root/modules/features2d/test/test_rotation_and_scale_invariance.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. generateHomography
  2. rotateImage
  3. rotateKeyPoints
  4. scaleKeyPoints
  5. calcCirclesIntersectArea
  6. calcIntersectRatio
  7. matchKeyPoints
  8. minAngleInliersRatio
  9. run
  10. minDescInliersRatio
  11. run
  12. minScaleInliersRatio
  13. run
  14. minDescInliersRatio
  15. run
  16. TEST
  17. TEST
  18. TEST
  19. TEST
  20. TEST
  21. TEST
  22. TEST

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include "opencv2/highgui.hpp"

using namespace std;
using namespace cv;

const string IMAGE_TSUKUBA = "/features2d/tsukuba.png";
const string IMAGE_BIKES = "/detectors_descriptors_evaluation/images_datasets/bikes/img1.png";

#define SHOW_DEBUG_LOG 0

static
Mat generateHomography(float angle)
{
    // angle - rotation around Oz in degrees
    float angleRadian = static_cast<float>(angle * CV_PI / 180);
    Mat H = Mat::eye(3, 3, CV_32FC1);
    H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
    H.at<float>(0,1) = -std::sin(angleRadian);
    H.at<float>(1,0) =  std::sin(angleRadian);

    return H;
}

static
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
{
    // angle - rotation around Oz in degrees
    float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows));
    Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
    LUShift.at<float>(0,2) = static_cast<float>(-srcImage.cols/2);
    LUShift.at<float>(1,2) = static_cast<float>(-srcImage.rows/2);
    Mat RDShift = Mat::eye(3, 3, CV_32FC1); // right down
    RDShift.at<float>(0,2) = diag/2;
    RDShift.at<float>(1,2) = diag/2;
    Size sz(cvRound(diag), cvRound(diag));

    Mat srcMask(srcImage.size(), CV_8UC1, Scalar(255));

    Mat H = RDShift * generateHomography(angle) * LUShift;
    warpPerspective(srcImage, dstImage, H, sz);
    warpPerspective(srcMask, dstMask, H, sz);

    return H;
}

void rotateKeyPoints(const vector<KeyPoint>& src, const Mat& H, float angle, vector<KeyPoint>& dst)
{
    // suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage()
    vector<Point2f> srcCenters, dstCenters;
    KeyPoint::convert(src, srcCenters);

    perspectiveTransform(srcCenters, dstCenters, H);

    dst = src;
    for(size_t i = 0; i < dst.size(); i++)
    {
        dst[i].pt = dstCenters[i];
        float dstAngle = src[i].angle + angle;
        if(dstAngle >= 360.f)
            dstAngle -= 360.f;
        dst[i].angle = dstAngle;
    }
}

void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
{
    dst.resize(src.size());
    for(size_t i = 0; i < src.size(); i++)
        dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale, src[i].angle);
}

static
float calcCirclesIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
    float c = static_cast<float>(norm(p0 - p1)), sqr_c = c * c;

    float sqr_r0 = r0 * r0;
    float sqr_r1 = r1 * r1;

    if(r0 + r1 <= c)
       return 0;

    float minR = std::min(r0, r1);
    float maxR = std::max(r0, r1);
    if(c + minR <= maxR)
        return static_cast<float>(CV_PI * minR * minR);

    float cos_halfA0 = (sqr_r0 + sqr_c - sqr_r1) / (2 * r0 * c);
    float cos_halfA1 = (sqr_r1 + sqr_c - sqr_r0) / (2 * r1 * c);

    float A0 = 2 * acos(cos_halfA0);
    float A1 = 2 * acos(cos_halfA1);

    return  0.5f * sqr_r0 * (A0 - sin(A0)) +
            0.5f * sqr_r1 * (A1 - sin(A1));
}

