root/modules/features2d/misc/java/test/BruteForceSL2DescriptorMatcherTest.java

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. getMaskImg
  2. getQueryDescriptors
  3. getQueryImg
  4. getTrainDescriptors
  5. getTrainImg
  6. setUp
  7. testAdd
  8. testClear
  9. testClone
  10. testCloneBoolean
  11. testCreate
  12. testEmpty
  13. testGetTrainDescriptors
  14. testIsMaskSupported
  15. testKnnMatchMatListOfListOfDMatchInt
  16. testKnnMatchMatListOfListOfDMatchIntListOfMat
  17. testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean
  18. testKnnMatchMatMatListOfListOfDMatchInt
  19. testKnnMatchMatMatListOfListOfDMatchIntMat
  20. testKnnMatchMatMatListOfListOfDMatchIntMatBoolean
  21. testMatchMatListOfDMatch
  22. testMatchMatListOfDMatchListOfMat
  23. testMatchMatMatListOfDMatch
  24. testMatchMatMatListOfDMatchMat
  25. testRadiusMatchMatListOfListOfDMatchFloat
  26. testRadiusMatchMatListOfListOfDMatchFloatListOfMat
  27. testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean
  28. testRadiusMatchMatMatListOfListOfDMatchFloat
  29. testRadiusMatchMatMatListOfListOfDMatchFloatMat
  30. testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean
  31. testRead
  32. testTrain
  33. testWrite

package org.opencv.test.features2d;

import java.util.Arrays;
import java.util.List;

import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.DMatch;
import org.opencv.features2d.DescriptorExtractor;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.FeatureDetector;
import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;

public class BruteForceSL2DescriptorMatcherTest extends OpenCVTestCase {

    DescriptorMatcher matcher;
    int matSize;
    DMatch[] truth;

    private Mat getMaskImg() {
        return new Mat(5, 2, CvType.CV_8U, new Scalar(0)) {
            {
                put(0, 0, 1, 1, 1, 1);
            }
        };
    }

    /*
    private float sqr(float val){
        return val * val;
    }
    */

    private Mat getQueryDescriptors() {
        Mat img = getQueryImg();
        MatOfKeyPoint keypoints = new MatOfKeyPoint();
        Mat descriptors = new Mat();

        FeatureDetector detector = FeatureDetector.create(FeatureDetector.SURF);
        DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);

        String filename = OpenCVTestRunner.getTempFileName("yml");
        writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
        detector.read(filename);

        detector.detect(img, keypoints);
        extractor.compute(img, keypoints, descriptors);

        return descriptors;
    }

    private Mat getQueryImg() {
        Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
        Imgproc.line(cross, new Point(30, matSize / 2), new Point(matSize - 31, matSize / 2), new Scalar(100), 3);
        Imgproc.line(cross, new Point(matSize / 2, 30), new Point(matSize / 2, matSize - 31), new Scalar(100), 3);

        return cross;
    }

    private Mat getTrainDescriptors() {
        Mat img = getTrainImg();
        MatOfKeyPoint keypoints = new MatOfKeyPoint(new KeyPoint(50, 50, 16, 0, 20000, 1, -1), new KeyPoint(42, 42, 16, 160, 10000, 1, -1));
        Mat descriptors = new Mat();

        DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);

        extractor.compute(img, keypoints, descriptors);

        return descriptors;
    }

    private Mat getTrainImg() {
        Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
        Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
        Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);

        return cross;
    }

    protected void setUp() throws Exception {
        super.setUp();
        matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_SL2);
        matSize = 100;

        truth = new DMatch[] {
                new DMatch(0, 0, 0, 0.3858146f),
                new DMatch(1, 1, 0, 0.8421953f),
                new DMatch(2, 1, 0, 0.0968556f),
                new DMatch(3, 1, 0, 0.0855606f),
                new DMatch(4, 1, 0, 0.8666080f)
                };
    }

    public void testAdd() {
        matcher.add(Arrays.asList(new Mat()));
        assertFalse(matcher.empty());
    }

    public void testClear() {
        matcher.add(Arrays.asList(new Mat()));

        matcher.clear();

        assertTrue(matcher.empty());
    }

    public void testClone() {
        Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
        Mat truth = train.clone();
        matcher.add(Arrays.asList(train));

