This source file includes following definitions.
- fill
- fill
- isInit
#ifndef _ncvtestsourceprovider_hpp_
#define _ncvtestsourceprovider_hpp_
#include <memory>
#include "opencv2/highgui.hpp"
#include "opencv2/cudalegacy.hpp"
template <class T>
class NCVTestSourceProvider
{
public:
NCVTestSourceProvider(Ncv32u seed, T rangeLow, T rangeHigh, Ncv32u maxWidth, Ncv32u maxHeight)
:
bInit(false)
{
ncvAssertPrintReturn(rangeLow < rangeHigh, "NCVTestSourceProvider ctor:: Invalid range", );
int devId;
cudaDeviceProp devProp;
ncvAssertPrintReturn(cudaSuccess == cudaGetDevice(&devId), "Error returned from cudaGetDevice", );
ncvAssertPrintReturn(cudaSuccess == cudaGetDeviceProperties(&devProp, devId), "Error returned from cudaGetDeviceProperties", );
allocatorCPU.reset(new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<Ncv32u>(devProp.textureAlignment)));
data.reset(new NCVMatrixAlloc<T>(*this->allocatorCPU.get(), maxWidth, maxHeight));
ncvAssertPrintReturn(data.get()->isMemAllocated(), "NCVTestSourceProvider ctor:: Matrix not allocated", );
this->dataWidth = maxWidth;
this->dataHeight = maxHeight;
srand(seed);
for (Ncv32u i=0; i<maxHeight; i++)
{
for (Ncv32u j=0; j<data.get()->stride(); j++)
{
data.get()->ptr()[i * data.get()->stride() + j] =
(T)(((1.0 * rand()) / RAND_MAX) * (rangeHigh - rangeLow) + rangeLow);
}
}
this->bInit = true;
}
NCVTestSourceProvider(std::string pgmFilename)
:
bInit(false)
{
ncvAssertPrintReturn(sizeof(T) == 1, "NCVTestSourceProvider ctor:: PGM constructor complies only with 8bit types", );
cv::Mat image = cv::imread(pgmFilename);
ncvAssertPrintReturn(!image.empty(), "NCVTestSourceProvider ctor:: PGM file error", );
int devId;
cudaDeviceProp devProp;
ncvAssertPrintReturn(cudaSuccess == cudaGetDevice(&devId), "Error returned from cudaGetDevice", );
ncvAssertPrintReturn(cudaSuccess == cudaGetDeviceProperties(&devProp, devId), "Error returned from cudaGetDeviceProperties", );
allocatorCPU.reset(new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<Ncv32u>(devProp.textureAlignment)));
data.reset(new NCVMatrixAlloc<T>(*this->allocatorCPU.get(), image.cols, image.rows));
ncvAssertPrintReturn(data.get()->isMemAllocated(), "NCVTestSourceProvider ctor:: Matrix not allocated", );
this->dataWidth = image.cols;
this->dataHeight = image.rows;
cv::Mat hdr(image.size(), CV_8UC1, data.get()->ptr(), data.get()->pitch());
image.copyTo(hdr);
this->bInit = true;
}
NcvBool fill(NCVMatrix<T> &dst)
{
ncvAssertReturn(this->isInit() &&
dst.memType() == allocatorCPU.get()->memType(), false);
if (dst.width() == 0 || dst.height() == 0)
{
return true;
}
for (Ncv32u i=0; i<dst.height(); i++)
{
Ncv32u srcLine = i % this->dataHeight;
Ncv32u srcFullChunks = dst.width() / this->dataWidth;
for (Ncv32u j=0; j<srcFullChunks; j++)
{
memcpy(dst.ptr() + i * dst.stride() + j * this->dataWidth,
this->data.get()->ptr() + this->data.get()->stride() * srcLine,
this->dataWidth * sizeof(T));
}
Ncv32u srcLastChunk = dst.width() % this->dataWidth;
memcpy(dst.ptr() + i * dst.stride() + srcFullChunks * this->dataWidth,
this->data.get()->ptr() + this->data.get()->stride() * srcLine,
srcLastChunk * sizeof(T));
}
return true;
}
NcvBool fill(NCVVector<T> &dst)
{
ncvAssertReturn(this->isInit() &&
dst.memType() == allocatorCPU.get()->memType(), false);
if (dst.length() == 0)
{
return true;
}
Ncv32u srcLen = this->dataWidth * this->dataHeight;
Ncv32u srcFullChunks = (Ncv32u)dst.length() / srcLen;
for (Ncv32u j=0; j<srcFullChunks; j++)
{
memcpy(dst.ptr() + j * srcLen, this->data.get()->ptr(), srcLen * sizeof(T));
}
Ncv32u srcLastChunk = dst.length() % srcLen;
memcpy(dst.ptr() + srcFullChunks * srcLen, this->data.get()->ptr(), srcLastChunk * sizeof(T));
return true;
}
~NCVTestSourceProvider()
{
data.reset();
allocatorCPU.reset();
}
private:
NcvBool isInit(void)
{
return this->bInit;
}
NcvBool bInit;
std::auto_ptr< INCVMemAllocator > allocatorCPU;
std::auto_ptr< NCVMatrixAlloc<T> > data;
Ncv32u dataWidth;
Ncv32u dataHeight;
};
#endif