static
float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
    float intersectArea = calcCirclesIntersectArea(p0, r0, p1, r1);
    float unionArea = static_cast<float>(CV_PI) * (r0 * r0 + r1 * r1) - intersectArea;
    return intersectArea / unionArea;
}

static
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
                    const vector<KeyPoint>& keypoints1,
                    vector<DMatch>& matches)
{
    vector<Point2f> points0;
    KeyPoint::convert(keypoints0, points0);
    Mat points0t;
    if(H.empty())
        points0t = Mat(points0);
    else
        perspectiveTransform(Mat(points0), points0t, H);

    matches.clear();
    vector<uchar> usedMask(keypoints1.size(), 0);
    for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++)
    {
        int nearestPointIndex = -1;
        float maxIntersectRatio = 0.f;
        const float r0 =  0.5f * keypoints0[i0].size;
        for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
        {
            if(nearestPointIndex >= 0 && usedMask[i1])
                continue;

            float r1 = 0.5f * keypoints1[i1].size;
            float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
                                                      keypoints1[i1].pt, r1);
            if(intersectRatio > maxIntersectRatio)
            {
                maxIntersectRatio = intersectRatio;
                nearestPointIndex = static_cast<int>(i1);
            }
        }

        matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
        if(nearestPointIndex >= 0)
            usedMask[nearestPointIndex] = 1;
    }
}

class DetectorRotationInvarianceTest : public cvtest::BaseTest
{
public:
    DetectorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
                                     float _minKeyPointMatchesRatio,
                                     float _minAngleInliersRatio) :
        featureDetector(_featureDetector),
        minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
        minAngleInliersRatio(_minAngleInliersRatio)
    {
        CV_Assert(featureDetector);
    }

protected:

    void run(int)
    {
        const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;

        // Read test data
        Mat image0 = imread(imageFilename), image1, mask1;
        if(image0.empty())
        {
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
            return;
        }

        vector<KeyPoint> keypoints0;
        featureDetector->detect(image0, keypoints0);
        if(keypoints0.size() < 15)
            CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");

        const int maxAngle = 360, angleStep = 15;
        for(int angle = 0; angle < maxAngle; angle += angleStep)
        {
            Mat H = rotateImage(image0, static_cast<float>(angle), image1, mask1);

            vector<KeyPoint> keypoints1;
            featureDetector->detect(image1, keypoints1, mask1);

            vector<DMatch> matches;
            matchKeyPoints(keypoints0, H, keypoints1, matches);

            int angleInliersCount = 0;

            const float minIntersectRatio = 0.5f;
            int keyPointMatchesCount = 0;
            for(size_t m = 0; m < matches.size(); m++)
            {
                if(matches[m].distance < minIntersectRatio)
                    continue;

                keyPointMatchesCount++;

                // Check does this inlier have consistent angles
                const float maxAngleDiff = 15.f; // grad
                float angle0 = keypoints0[matches[m].queryIdx].angle;
                float angle1 = keypoints1[matches[m].trainIdx].angle;
                if(angle0 == -1 || angle1 == -1)
                    CV_Error(Error::StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
                CV_Assert(angle0 >= 0.f && angle0 < 360.f);
                CV_Assert(angle1 >= 0.f && angle1 < 360.f);

                float rotAngle0 = angle0 + angle;
                if(rotAngle0 >= 360.f)
                    rotAngle0 -= 360.f;

                float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
                angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
                CV_Assert(angleDiff >= 0.f);
                bool isAngleCorrect = angleDiff < maxAngleDiff;
                if(isAngleCorrect)
                    angleInliersCount++;
            }

            float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
            if(keyPointMatchesRatio < minKeyPointMatchesRatio)
            {
                ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
                           keyPointMatchesRatio, minKeyPointMatchesRatio);
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                return;
            }

            if(keyPointMatchesCount)
            {
                float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
                if(angleInliersRatio < minAngleInliersRatio)
                {
                    ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
                               angleInliersRatio, minAngleInliersRatio);
                    ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                    return;
                }
            }
#if SHOW_DEBUG_LOG
            std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
                << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
#endif
        }
        ts->set_failed_test_info( cvtest::TS::OK );
    }

