root/modules/core/include/opencv2/core/cuda/detail/transform_detail.hpp

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. unroll
  2. unroll
  3. unroll
  4. unroll
  5. unroll
  6. unroll
  7. unroll
  8. unroll
  9. unroll
  10. unroll
  11. transformSmart
  12. transformSimple
  13. transformSmart
  14. transformSimple
  15. call
  16. call
  17. call
  18. call

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CUDA_TRANSFORM_DETAIL_HPP__
#define __OPENCV_CUDA_TRANSFORM_DETAIL_HPP__

#include "../common.hpp"
#include "../vec_traits.hpp"
#include "../functional.hpp"

//! @cond IGNORED

namespace cv { namespace cuda { namespace device
{
    namespace transform_detail
    {
        //! Read Write Traits

        template <typename T, typename D, int shift> struct UnaryReadWriteTraits
        {
            typedef typename TypeVec<T, shift>::vec_type read_type;
            typedef typename TypeVec<D, shift>::vec_type write_type;
        };

        template <typename T1, typename T2, typename D, int shift> struct BinaryReadWriteTraits
        {
            typedef typename TypeVec<T1, shift>::vec_type read_type1;
            typedef typename TypeVec<T2, shift>::vec_type read_type2;
            typedef typename TypeVec<D, shift>::vec_type write_type;
        };

        //! Transform kernels

        template <int shift> struct OpUnroller;
        template <> struct OpUnroller<1>
        {
            template <typename T, typename D, typename UnOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.x = op(src.x);
            }

            template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.x = op(src1.x, src2.x);
            }
        };
        template <> struct OpUnroller<2>
        {
            template <typename T, typename D, typename UnOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.x = op(src.x);
                if (mask(y, x_shifted + 1))
                    dst.y = op(src.y);
            }

            template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.x = op(src1.x, src2.x);
                if (mask(y, x_shifted + 1))
                    dst.y = op(src1.y, src2.y);
            }
        };
        template <> struct OpUnroller<3>
        {
            template <typename T, typename D, typename UnOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.x = op(src.x);
                if (mask(y, x_shifted + 1))
                    dst.y = op(src.y);
                if (mask(y, x_shifted + 2))
                    dst.z = op(src.z);
            }

            template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.x = op(src1.x, src2.x);
                if (mask(y, x_shifted + 1))
                    dst.y = op(src1.y, src2.y);
                if (mask(y, x_shifted + 2))
                    dst.z = op(src1.z, src2.z);
            }
        };
        template <> struct OpUnroller<4>
        {
            template <typename T, typename D, typename UnOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.x = op(src.x);
                if (mask(y, x_shifted + 1))
                    dst.y = op(src.y);
                if (mask(y, x_shifted + 2))
                    dst.z = op(src.z);
                if (mask(y, x_shifted + 3))
                    dst.w = op(src.w);
            }

            template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.x = op(src1.x, src2.x);
                if (mask(y, x_shifted + 1))
                    dst.y = op(src1.y, src2.y);
                if (mask(y, x_shifted + 2))
                    dst.z = op(src1.z, src2.z);
                if (mask(y, x_shifted + 3))
                    dst.w = op(src1.w, src2.w);
            }
        };
        template <> struct OpUnroller<8>
        {
            template <typename T, typename D, typename UnOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.a0 = op(src.a0);
                if (mask(y, x_shifted + 1))
                    dst.a1 = op(src.a1);
                if (mask(y, x_shifted + 2))
                    dst.a2 = op(src.a2);
                if (mask(y, x_shifted + 3))
                    dst.a3 = op(src.a3);
                if (mask(y, x_shifted + 4))
                    dst.a4 = op(src.a4);
                if (mask(y, x_shifted + 5))
                    dst.a5 = op(src.a5);
                if (mask(y, x_shifted + 6))
                    dst.a6 = op(src.a6);
                if (mask(y, x_shifted + 7))
                    dst.a7 = op(src.a7);
            }

            template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
            static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
            {
                if (mask(y, x_shifted))
                    dst.a0 = op(src1.a0, src2.a0);
                if (mask(y, x_shifted + 1))
                    dst.a1 = op(src1.a1, src2.a1);
                if (mask(y, x_shifted + 2))
                    dst.a2 = op(src1.a2, src2.a2);
                if (mask(y, x_shifted + 3))
                    dst.a3 = op(src1.a3, src2.a3);
                if (mask(y, x_shifted + 4))
                    dst.a4 = op(src1.a4, src2.a4);
                if (mask(y, x_shifted + 5))
                    dst.a5 = op(src1.a5, src2.a5);
                if (mask(y, x_shifted + 6))
                    dst.a6 = op(src1.a6, src2.a6);
                if (mask(y, x_shifted + 7))
                    dst.a7 = op(src1.a7, src2.a7);
            }
        };

