root/modules/cudaarithm/src/element_operations.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. add
  2. subtract
  3. multiply
  4. divide
  5. absdiff
  6. abs
  7. sqr
  8. sqrt
  9. exp
  10. log
  11. pow
  12. compare
  13. bitwise_not
  14. bitwise_or
  15. bitwise_and
  16. bitwise_xor
  17. rshift
  18. lshift
  19. min
  20. max
  21. addWeighted
  22. threshold
  23. magnitude
  24. magnitude
  25. magnitudeSqr
  26. magnitudeSqr
  27. phase
  28. cartToPolar
  29. polarToCart
  30. arithm_op
  31. add
  32. subtract
  33. multiply
  34. divide
  35. absdiff
  36. compare
  37. bitwise_or
  38. bitwise_and
  39. bitwise_xor
  40. call
  41. call
  42. rshift
  43. lshift
  44. min
  45. max
  46. npp_magnitude
  47. magnitude
  48. magnitudeSqr

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::cuda::add(InputArray, InputArray, OutputArray, InputArray, int, Stream&) { throw_no_cuda(); }
void cv::cuda::subtract(InputArray, InputArray, OutputArray, InputArray, int, Stream&) { throw_no_cuda(); }
void cv::cuda::multiply(InputArray, InputArray, OutputArray, double, int, Stream&) { throw_no_cuda(); }
void cv::cuda::divide(InputArray, InputArray, OutputArray, double, int, Stream&) { throw_no_cuda(); }
void cv::cuda::absdiff(InputArray, InputArray, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::abs(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::sqr(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::sqrt(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::exp(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::log(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::pow(InputArray, double, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::compare(InputArray, InputArray, OutputArray, int, Stream&) { throw_no_cuda(); }

void cv::cuda::bitwise_not(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::bitwise_or(InputArray, InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::bitwise_and(InputArray, InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::bitwise_xor(InputArray, InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::rshift(InputArray, Scalar_<int>, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::lshift(InputArray, Scalar_<int>, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::min(InputArray, InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::max(InputArray, InputArray, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::addWeighted(InputArray, double, InputArray, double, double, OutputArray, int, Stream&) { throw_no_cuda(); }

double cv::cuda::threshold(InputArray, OutputArray, double, double, int, Stream&) {throw_no_cuda(); return 0.0;}

void cv::cuda::magnitude(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::magnitude(InputArray, InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::magnitudeSqr(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::magnitudeSqr(InputArray, InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::phase(InputArray, InputArray, OutputArray, bool, Stream&) { throw_no_cuda(); }
void cv::cuda::cartToPolar(InputArray, InputArray, OutputArray, OutputArray, bool, Stream&) { throw_no_cuda(); }
void cv::cuda::polarToCart(InputArray, InputArray, OutputArray, OutputArray, bool, Stream&) { throw_no_cuda(); }

#else

////////////////////////////////////////////////////////////////////////
// arithm_op

namespace
{
    typedef void (*mat_mat_func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, double scale, Stream& stream, int op);
    typedef void (*mat_scalar_func_t)(const GpuMat& src, Scalar val, bool inv, GpuMat& dst, const GpuMat& mask, double scale, Stream& stream, int op);

    void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst, InputArray _mask, double scale, int dtype, Stream& stream,
                   mat_mat_func_t mat_mat_func, mat_scalar_func_t mat_scalar_func, int op = 0)
    {
        const int kind1 = _src1.kind();
        const int kind2 = _src2.kind();

        const bool isScalar1 = (kind1 == _InputArray::MATX);
        const bool isScalar2 = (kind2 == _InputArray::MATX);
        CV_Assert( !isScalar1 || !isScalar2 );

        GpuMat src1;
        if (!isScalar1)
            src1 = getInputMat(_src1, stream);

        GpuMat src2;
        if (!isScalar2)
            src2 = getInputMat(_src2, stream);