    Ptr<FeatureDetector> featureDetector;
    float minKeyPointMatchesRatio;
    float minAngleInliersRatio;
};

class DescriptorRotationInvarianceTest : public cvtest::BaseTest
{
public:
    DescriptorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
                                     const Ptr<DescriptorExtractor>& _descriptorExtractor,
                                     int _normType,
                                     float _minDescInliersRatio) :
        featureDetector(_featureDetector),
        descriptorExtractor(_descriptorExtractor),
        normType(_normType),
        minDescInliersRatio(_minDescInliersRatio)
    {
        CV_Assert(featureDetector);
        CV_Assert(descriptorExtractor);
    }

protected:

    void run(int)
    {
        const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;

        // Read test data
        Mat image0 = imread(imageFilename), image1, mask1;
        if(image0.empty())
        {
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
            return;
        }

        vector<KeyPoint> keypoints0;
        Mat descriptors0;
        featureDetector->detect(image0, keypoints0);
        if(keypoints0.size() < 15)
            CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");
        descriptorExtractor->compute(image0, keypoints0, descriptors0);

        BFMatcher bfmatcher(normType);

        const float minIntersectRatio = 0.5f;
        const int maxAngle = 360, angleStep = 15;
        for(int angle = 0; angle < maxAngle; angle += angleStep)
        {
            Mat H = rotateImage(image0, static_cast<float>(angle), image1, mask1);

            vector<KeyPoint> keypoints1;
            rotateKeyPoints(keypoints0, H, static_cast<float>(angle), keypoints1);
            Mat descriptors1;
            descriptorExtractor->compute(image1, keypoints1, descriptors1);

            vector<DMatch> descMatches;
            bfmatcher.match(descriptors0, descriptors1, descMatches);

            int descInliersCount = 0;
            for(size_t m = 0; m < descMatches.size(); m++)
            {
                const KeyPoint& transformed_p0 = keypoints1[descMatches[m].queryIdx];
                const KeyPoint& p1 = keypoints1[descMatches[m].trainIdx];
                if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
                                      p1.pt, 0.5f * p1.size) >= minIntersectRatio)
                {
                    descInliersCount++;
                }
            }

            float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
            if(descInliersRatio < minDescInliersRatio)
            {
                ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
                           descInliersRatio, minDescInliersRatio);
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                return;
            }
#if SHOW_DEBUG_LOG
            std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
#endif
        }
        ts->set_failed_test_info( cvtest::TS::OK );
    }

    Ptr<FeatureDetector> featureDetector;
    Ptr<DescriptorExtractor> descriptorExtractor;
    int normType;
    float minDescInliersRatio;
};

class DetectorScaleInvarianceTest : public cvtest::BaseTest
{
public:
    DetectorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
                                float _minKeyPointMatchesRatio,
                                float _minScaleInliersRatio) :
        featureDetector(_featureDetector),
        minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
        minScaleInliersRatio(_minScaleInliersRatio)
    {
        CV_Assert(featureDetector);
    }

protected:

    void run(int)
    {
        const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;

        // Read test data
        Mat image0 = imread(imageFilename);
        if(image0.empty())
        {
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
            return;
        }

        vector<KeyPoint> keypoints0;
        featureDetector->detect(image0, keypoints0);
        if(keypoints0.size() < 15)
            CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");

        for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
        {
            float scale = 1.f + scaleIdx * 0.5f;
            Mat image1;
            resize(image0, image1, Size(), 1./scale, 1./scale);

            vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
            featureDetector->detect(image1, keypoints1);
            if(keypoints1.size() < 15)
                CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");

