root/modules/imgproc/src/emd.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cvCalcEMD2
  2. icvInitEMD
  3. icvFindBasicVariables
  4. icvIsOptimal
  5. icvNewSolution
  6. icvFindLoop
  7. icvRussel
  8. icvAddBasicVariable
  9. icvDistL1
  10. icvDistL2
  11. icvDistC
  12. EMD

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/*
    Partially based on Yossi Rubner code:
    =========================================================================
    emd.c

    Last update: 3/14/98

    An implementation of the Earth Movers Distance.
    Based of the solution for the Transportation problem as described in
    "Introduction to Mathematical Programming" by F. S. Hillier and
    G. J. Lieberman, McGraw-Hill, 1990.

    Copyright (C) 1998 Yossi Rubner
    Computer Science Department, Stanford University
    E-Mail: rubner@cs.stanford.edu   URL: http://vision.stanford.edu/~rubner
    ==========================================================================
*/
#include "precomp.hpp"

#define MAX_ITERATIONS 500
#define CV_EMD_INF   ((float)1e20)
#define CV_EMD_EPS   ((float)1e-5)

/* CvNode1D is used for lists, representing 1D sparse array */
typedef struct CvNode1D
{
    float val;
    struct CvNode1D *next;
}
CvNode1D;

/* CvNode2D is used for lists, representing 2D sparse matrix */
typedef struct CvNode2D
{
    float val;
    struct CvNode2D *next[2];  /* next row & next column */
    int i, j;
}
CvNode2D;


typedef struct CvEMDState
{
    int ssize, dsize;

    float **cost;
    CvNode2D *_x;
    CvNode2D *end_x;
    CvNode2D *enter_x;
    char **is_x;

    CvNode2D **rows_x;
    CvNode2D **cols_x;

    CvNode1D *u;
    CvNode1D *v;

    int* idx1;
    int* idx2;

    /* find_loop buffers */
    CvNode2D **loop;
    char *is_used;

    /* russel buffers */
    float *s;
    float *d;
    float **delta;

    float weight, max_cost;
    char *buffer;
}
CvEMDState;

/* static function declaration */
static int icvInitEMD( const float *signature1, int size1,
                       const float *signature2, int size2,
                       int dims, CvDistanceFunction dist_func, void *user_param,
                       const float* cost, int cost_step,
                       CvEMDState * state, float *lower_bound,
                       cv::AutoBuffer<char>& _buffer );

static int icvFindBasicVariables( float **cost, char **is_x,
                                  CvNode1D * u, CvNode1D * v, int ssize, int dsize );

static float icvIsOptimal( float **cost, char **is_x,
                           CvNode1D * u, CvNode1D * v,
                           int ssize, int dsize, CvNode2D * enter_x );

static void icvRussel( CvEMDState * state );


static bool icvNewSolution( CvEMDState * state );
static int icvFindLoop( CvEMDState * state );

static void icvAddBasicVariable( CvEMDState * state,
                                 int min_i, int min_j,
                                 CvNode1D * prev_u_min_i,
                                 CvNode1D * prev_v_min_j,
                                 CvNode1D * u_head );

static float icvDistL2( const float *x, const float *y, void *user_param );
static float icvDistL1( const float *x, const float *y, void *user_param );
static float icvDistC( const float *x, const float *y, void *user_param );

/* The main function */
CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
            const CvArr* signature_arr2,
            int dist_type,
            CvDistanceFunction dist_func,
            const CvArr* cost_matrix,
            CvArr* flow_matrix,
            float *lower_bound,
            void *user_param )
{
    cv::AutoBuffer<char> local_buf;
    CvEMDState state;
    float emd = 0;

    memset( &state, 0, sizeof(state));

    double total_cost = 0;
    int result = 0;
    float eps, min_delta;
    CvNode2D *xp = 0;
    CvMat sign_stub1, *signature1 = (CvMat*)signature_arr1;
    CvMat sign_stub2, *signature2 = (CvMat*)signature_arr2;
    CvMat cost_stub, *cost = &cost_stub;
    CvMat flow_stub, *flow = (CvMat*)flow_matrix;
    int dims, size1, size2;