        Mat scalar;
        if (isScalar1)
            scalar = _src1.getMat();
        else if (isScalar2)
            scalar = _src2.getMat();

        Scalar val;
        if (!scalar.empty())
        {
            CV_Assert( scalar.total() <= 4 );
            scalar.convertTo(Mat_<double>(scalar.rows, scalar.cols, &val[0]), CV_64F);
        }

        GpuMat mask = getInputMat(_mask, stream);

        const int sdepth = src1.empty() ? src2.depth() : src1.depth();
        const int cn = src1.empty() ? src2.channels() : src1.channels();
        const Size size = src1.empty() ? src2.size() : src1.size();

        if (dtype < 0)
            dtype = sdepth;

        const int ddepth = CV_MAT_DEPTH(dtype);

        CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
        CV_Assert( !scalar.empty() || (src2.type() == src1.type() && src2.size() == src1.size()) );
        CV_Assert( mask.empty() || (cn == 1 && mask.size() == size && mask.type() == CV_8UC1) );

        if (sdepth == CV_64F || ddepth == CV_64F)
        {
            if (!deviceSupports(NATIVE_DOUBLE))
                CV_Error(Error::StsUnsupportedFormat, "The device doesn't support double");
        }

        GpuMat dst = getOutputMat(_dst, size, CV_MAKE_TYPE(ddepth, cn), stream);

        if (isScalar1)
            mat_scalar_func(src2, val, true, dst, mask, scale, stream, op);
        else if (isScalar2)
            mat_scalar_func(src1, val, false, dst, mask, scale, stream, op);
        else
            mat_mat_func(src1, src2, dst, mask, scale, stream, op);

        syncOutput(dst, _dst, stream);
    }
}

////////////////////////////////////////////////////////////////////////
// add

void addMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, double, Stream& _stream, int);

void addScalar(const GpuMat& src, Scalar val, bool, GpuMat& dst, const GpuMat& mask, double, Stream& stream, int);

void cv::cuda::add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask, int dtype, Stream& stream)
{
    arithm_op(src1, src2, dst, mask, 1.0, dtype, stream, addMat, addScalar);
}

////////////////////////////////////////////////////////////////////////
// subtract

void subMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, double, Stream& _stream, int);

void subScalar(const GpuMat& src, Scalar val, bool inv, GpuMat& dst, const GpuMat& mask, double, Stream& stream, int);

void cv::cuda::subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask, int dtype, Stream& stream)
{
    arithm_op(src1, src2, dst, mask, 1.0, dtype, stream, subMat, subScalar);
}

////////////////////////////////////////////////////////////////////////
// multiply

void mulMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat&, double scale, Stream& stream, int);
void mulMat_8uc4_32f(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream);
void mulMat_16sc4_32f(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream);

void mulScalar(const GpuMat& src, cv::Scalar val, bool, GpuMat& dst, const GpuMat& mask, double scale, Stream& stream, int);

void cv::cuda::multiply(InputArray _src1, InputArray _src2, OutputArray _dst, double scale, int dtype, Stream& stream)
{
    if (_src1.type() == CV_8UC4 && _src2.type() == CV_32FC1)
    {
        GpuMat src1 = getInputMat(_src1, stream);
        GpuMat src2 = getInputMat(_src2, stream);

        CV_Assert( src1.size() == src2.size() );

        GpuMat dst = getOutputMat(_dst, src1.size(), src1.type(), stream);

        mulMat_8uc4_32f(src1, src2, dst, stream);

        syncOutput(dst, _dst, stream);
    }
    else if (_src1.type() == CV_16SC4 && _src2.type() == CV_32FC1)
    {
        GpuMat src1 = getInputMat(_src1, stream);
        GpuMat src2 = getInputMat(_src2, stream);

        CV_Assert( src1.size() == src2.size() );