            if(keypoints1.size() > keypoints0.size())
            {
                ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
                    "It gives more points count in an image of the smaller size.\n"
                    "original size (%d, %d), keypoints count = %d\n"
                    "reduced size (%d, %d), keypoints count = %d\n",
                    image0.cols, image0.rows, keypoints0.size(),
                    image1.cols, image1.rows, keypoints1.size());
                ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
                return;
            }

            scaleKeyPoints(keypoints1, osiKeypoints1, scale);

            vector<DMatch> matches;
            // image1 is query image (it's reduced image0)
            // image0 is train image
            matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);

            const float minIntersectRatio = 0.5f;
            int keyPointMatchesCount = 0;
            int scaleInliersCount = 0;

            for(size_t m = 0; m < matches.size(); m++)
            {
                if(matches[m].distance < minIntersectRatio)
                    continue;

                keyPointMatchesCount++;

                // Check does this inlier have consistent sizes
                const float maxSizeDiff = 0.8f;//0.9f; // grad
                float size0 = keypoints0[matches[m].trainIdx].size;
                float size1 = osiKeypoints1[matches[m].queryIdx].size;
                CV_Assert(size0 > 0 && size1 > 0);
                if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
                    scaleInliersCount++;
            }

            float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
            if(keyPointMatchesRatio < minKeyPointMatchesRatio)
            {
                ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
                           keyPointMatchesRatio, minKeyPointMatchesRatio);
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                return;
            }

            if(keyPointMatchesCount)
            {
                float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
                if(scaleInliersRatio < minScaleInliersRatio)
                {
                    ts->printf(cvtest::TS::LOG, "Incorrect scaleInliersRatio: curr = %f, min = %f.\n",
                               scaleInliersRatio, minScaleInliersRatio);
                    ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                    return;
                }
            }
#if SHOW_DEBUG_LOG
            std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
                << " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
#endif
        }
        ts->set_failed_test_info( cvtest::TS::OK );
    }

    Ptr<FeatureDetector> featureDetector;
    float minKeyPointMatchesRatio;
    float minScaleInliersRatio;
};

class DescriptorScaleInvarianceTest : public cvtest::BaseTest
{
public:
    DescriptorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
                                const Ptr<DescriptorExtractor>& _descriptorExtractor,
                                int _normType,
                                float _minDescInliersRatio) :
        featureDetector(_featureDetector),
        descriptorExtractor(_descriptorExtractor),
        normType(_normType),
        minDescInliersRatio(_minDescInliersRatio)
    {
        CV_Assert(featureDetector);
        CV_Assert(descriptorExtractor);
    }

protected:

    void run(int)
    {
        const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;

        // Read test data
        Mat image0 = imread(imageFilename);
        if(image0.empty())
        {
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
            return;
        }

        vector<KeyPoint> keypoints0;
        featureDetector->detect(image0, keypoints0);
        if(keypoints0.size() < 15)
            CV_Error(Error::StsAssert, "Detector gives too few points in a test image\n");
        Mat descriptors0;
        descriptorExtractor->compute(image0, keypoints0, descriptors0);

        BFMatcher bfmatcher(normType);
        for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
        {
            float scale = 1.f + scaleIdx * 0.5f;

            Mat image1;
            resize(image0, image1, Size(), 1./scale, 1./scale);

            vector<KeyPoint> keypoints1;
            scaleKeyPoints(keypoints0, keypoints1, 1.0f/scale);
            Mat descriptors1;
            descriptorExtractor->compute(image1, keypoints1, descriptors1);

            vector<DMatch> descMatches;
            bfmatcher.match(descriptors0, descriptors1, descMatches);

            const float minIntersectRatio = 0.5f;
            int descInliersCount = 0;
            for(size_t m = 0; m < descMatches.size(); m++)
            {
                const KeyPoint& transformed_p0 = keypoints0[descMatches[m].queryIdx];
                const KeyPoint& p1 = keypoints0[descMatches[m].trainIdx];
                if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
                                      p1.pt, 0.5f * p1.size) >= minIntersectRatio)
                {
                    descInliersCount++;
                }
            }

            float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
            if(descInliersRatio < minDescInliersRatio)
            {
                ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
                           descInliersRatio, minDescInliersRatio);
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                return;
            }
#if SHOW_DEBUG_LOG
            std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
#endif
        }
        ts->set_failed_test_info( cvtest::TS::OK );
    }