    signature1 = cvGetMat( signature1, &sign_stub1 );
    signature2 = cvGetMat( signature2, &sign_stub2 );

    if( signature1->cols != signature2->cols )
        CV_Error( CV_StsUnmatchedSizes, "The arrays must have equal number of columns (which is number of dimensions but 1)" );

    dims = signature1->cols - 1;
    size1 = signature1->rows;
    size2 = signature2->rows;

    if( !CV_ARE_TYPES_EQ( signature1, signature2 ))
        CV_Error( CV_StsUnmatchedFormats, "The array must have equal types" );

    if( CV_MAT_TYPE( signature1->type ) != CV_32FC1 )
        CV_Error( CV_StsUnsupportedFormat, "The signatures must be 32fC1" );

    if( flow )
    {
        flow = cvGetMat( flow, &flow_stub );

        if( flow->rows != size1 || flow->cols != size2 )
            CV_Error( CV_StsUnmatchedSizes,
            "The flow matrix size does not match to the signatures' sizes" );

        if( CV_MAT_TYPE( flow->type ) != CV_32FC1 )
            CV_Error( CV_StsUnsupportedFormat, "The flow matrix must be 32fC1" );
    }

    cost->data.fl = 0;
    cost->step = 0;

    if( dist_type < 0 )
    {
        if( cost_matrix )
        {
            if( dist_func )
                CV_Error( CV_StsBadArg,
                "Only one of cost matrix or distance function should be non-NULL in case of user-defined distance" );

            if( lower_bound )
                CV_Error( CV_StsBadArg,
                "The lower boundary can not be calculated if the cost matrix is used" );

            cost = cvGetMat( cost_matrix, &cost_stub );
            if( cost->rows != size1 || cost->cols != size2 )
                CV_Error( CV_StsUnmatchedSizes,
                "The cost matrix size does not match to the signatures' sizes" );

            if( CV_MAT_TYPE( cost->type ) != CV_32FC1 )
                CV_Error( CV_StsUnsupportedFormat, "The cost matrix must be 32fC1" );
        }
        else if( !dist_func )
            CV_Error( CV_StsNullPtr, "In case of user-defined distance Distance function is undefined" );
    }
    else
    {
        if( dims == 0 )
            CV_Error( CV_StsBadSize,
            "Number of dimensions can be 0 only if a user-defined metric is used" );
        user_param = (void *) (size_t)dims;
        switch (dist_type)
        {
        case CV_DIST_L1:
            dist_func = icvDistL1;
            break;
        case CV_DIST_L2:
            dist_func = icvDistL2;
            break;
        case CV_DIST_C:
            dist_func = icvDistC;
            break;
        default:
            CV_Error( CV_StsBadFlag, "Bad or unsupported metric type" );
        }
    }

    result = icvInitEMD( signature1->data.fl, size1,
                        signature2->data.fl, size2,
                        dims, dist_func, user_param,
                        cost->data.fl, cost->step,
                        &state, lower_bound, local_buf );

    if( result > 0 && lower_bound )
    {
        emd = *lower_bound;
        return emd;
    }

    eps = CV_EMD_EPS * state.max_cost;

    /* if ssize = 1 or dsize = 1 then we are done, else ... */
    if( state.ssize > 1 && state.dsize > 1 )
    {
        int itr;

        for( itr = 1; itr < MAX_ITERATIONS; itr++ )
        {
            /* find basic variables */
            result = icvFindBasicVariables( state.cost, state.is_x,
                                            state.u, state.v, state.ssize, state.dsize );
            if( result < 0 )
                break;

            /* check for optimality */
            min_delta = icvIsOptimal( state.cost, state.is_x,
                                      state.u, state.v,
                                      state.ssize, state.dsize, state.enter_x );

            if( min_delta == CV_EMD_INF )
                CV_Error( CV_StsNoConv, "" );