        GpuMat dst = getOutputMat(_dst, src1.size(), src1.type(), stream);

        mulMat_16sc4_32f(src1, src2, dst, stream);

        syncOutput(dst, _dst, stream);
    }
    else
    {
        arithm_op(_src1, _src2, _dst, GpuMat(), scale, dtype, stream, mulMat, mulScalar);
    }
}

////////////////////////////////////////////////////////////////////////
// divide

void divMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat&, double scale, Stream& stream, int);
void divMat_8uc4_32f(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream);
void divMat_16sc4_32f(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream);

void divScalar(const GpuMat& src, cv::Scalar val, bool inv, GpuMat& dst, const GpuMat& mask, double scale, Stream& stream, int);

void cv::cuda::divide(InputArray _src1, InputArray _src2, OutputArray _dst, double scale, int dtype, Stream& stream)
{
    if (_src1.type() == CV_8UC4 && _src2.type() == CV_32FC1)
    {
        GpuMat src1 = getInputMat(_src1, stream);
        GpuMat src2 = getInputMat(_src2, stream);

        CV_Assert( src1.size() == src2.size() );

        GpuMat dst = getOutputMat(_dst, src1.size(), src1.type(), stream);

        divMat_8uc4_32f(src1, src2, dst, stream);

        syncOutput(dst, _dst, stream);
    }
    else if (_src1.type() == CV_16SC4 && _src2.type() == CV_32FC1)
    {
        GpuMat src1 = getInputMat(_src1, stream);
        GpuMat src2 = getInputMat(_src2, stream);

        CV_Assert( src1.size() == src2.size() );

        GpuMat dst = getOutputMat(_dst, src1.size(), src1.type(), stream);

        divMat_16sc4_32f(src1, src2, dst, stream);

        syncOutput(dst, _dst, stream);
    }
    else
    {
        arithm_op(_src1, _src2, _dst, GpuMat(), scale, dtype, stream, divMat, divScalar);
    }
}

//////////////////////////////////////////////////////////////////////////////
// absdiff

void absDiffMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat&, double, Stream& stream, int);

void absDiffScalar(const GpuMat& src, cv::Scalar val, bool, GpuMat& dst, const GpuMat&, double, Stream& stream, int);

void cv::cuda::absdiff(InputArray src1, InputArray src2, OutputArray dst, Stream& stream)
{
    arithm_op(src1, src2, dst, noArray(), 1.0, -1, stream, absDiffMat, absDiffScalar);
}

//////////////////////////////////////////////////////////////////////////////
// compare

void cmpMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat&, double, Stream& stream, int cmpop);

void cmpScalar(const GpuMat& src, Scalar val, bool inv, GpuMat& dst, const GpuMat&, double, Stream& stream, int cmpop);

void cv::cuda::compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop, Stream& stream)
{
    arithm_op(src1, src2, dst, noArray(), 1.0, CV_8U, stream, cmpMat, cmpScalar, cmpop);
}

//////////////////////////////////////////////////////////////////////////////
// Binary bitwise logical operations

namespace
{
    enum
    {
        BIT_OP_AND,
        BIT_OP_OR,
        BIT_OP_XOR
    };
}

void bitMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, double, Stream& stream, int op);

void bitScalar(const GpuMat& src, cv::Scalar value, bool, GpuMat& dst, const GpuMat& mask, double, Stream& stream, int op);

void cv::cuda::bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask, Stream& stream)
{
    arithm_op(src1, src2, dst, mask, 1.0, -1, stream, bitMat, bitScalar, BIT_OP_OR);
}

void cv::cuda::bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask, Stream& stream)
{
    arithm_op(src1, src2, dst, mask, 1.0, -1, stream, bitMat, bitScalar, BIT_OP_AND);
}

void cv::cuda::bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask, Stream& stream)
{
    arithm_op(src1, src2, dst, mask, 1.0, -1, stream, bitMat, bitScalar, BIT_OP_XOR);
}