    Ptr<FeatureDetector> featureDetector;
    Ptr<DescriptorExtractor> descriptorExtractor;
    int normType;
    float minKeyPointMatchesRatio;
    float minDescInliersRatio;
};

// Tests registration

/*
 * Detector's rotation invariance check
 */

TEST(Features2d_RotationInvariance_Detector_BRISK, regression)
{
    DetectorRotationInvarianceTest test(BRISK::create(),
                                        0.32f,
                                        0.76f);
    test.safe_run();
}

TEST(Features2d_RotationInvariance_Detector_ORB, regression)
{
    DetectorRotationInvarianceTest test(ORB::create(),
                                        0.47f,
                                        0.76f);
    test.safe_run();
}

/*
 * Descriptors's rotation invariance check
 */

TEST(Features2d_RotationInvariance_Descriptor_BRISK, regression)
{
    Ptr<Feature2D> f2d = BRISK::create();
    DescriptorRotationInvarianceTest test(f2d, f2d, f2d->defaultNorm(), 0.99f);
    test.safe_run();
}

TEST(Features2d_RotationInvariance_Descriptor_ORB, regression)
{
    Ptr<Feature2D> f2d = ORB::create();
    DescriptorRotationInvarianceTest test(f2d, f2d, f2d->defaultNorm(), 0.99f);
    test.safe_run();
}

//TEST(Features2d_RotationInvariance_Descriptor_FREAK, regression)
//{
//    DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
//                                          Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
//                                          Algorithm::create<DescriptorExtractor>("Feature2D.FREAK")->defaultNorm(),
//                                          0.f);
//    test.safe_run();
//}

/*
 * Detector's scale invariance check
 */

TEST(Features2d_ScaleInvariance_Detector_BRISK, regression)
{
    DetectorScaleInvarianceTest test(BRISK::create(), 0.08f, 0.49f);
    test.safe_run();
}

TEST(Features2d_ScaleInvariance_Detector_KAZE, regression)
{
    DetectorScaleInvarianceTest test(KAZE::create(), 0.08f, 0.49f);
    test.safe_run();
}

TEST(Features2d_ScaleInvariance_Detector_AKAZE, regression)
{
    DetectorScaleInvarianceTest test(AKAZE::create(), 0.08f, 0.49f);
    test.safe_run();
}

//TEST(Features2d_ScaleInvariance_Detector_ORB, regression)
//{
//    DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
//                                     0.22f,
//                                     0.83f);
//    test.safe_run();
//}

/*
 * Descriptor's scale invariance check
 */

//TEST(Features2d_ScaleInvariance_Descriptor_BRISK, regression)
//{
//    DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.BRISK"),
//                                       Algorithm::create<DescriptorExtractor>("Feature2D.BRISK"),
//                                       Algorithm::create<DescriptorExtractor>("Feature2D.BRISK")->defaultNorm(),
//                                       0.99f);
//    test.safe_run();
//}

//TEST(Features2d_ScaleInvariance_Descriptor_ORB, regression)
//{
//    DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
//                                       Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
//                                       Algorithm::create<DescriptorExtractor>("Feature2D.ORB")->defaultNorm(),
//                                       0.01f);
//    test.safe_run();
//}

//TEST(Features2d_ScaleInvariance_Descriptor_FREAK, regression)
//{
//    DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
//                                       Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
//                                       Algorithm::create<DescriptorExtractor>("Feature2D.FREAK")->defaultNorm(),
//                                       0.01f);
//    test.safe_run();
//}

/* [<][>][^][v][top][bottom][index][help] */