            /* if no negative deltamin, we found the optimal solution */
            if( min_delta >= -eps )
                break;

            /* improve solution */
            if(!icvNewSolution( &state ))
                CV_Error( CV_StsNoConv, "" );
        }
    }

    /* compute the total flow */
    for( xp = state._x; xp < state.end_x; xp++ )
    {
        float val = xp->val;
        int i = xp->i;
        int j = xp->j;

        if( xp == state.enter_x )
          continue;

        int ci = state.idx1[i];
        int cj = state.idx2[j];

        if( ci >= 0 && cj >= 0 )
        {
            total_cost += (double)val * state.cost[i][j];
            if( flow )
                ((float*)(flow->data.ptr + flow->step*ci))[cj] = val;
        }
    }

    emd = (float) (total_cost / state.weight);
    return emd;
}


/************************************************************************************\
*          initialize structure, allocate buffers and generate initial golution      *
\************************************************************************************/
static int icvInitEMD( const float* signature1, int size1,
            const float* signature2, int size2,
            int dims, CvDistanceFunction dist_func, void* user_param,
            const float* cost, int cost_step,
            CvEMDState* state, float* lower_bound,
            cv::AutoBuffer<char>& _buffer )
{
    float s_sum = 0, d_sum = 0, diff;
    int i, j;
    int ssize = 0, dsize = 0;
    int equal_sums = 1;
    int buffer_size;
    float max_cost = 0;
    char *buffer, *buffer_end;

    memset( state, 0, sizeof( *state ));
    assert( cost_step % sizeof(float) == 0 );
    cost_step /= sizeof(float);

    /* calculate buffer size */
    buffer_size = (size1+1) * (size2+1) * (sizeof( float ) +    /* cost */
                                   sizeof( char ) +     /* is_x */
                                   sizeof( float )) +   /* delta matrix */
        (size1 + size2 + 2) * (sizeof( CvNode2D ) + /* _x */
                           sizeof( CvNode2D * ) +  /* cols_x & rows_x */
                           sizeof( CvNode1D ) + /* u & v */
                           sizeof( float ) + /* s & d */
                           sizeof( int ) + sizeof(CvNode2D*)) +  /* idx1 & idx2 */
        (size1+1) * (sizeof( float * ) + sizeof( char * ) + /* rows pointers for */
                 sizeof( float * )) + 256;      /*  cost, is_x and delta */

    if( buffer_size < (int) (dims * 2 * sizeof( float )))
    {
        buffer_size = dims * 2 * sizeof( float );
    }

    /* allocate buffers */
    _buffer.allocate(buffer_size);

    state->buffer = buffer = _buffer;
    buffer_end = buffer + buffer_size;

    state->idx1 = (int*) buffer;
    buffer += (size1 + 1) * sizeof( int );

    state->idx2 = (int*) buffer;
    buffer += (size2 + 1) * sizeof( int );

    state->s = (float *) buffer;
    buffer += (size1 + 1) * sizeof( float );

    state->d = (float *) buffer;
    buffer += (size2 + 1) * sizeof( float );

    /* sum up the supply and demand */
    for( i = 0; i < size1; i++ )
    {
        float weight = signature1[i * (dims + 1)];

        if( weight > 0 )
        {
            s_sum += weight;
            state->s[ssize] = weight;
            state->idx1[ssize++] = i;

        }
        else if( weight < 0 )
            CV_Error(CV_StsOutOfRange, "");
    }

    for( i = 0; i < size2; i++ )
    {
        float weight = signature2[i * (dims + 1)];

        if( weight > 0 )
        {
            d_sum += weight;
            state->d[dsize] = weight;
            state->idx2[dsize++] = i;
        }
        else if( weight < 0 )
            CV_Error(CV_StsOutOfRange, "");
    }

    if( ssize == 0 || dsize == 0 )
        CV_Error(CV_StsOutOfRange, "");