        template <typename T, typename D, typename UnOp, typename Mask>
        static __global__ void transformSmart(const PtrStepSz<T> src_, PtrStep<D> dst_, const Mask mask, const UnOp op)
        {
            typedef TransformFunctorTraits<UnOp> ft;
            typedef typename UnaryReadWriteTraits<T, D, ft::smart_shift>::read_type read_type;
            typedef typename UnaryReadWriteTraits<T, D, ft::smart_shift>::write_type write_type;

            const int x = threadIdx.x + blockIdx.x * blockDim.x;
            const int y = threadIdx.y + blockIdx.y * blockDim.y;
            const int x_shifted = x * ft::smart_shift;

            if (y < src_.rows)
            {
                const T* src = src_.ptr(y);
                D* dst = dst_.ptr(y);

                if (x_shifted + ft::smart_shift - 1 < src_.cols)
                {
                    const read_type src_n_el = ((const read_type*)src)[x];
                    write_type dst_n_el = ((const write_type*)dst)[x];

                    OpUnroller<ft::smart_shift>::unroll(src_n_el, dst_n_el, mask, op, x_shifted, y);

                    ((write_type*)dst)[x] = dst_n_el;
                }
                else
                {
                    for (int real_x = x_shifted; real_x < src_.cols; ++real_x)
                    {
                        if (mask(y, real_x))
                            dst[real_x] = op(src[real_x]);
                    }
                }
            }
        }

        template <typename T, typename D, typename UnOp, typename Mask>
        __global__ static void transformSimple(const PtrStepSz<T> src, PtrStep<D> dst, const Mask mask, const UnOp op)
        {
            const int x = blockDim.x * blockIdx.x + threadIdx.x;
            const int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < src.cols && y < src.rows && mask(y, x))
            {
                dst.ptr(y)[x] = op(src.ptr(y)[x]);
            }
        }

        template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
        static __global__ void transformSmart(const PtrStepSz<T1> src1_, const PtrStep<T2> src2_, PtrStep<D> dst_,
            const Mask mask, const BinOp op)
        {
            typedef TransformFunctorTraits<BinOp> ft;
            typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::read_type1 read_type1;
            typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::read_type2 read_type2;
            typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::write_type write_type;

            const int x = threadIdx.x + blockIdx.x * blockDim.x;
            const int y = threadIdx.y + blockIdx.y * blockDim.y;
            const int x_shifted = x * ft::smart_shift;

            if (y < src1_.rows)
            {
                const T1* src1 = src1_.ptr(y);
                const T2* src2 = src2_.ptr(y);
                D* dst = dst_.ptr(y);

                if (x_shifted + ft::smart_shift - 1 < src1_.cols)
                {
                    const read_type1 src1_n_el = ((const read_type1*)src1)[x];
                    const read_type2 src2_n_el = ((const read_type2*)src2)[x];
                    write_type dst_n_el = ((const write_type*)dst)[x];

                    OpUnroller<ft::smart_shift>::unroll(src1_n_el, src2_n_el, dst_n_el, mask, op, x_shifted, y);

                    ((write_type*)dst)[x] = dst_n_el;
                }
                else
                {
                    for (int real_x = x_shifted; real_x < src1_.cols; ++real_x)
                    {
                        if (mask(y, real_x))
                            dst[real_x] = op(src1[real_x], src2[real_x]);
                    }
                }
            }
        }

        template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
        static __global__ void transformSimple(const PtrStepSz<T1> src1, const PtrStep<T2> src2, PtrStep<D> dst,
            const Mask mask, const BinOp op)
        {
            const int x = blockDim.x * blockIdx.x + threadIdx.x;
            const int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < src1.cols && y < src1.rows && mask(y, x))
            {
                const T1 src1_data = src1.ptr(y)[x];
                const T2 src2_data = src2.ptr(y)[x];
                dst.ptr(y)[x] = op(src1_data, src2_data);
            }
        }