//////////////////////////////////////////////////////////////////////////////
// shift

namespace
{
    template <int DEPTH, int cn> struct NppShiftFunc
    {
        typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;

        typedef NppStatus (*func_t)(const npp_type* pSrc1, int nSrc1Step, const Npp32u* pConstants, npp_type* pDst,  int nDstStep,  NppiSize oSizeROI);
    };
    template <int DEPTH> struct NppShiftFunc<DEPTH, 1>
    {
        typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;

        typedef NppStatus (*func_t)(const npp_type* pSrc1, int nSrc1Step, const Npp32u pConstants, npp_type* pDst,  int nDstStep,  NppiSize oSizeROI);
    };

    template <int DEPTH, int cn, typename NppShiftFunc<DEPTH, cn>::func_t func> struct NppShift
    {
        typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;

        static void call(const GpuMat& src, Scalar_<Npp32u> sc, GpuMat& dst, cudaStream_t stream)
        {
            NppStreamHandler h(stream);

            NppiSize oSizeROI;
            oSizeROI.width = src.cols;
            oSizeROI.height = src.rows;

            nppSafeCall( func(src.ptr<npp_type>(), static_cast<int>(src.step), sc.val, dst.ptr<npp_type>(), static_cast<int>(dst.step), oSizeROI) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
    template <int DEPTH, typename NppShiftFunc<DEPTH, 1>::func_t func> struct NppShift<DEPTH, 1, func>
    {
        typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;

        static void call(const GpuMat& src, Scalar_<Npp32u> sc, GpuMat& dst, cudaStream_t stream)
        {
            NppStreamHandler h(stream);

            NppiSize oSizeROI;
            oSizeROI.width = src.cols;
            oSizeROI.height = src.rows;

            nppSafeCall( func(src.ptr<npp_type>(), static_cast<int>(src.step), sc.val[0], dst.ptr<npp_type>(), static_cast<int>(dst.step), oSizeROI) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
}

void cv::cuda::rshift(InputArray _src, Scalar_<int> val, OutputArray _dst, Stream& stream)
{
    typedef void (*func_t)(const GpuMat& src, Scalar_<Npp32u> sc, GpuMat& dst, cudaStream_t stream);
    static const func_t funcs[5][4] =
    {
        {NppShift<CV_8U , 1, nppiRShiftC_8u_C1R >::call, 0, NppShift<CV_8U , 3, nppiRShiftC_8u_C3R >::call, NppShift<CV_8U , 4, nppiRShiftC_8u_C4R>::call },
        {NppShift<CV_8S , 1, nppiRShiftC_8s_C1R >::call, 0, NppShift<CV_8S , 3, nppiRShiftC_8s_C3R >::call, NppShift<CV_8S , 4, nppiRShiftC_8s_C4R>::call },
        {NppShift<CV_16U, 1, nppiRShiftC_16u_C1R>::call, 0, NppShift<CV_16U, 3, nppiRShiftC_16u_C3R>::call, NppShift<CV_16U, 4, nppiRShiftC_16u_C4R>::call},
        {NppShift<CV_16S, 1, nppiRShiftC_16s_C1R>::call, 0, NppShift<CV_16S, 3, nppiRShiftC_16s_C3R>::call, NppShift<CV_16S, 4, nppiRShiftC_16s_C4R>::call},
        {NppShift<CV_32S, 1, nppiRShiftC_32s_C1R>::call, 0, NppShift<CV_32S, 3, nppiRShiftC_32s_C3R>::call, NppShift<CV_32S, 4, nppiRShiftC_32s_C4R>::call},
    };

    GpuMat src = getInputMat(_src, stream);

    CV_Assert( src.depth() < CV_32F );
    CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );

    GpuMat dst = getOutputMat(_dst, src.size(), src.type(), stream);

    funcs[src.depth()][src.channels() - 1](src, val, dst, StreamAccessor::getStream(stream));

    syncOutput(dst, _dst, stream);
}

void cv::cuda::lshift(InputArray _src, Scalar_<int> val, OutputArray _dst, Stream& stream)
{
    typedef void (*func_t)(const GpuMat& src, Scalar_<Npp32u> sc, GpuMat& dst, cudaStream_t stream);
    static const func_t funcs[5][4] =
    {
        {NppShift<CV_8U , 1, nppiLShiftC_8u_C1R>::call , 0, NppShift<CV_8U , 3, nppiLShiftC_8u_C3R>::call , NppShift<CV_8U , 4, nppiLShiftC_8u_C4R>::call },
        {0                                             , 0, 0                                             , 0                                             },
        {NppShift<CV_16U, 1, nppiLShiftC_16u_C1R>::call, 0, NppShift<CV_16U, 3, nppiLShiftC_16u_C3R>::call, NppShift<CV_16U, 4, nppiLShiftC_16u_C4R>::call},
        {0                                             , 0, 0                                             , 0                                             },
        {NppShift<CV_32S, 1, nppiLShiftC_32s_C1R>::call, 0, NppShift<CV_32S, 3, nppiLShiftC_32s_C3R>::call, NppShift<CV_32S, 4, nppiLShiftC_32s_C4R>::call},
    };

    GpuMat src = getInputMat(_src, stream);

    CV_Assert( src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S );
    CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );

    GpuMat dst = getOutputMat(_dst, src.size(), src.type(), stream);

    funcs[src.depth()][src.channels() - 1](src, val, dst, StreamAccessor::getStream(stream));

    syncOutput(dst, _dst, stream);
}

//////////////////////////////////////////////////////////////////////////////
// Minimum and maximum operations

namespace
{
    enum
    {
        MIN_OP,
        MAX_OP
    };
}

void minMaxMat(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat&, double, Stream& stream, int op);

void minMaxScalar(const GpuMat& src, cv::Scalar value, bool, GpuMat& dst, const GpuMat&, double, Stream& stream, int op);

void cv::cuda::min(InputArray src1, InputArray src2, OutputArray dst, Stream& stream)
{
    arithm_op(src1, src2, dst, noArray(), 1.0, -1, stream, minMaxMat, minMaxScalar, MIN_OP);
}

void cv::cuda::max(InputArray src1, InputArray src2, OutputArray dst, Stream& stream)
{
    arithm_op(src1, src2, dst, noArray(), 1.0, -1, stream, minMaxMat, minMaxScalar, MAX_OP);
}

////////////////////////////////////////////////////////////////////////
// NPP magnitide

namespace
{
    typedef NppStatus (*nppMagnitude_t)(const Npp32fc* pSrc, int nSrcStep, Npp32f* pDst, int nDstStep, NppiSize oSizeROI);

    void npp_magnitude(const GpuMat& src, GpuMat& dst, nppMagnitude_t func, cudaStream_t stream)
    {
        CV_Assert(src.type() == CV_32FC2);

        NppiSize sz;
        sz.width = src.cols;
        sz.height = src.rows;

        NppStreamHandler h(stream);

        nppSafeCall( func(src.ptr<Npp32fc>(), static_cast<int>(src.step), dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz) );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}

void cv::cuda::magnitude(InputArray _src, OutputArray _dst, Stream& stream)
{
    GpuMat src = getInputMat(_src, stream);

    GpuMat dst = getOutputMat(_dst, src.size(), CV_32FC1, stream);

    npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R, StreamAccessor::getStream(stream));

    syncOutput(dst, _dst, stream);
}

void cv::cuda::magnitudeSqr(InputArray _src, OutputArray _dst, Stream& stream)
{
    GpuMat src = getInputMat(_src, stream);

    GpuMat dst = getOutputMat(_dst, src.size(), CV_32FC1, stream);

    npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R, StreamAccessor::getStream(stream));

    syncOutput(dst, _dst, stream);
}

#endif

/* [<][>][^][v][top][bottom][index][help] */