{
    return GpuMat(*this, Range(y, y+1), Range::all());
}

inline
GpuMat GpuMat::col(int x) const
{
    return GpuMat(*this, Range::all(), Range(x, x+1));
}

inline
GpuMat GpuMat::rowRange(int startrow, int endrow) const
{
    return GpuMat(*this, Range(startrow, endrow), Range::all());
}

inline
GpuMat GpuMat::rowRange(Range r) const
{
    return GpuMat(*this, r, Range::all());
}

inline
GpuMat GpuMat::colRange(int startcol, int endcol) const
{
    return GpuMat(*this, Range::all(), Range(startcol, endcol));
}

inline
GpuMat GpuMat::colRange(Range r) const
{
    return GpuMat(*this, Range::all(), r);
}

inline
GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const
{
    return GpuMat(*this, rowRange_, colRange_);
}

inline
GpuMat GpuMat::operator ()(Rect roi) const
{
    return GpuMat(*this, roi);
}

inline
bool GpuMat::isContinuous() const
{
    return (flags & Mat::CONTINUOUS_FLAG) != 0;
}

inline
size_t GpuMat::elemSize() const
{
    return CV_ELEM_SIZE(flags);
}

inline
size_t GpuMat::elemSize1() const
{
    return CV_ELEM_SIZE1(flags);
}

inline
int GpuMat::type() const
{
    return CV_MAT_TYPE(flags);
}

inline
int GpuMat::depth() const
{
    return CV_MAT_DEPTH(flags);
}

inline
int GpuMat::channels() const
{
    return CV_MAT_CN(flags);
}

inline
size_t GpuMat::step1() const
{
    return step / elemSize1();
}

inline
Size GpuMat::size() const
{
    return Size(cols, rows);
}

inline
bool GpuMat::empty() const
{
    return data == 0;
}

static inline
GpuMat createContinuous(int rows, int cols, int type)
{
    GpuMat m;
    createContinuous(rows, cols, type, m);
    return m;
}

static inline
void createContinuous(Size size, int type, OutputArray arr)
{
    createContinuous(size.height, size.width, type, arr);
}

static inline
GpuMat createContinuous(Size size, int type)
{
    GpuMat m;
    createContinuous(size, type, m);
    return m;
}

static inline
void ensureSizeIsEnough(Size size, int type, OutputArray arr)
{
    ensureSizeIsEnough(size.height, size.width, type, arr);
}

static inline
void swap(GpuMat& a, GpuMat& b)
{
    a.swap(b);
}

//===================================================================================
// HostMem
//===================================================================================

inline
HostMem::HostMem(AllocType alloc_type_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
}

inline
HostMem::HostMem(const HostMem& m)
    : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type)
{
    if( refcount )
        CV_XADD(refcount, 1);
}

inline
HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
    if (rows_ > 0 && cols_ > 0)
        create(rows_, cols_, type_);
}

inline
HostMem::HostMem(Size size_, int type_, AllocType alloc_type_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
    if (size_.height > 0 && size_.width > 0)
        create(size_.height, size_.width, type_);
}

inline
HostMem::HostMem(InputArray arr, AllocType alloc_type_)
    : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
    arr.getMat().copyTo(*this);
}

inline
HostMem::~HostMem()
{
    release();
}

inline
HostMem& HostMem::operator =(const HostMem& m)
{
    if (this != &m)
    {
        HostMem temp(m);
        swap(temp);
    }

    return *this;
}

inline
void HostMem::swap(HostMem& b)
{
    std::swap(flags, b.flags);
    std::swap(rows, b.rows);
    std::swap(cols, b.cols);
    std::swap(step, b.step);
    std::swap(data, b.data);
    std::swap(datastart, b.datastart);
    std::swap(dataend, b.dataend);
    std::swap(refcount, b.refcount);
    std::swap(alloc_type, b.alloc_type);
}

inline
HostMem HostMem::clone() const
{
    HostMem m(size(), type(), alloc_type);
    createMatHeader().copyTo(m);
    return m;
}

inline
void HostMem::create(Size size_, int type_)
{
    create(size_.height, size_.width, type_);
}

inline
Mat HostMem::createMatHeader() const
{
    return Mat(size(), type(), data, step);
}

inline
bool HostMem::isContinuous() const
{
    return (flags & Mat::CONTINUOUS_FLAG) != 0;
}

inline
size_t HostMem::elemSize() const
{
    return CV_ELEM_SIZE(flags);
}

inline
size_t HostMem::elemSize1() const
{
    return CV_ELEM_SIZE1(flags);
}

inline
int HostMem::type() const
{
    return CV_MAT_TYPE(flags);
}

inline
int HostMem::depth() const
{
    return CV_MAT_DEPTH(flags);
}

inline
int HostMem::channels() const
{
    return CV_MAT_CN(flags);
}

inline
size_t HostMem::step1() const
{
    return step / elemSize1();
}

inline
Size HostMem::size() const
{
    return Size(cols, rows);
}

inline
bool HostMem::empty() const
{
    return data == 0;
}

static inline
void swap(HostMem& a, HostMem& b)
{
    a.swap(b);
}

//===================================================================================
// Stream
//===================================================================================

inline
Stream::Stream(const Ptr<Impl>& impl)
    : impl_(impl)
{
}

//===================================================================================
// Initialization & Info
//===================================================================================

inline
bool TargetArchs::has(int major, int minor)
{
    return hasPtx(major, minor) || hasBin(major, minor);
}

inline
bool TargetArchs::hasEqualOrGreater(int major, int minor)
{
    return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor);
}

inline
DeviceInfo::DeviceInfo()
{
    device_id_ = getDevice();
}

inline
DeviceInfo::DeviceInfo(int device_id)
{
    CV_Assert( device_id >= 0 && device_id < getCudaEnabledDeviceCount() );
    device_id_ = device_id;
}

inline
int DeviceInfo::deviceID() const
{
    return device_id_;
}

inline
size_t DeviceInfo::freeMemory() const
{
    size_t _totalMemory, _freeMemory;
    queryMemory(_totalMemory, _freeMemory);
    return _freeMemory;
}

inline
size_t DeviceInfo::totalMemory() const
{
    size_t _totalMemory, _freeMemory;
    queryMemory(_totalMemory, _freeMemory);
    return _totalMemory;
}

inline
bool DeviceInfo::supports(FeatureSet feature_set) const
{
    int version = majorVersion() * 10 + minorVersion();
    return version >= feature_set;
}


}} // namespace cv { namespace cuda {

//===================================================================================
// Mat
//===================================================================================

namespace cv {

inline
Mat::Mat(const cuda::GpuMat& m)
    : flags(0), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows)
{
    m.download(*this);
}

}

//! @endcond

#endif // __OPENCV_CORE_CUDAINL_HPP__

/* [<][>][^][v][top][bottom][index][help] */