        template <bool UseSmart> struct TransformDispatcher;
        template<> struct TransformDispatcher<false>
        {
            template <typename T, typename D, typename UnOp, typename Mask>
            static void call(PtrStepSz<T> src, PtrStepSz<D> dst, UnOp op, Mask mask, cudaStream_t stream)
            {
                typedef TransformFunctorTraits<UnOp> ft;

                const dim3 threads(ft::simple_block_dim_x, ft::simple_block_dim_y, 1);
                const dim3 grid(divUp(src.cols, threads.x), divUp(src.rows, threads.y), 1);

                transformSimple<T, D><<<grid, threads, 0, stream>>>(src, dst, mask, op);
                cudaSafeCall( cudaGetLastError() );

                if (stream == 0)
                    cudaSafeCall( cudaDeviceSynchronize() );
            }

            template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
            static void call(PtrStepSz<T1> src1, PtrStepSz<T2> src2, PtrStepSz<D> dst, BinOp op, Mask mask, cudaStream_t stream)
            {
                typedef TransformFunctorTraits<BinOp> ft;

                const dim3 threads(ft::simple_block_dim_x, ft::simple_block_dim_y, 1);
                const dim3 grid(divUp(src1.cols, threads.x), divUp(src1.rows, threads.y), 1);

                transformSimple<T1, T2, D><<<grid, threads, 0, stream>>>(src1, src2, dst, mask, op);
                cudaSafeCall( cudaGetLastError() );

                if (stream == 0)
                    cudaSafeCall( cudaDeviceSynchronize() );
            }
        };
        template<> struct TransformDispatcher<true>
        {
            template <typename T, typename D, typename UnOp, typename Mask>
            static void call(PtrStepSz<T> src, PtrStepSz<D> dst, UnOp op, Mask mask, cudaStream_t stream)
            {
                typedef TransformFunctorTraits<UnOp> ft;

                CV_StaticAssert(ft::smart_shift != 1, "");

                if (!isAligned(src.data, ft::smart_shift * sizeof(T)) || !isAligned(src.step, ft::smart_shift * sizeof(T)) ||
                    !isAligned(dst.data, ft::smart_shift * sizeof(D)) || !isAligned(dst.step, ft::smart_shift * sizeof(D)))
                {
                    TransformDispatcher<false>::call(src, dst, op, mask, stream);
                    return;
                }

                const dim3 threads(ft::smart_block_dim_x, ft::smart_block_dim_y, 1);
                const dim3 grid(divUp(src.cols, threads.x * ft::smart_shift), divUp(src.rows, threads.y), 1);

                transformSmart<T, D><<<grid, threads, 0, stream>>>(src, dst, mask, op);
                cudaSafeCall( cudaGetLastError() );

                if (stream == 0)
                    cudaSafeCall( cudaDeviceSynchronize() );
            }

            template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
            static void call(PtrStepSz<T1> src1, PtrStepSz<T2> src2, PtrStepSz<D> dst, BinOp op, Mask mask, cudaStream_t stream)
            {
                typedef TransformFunctorTraits<BinOp> ft;

                CV_StaticAssert(ft::smart_shift != 1, "");

                if (!isAligned(src1.data, ft::smart_shift * sizeof(T1)) || !isAligned(src1.step, ft::smart_shift * sizeof(T1)) ||
                    !isAligned(src2.data, ft::smart_shift * sizeof(T2)) || !isAligned(src2.step, ft::smart_shift * sizeof(T2)) ||
                    !isAligned(dst.data, ft::smart_shift * sizeof(D)) || !isAligned(dst.step, ft::smart_shift * sizeof(D)))
                {
                    TransformDispatcher<false>::call(src1, src2, dst, op, mask, stream);
                    return;
                }

                const dim3 threads(ft::smart_block_dim_x, ft::smart_block_dim_y, 1);
                const dim3 grid(divUp(src1.cols, threads.x * ft::smart_shift), divUp(src1.rows, threads.y), 1);

                transformSmart<T1, T2, D><<<grid, threads, 0, stream>>>(src1, src2, dst, mask, op);
                cudaSafeCall( cudaGetLastError() );

                if (stream == 0)
                    cudaSafeCall( cudaDeviceSynchronize() );
            }
        };
    } // namespace transform_detail
}}} // namespace cv { namespace cuda { namespace cudev

//! @endcond

#endif // __OPENCV_CUDA_TRANSFORM_DETAIL_HPP__

/* [<][>][^][v][top][bottom][index][help] */