        DescriptorMatcher cloned = matcher.clone();

        assertNotNull(cloned);

        List<Mat> descriptors = cloned.getTrainDescriptors();
        assertEquals(1, descriptors.size());
        assertMatEqual(truth, descriptors.get(0));
    }

    public void testCloneBoolean() {
        matcher.add(Arrays.asList(new Mat()));

        DescriptorMatcher cloned = matcher.clone(true);

        assertNotNull(cloned);
        assertTrue(cloned.empty());
    }

    public void testCreate() {
        assertNotNull(matcher);
    }

    public void testEmpty() {
        assertTrue(matcher.empty());
    }

    public void testGetTrainDescriptors() {
        Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
        Mat truth = train.clone();
        matcher.add(Arrays.asList(train));

        List<Mat> descriptors = matcher.getTrainDescriptors();

        assertEquals(1, descriptors.size());
        assertMatEqual(truth, descriptors.get(0));
    }

    public void testIsMaskSupported() {
        assertTrue(matcher.isMaskSupported());
    }

    public void testKnnMatchMatListOfListOfDMatchInt() {
        fail("Not yet implemented");
    }

    public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
        fail("Not yet implemented");
    }

    public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
        fail("Not yet implemented");
    }

    public void testKnnMatchMatMatListOfListOfDMatchInt() {
        fail("Not yet implemented");
    }

    public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
        fail("Not yet implemented");
    }

    public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
        fail("Not yet implemented");
    }

    public void testMatchMatListOfDMatch() {
        Mat train = getTrainDescriptors();
        Mat query = getQueryDescriptors();
        MatOfDMatch matches = new MatOfDMatch();
        matcher.add(Arrays.asList(train));

        matcher.match(query, matches);
        OpenCVTestRunner.Log(matches);
        OpenCVTestRunner.Log(matches);
        OpenCVTestRunner.Log(matches);

        assertArrayDMatchEquals(truth, matches.toArray(), EPS);
    }

    public void testMatchMatListOfDMatchListOfMat() {
        Mat train = getTrainDescriptors();
        Mat query = getQueryDescriptors();
        Mat mask = getMaskImg();
        MatOfDMatch matches = new MatOfDMatch();
        matcher.add(Arrays.asList(train));

        matcher.match(query, matches, Arrays.asList(mask));

        assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
    }

    public void testMatchMatMatListOfDMatch() {
        Mat train = getTrainDescriptors();
        Mat query = getQueryDescriptors();
        MatOfDMatch matches = new MatOfDMatch();

        matcher.match(query, train, matches);

        assertArrayDMatchEquals(truth, matches.toArray(), EPS);

        // OpenCVTestRunner.Log("matches found: " + matches.size());
        // for (DMatch m : matches)
        // OpenCVTestRunner.Log(m.toString());
    }

    public void testMatchMatMatListOfDMatchMat() {
        Mat train = getTrainDescriptors();
        Mat query = getQueryDescriptors();
        Mat mask = getMaskImg();
        MatOfDMatch matches = new MatOfDMatch();

        matcher.match(query, train, matches, mask);

        assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
    }

    public void testRadiusMatchMatListOfListOfDMatchFloat() {
        fail("Not yet implemented");
    }

    public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
        fail("Not yet implemented");
    }

    public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
        fail("Not yet implemented");
    }

    public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
        fail("Not yet implemented");
    }

    public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
        fail("Not yet implemented");
    }

    public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
        fail("Not yet implemented");
    }

    public void testRead() {
        String filename = OpenCVTestRunner.getTempFileName("yml");
        writeFile(filename, "%YAML:1.0\n");

        matcher.read(filename);
        assertTrue(true);// BruteforceMatcher has no settings
    }

    public void testTrain() {
        matcher.train();// BruteforceMatcher does not need to train
    }

    public void testWrite() {
        String filename = OpenCVTestRunner.getTempFileName("yml");

        matcher.write(filename);

        String truth = "%YAML:1.0\n";
        assertEquals(truth, readFile(filename));
    }

}

/* [<][>][^][v][top][bottom][index][help] */