This source file includes following definitions.
- height
- toString
- init
- process
- deinit
#include "test_precomp.hpp"
template <class T_in, class T_out>
TestIntegralImage<T_in, T_out>::TestIntegralImage(std::string testName_, NCVTestSourceProvider<T_in> &src_,
Ncv32u width_, Ncv32u height_)
:
NCVTestProvider(testName_),
src(src_),
width(width_),
height(height_)
{
}
template <class T_in, class T_out>
bool TestIntegralImage<T_in, T_out>::toString(std::ofstream &strOut)
{
strOut << "sizeof(T_in)=" << sizeof(T_in) << std::endl;
strOut << "sizeof(T_out)=" << sizeof(T_out) << std::endl;
strOut << "width=" << width << std::endl;
strOut << "height=" << height << std::endl;
return true;
}
template <class T_in, class T_out>
bool TestIntegralImage<T_in, T_out>::init()
{
return true;
}
template <class T_in, class T_out>
bool TestIntegralImage<T_in, T_out>::process()
{
NCVStatus ncvStat;
bool rcode = false;
Ncv32u widthII = this->width + 1;
Ncv32u heightII = this->height + 1;
NCVMatrixAlloc<T_in> d_img(*this->allocatorGPU.get(), this->width, this->height);
ncvAssertReturn(d_img.isMemAllocated(), false);
NCVMatrixAlloc<T_in> h_img(*this->allocatorCPU.get(), this->width, this->height);
ncvAssertReturn(h_img.isMemAllocated(), false);
NCVMatrixAlloc<T_out> d_imgII(*this->allocatorGPU.get(), widthII, heightII);
ncvAssertReturn(d_imgII.isMemAllocated(), false);
NCVMatrixAlloc<T_out> h_imgII(*this->allocatorCPU.get(), widthII, heightII);
ncvAssertReturn(h_imgII.isMemAllocated(), false);
NCVMatrixAlloc<T_out> h_imgII_d(*this->allocatorCPU.get(), widthII, heightII);
ncvAssertReturn(h_imgII_d.isMemAllocated(), false);
Ncv32u bufSize;
if (sizeof(T_in) == sizeof(Ncv8u))
{
ncvStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &bufSize, this->devProp);
ncvAssertReturn(NPPST_SUCCESS == ncvStat, false);
}
else if (sizeof(T_in) == sizeof(Ncv32f))
{
ncvStat = nppiStIntegralGetSize_32f32f(NcvSize32u(this->width, this->height), &bufSize, this->devProp);
ncvAssertReturn(NPPST_SUCCESS == ncvStat, false);
}
else
{
ncvAssertPrintReturn(false, "Incorrect integral image test instance", false);
}
NCVVectorAlloc<Ncv8u> d_tmpBuf(*this->allocatorGPU.get(), bufSize);
ncvAssertReturn(d_tmpBuf.isMemAllocated(), false);
NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
NCV_SKIP_COND_BEGIN
ncvAssertReturn(this->src.fill(h_img), false);
ncvStat = h_img.copySolid(d_img, 0);
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
if (sizeof(T_in) == sizeof(Ncv8u))
{
ncvStat = nppiStIntegral_8u32u_C1R((Ncv8u *)d_img.ptr(), d_img.pitch(),
(Ncv32u *)d_imgII.ptr(), d_imgII.pitch(),
NcvSize32u(this->width, this->height),
d_tmpBuf.ptr(), bufSize, this->devProp);
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
}
else if (sizeof(T_in) == sizeof(Ncv32f))
{
ncvStat = nppiStIntegral_32f32f_C1R((Ncv32f *)d_img.ptr(), d_img.pitch(),
(Ncv32f *)d_imgII.ptr(), d_imgII.pitch(),
NcvSize32u(this->width, this->height),
d_tmpBuf.ptr(), bufSize, this->devProp);
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
}
else
{
ncvAssertPrintReturn(false, "Incorrect integral image test instance", false);
}
ncvStat = d_imgII.copySolid(h_imgII_d, 0);
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
if (sizeof(T_in) == sizeof(Ncv8u))
{
ncvStat = nppiStIntegral_8u32u_C1R_host((Ncv8u *)h_img.ptr(), h_img.pitch(),
(Ncv32u *)h_imgII.ptr(), h_imgII.pitch(),
NcvSize32u(this->width, this->height));
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
}
else if (sizeof(T_in) == sizeof(Ncv32f))
{
ncvStat = nppiStIntegral_32f32f_C1R_host((Ncv32f *)h_img.ptr(), h_img.pitch(),
(Ncv32f *)h_imgII.ptr(), h_imgII.pitch(),
NcvSize32u(this->width, this->height));
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
}
else
{
ncvAssertPrintReturn(false, "Incorrect integral image test instance", false);
}
NCV_SKIP_COND_END
bool bLoopVirgin = true;
NCV_SKIP_COND_BEGIN
for (Ncv32u i=0; bLoopVirgin && i < h_img.height() + 1; i++)
{
for (Ncv32u j=0; bLoopVirgin && j < h_img.width() + 1; j++)
{
if (sizeof(T_in) == sizeof(Ncv8u))
{
if (h_imgII.ptr()[h_imgII.stride()*i+j] != h_imgII_d.ptr()[h_imgII_d.stride()*i+j])
{
bLoopVirgin = false;
}
}
else if (sizeof(T_in) == sizeof(Ncv32f))
{
if (fabsf((float)h_imgII.ptr()[h_imgII.stride()*i+j] - (float)h_imgII_d.ptr()[h_imgII_d.stride()*i+j]) > 0.01f)
{
bLoopVirgin = false;
}
}
else
{
ncvAssertPrintReturn(false, "Incorrect integral image test instance", false);
}
}
}
NCV_SKIP_COND_END
if (bLoopVirgin)
{
rcode = true;
}
return rcode;
}
template <class T_in, class T_out>
bool TestIntegralImage<T_in, T_out>::deinit()
{
return true;
}
template class TestIntegralImage<Ncv8u, Ncv32u>;
template class TestIntegralImage<Ncv32f, Ncv32f>;