    /* if supply different than the demand, add a zero-cost dummy cluster */
    diff = s_sum - d_sum;
    if( fabs( diff ) >= CV_EMD_EPS * s_sum )
    {
        equal_sums = 0;
        if( diff < 0 )
        {
            state->s[ssize] = -diff;
            state->idx1[ssize++] = -1;
        }
        else
        {
            state->d[dsize] = diff;
            state->idx2[dsize++] = -1;
        }
    }

    state->ssize = ssize;
    state->dsize = dsize;
    state->weight = s_sum > d_sum ? s_sum : d_sum;

    if( lower_bound && equal_sums )     /* check lower bound */
    {
        int sz1 = size1 * (dims + 1), sz2 = size2 * (dims + 1);
        float lb = 0;

        float* xs = (float *) buffer;
        float* xd = xs + dims;

        memset( xs, 0, dims*sizeof(xs[0]));
        memset( xd, 0, dims*sizeof(xd[0]));

        for( j = 0; j < sz1; j += dims + 1 )
        {
            float weight = signature1[j];
            for( i = 0; i < dims; i++ )
                xs[i] += signature1[j + i + 1] * weight;
        }

        for( j = 0; j < sz2; j += dims + 1 )
        {
            float weight = signature2[j];
            for( i = 0; i < dims; i++ )
                xd[i] += signature2[j + i + 1] * weight;
        }

        lb = dist_func( xs, xd, user_param ) / state->weight;
        i = *lower_bound <= lb;
        *lower_bound = lb;
        if( i )
            return 1;
    }

    /* assign pointers */
    state->is_used = (char *) buffer;
    /* init delta matrix */
    state->delta = (float **) buffer;
    buffer += ssize * sizeof( float * );

    for( i = 0; i < ssize; i++ )
    {
        state->delta[i] = (float *) buffer;
        buffer += dsize * sizeof( float );
    }

    state->loop = (CvNode2D **) buffer;
    buffer += (ssize + dsize + 1) * sizeof(CvNode2D*);

    state->_x = state->end_x = (CvNode2D *) buffer;
    buffer += (ssize + dsize) * sizeof( CvNode2D );

    /* init cost matrix */
    state->cost = (float **) buffer;
    buffer += ssize * sizeof( float * );

    /* compute the distance matrix */
    for( i = 0; i < ssize; i++ )
    {
        int ci = state->idx1[i];

        state->cost[i] = (float *) buffer;
        buffer += dsize * sizeof( float );

        if( ci >= 0 )
        {
            for( j = 0; j < dsize; j++ )
            {
                int cj = state->idx2[j];
                if( cj < 0 )
                    state->cost[i][j] = 0;
                else
                {
                    float val;
                    if( dist_func )
                    {
                        val = dist_func( signature1 + ci * (dims + 1) + 1,
                                         signature2 + cj * (dims + 1) + 1,
                                         user_param );
                    }
                    else
                    {
                        assert( cost );
                        val = cost[cost_step*ci + cj];
                    }
                    state->cost[i][j] = val;
                    if( max_cost < val )
                        max_cost = val;
                }
            }
        }
        else
        {
            for( j = 0; j < dsize; j++ )
                state->cost[i][j] = 0;
        }
    }

    state->max_cost = max_cost;

    memset( buffer, 0, buffer_end - buffer );

    state->rows_x = (CvNode2D **) buffer;
    buffer += ssize * sizeof( CvNode2D * );

    state->cols_x = (CvNode2D **) buffer;
    buffer += dsize * sizeof( CvNode2D * );

    state->u = (CvNode1D *) buffer;
    buffer += ssize * sizeof( CvNode1D );

    state->v = (CvNode1D *) buffer;
    buffer += dsize * sizeof( CvNode1D );

    /* init is_x matrix */
    state->is_x = (char **) buffer;
    buffer += ssize * sizeof( char * );

    for( i = 0; i < ssize; i++ )
    {
        state->is_x[i] = buffer;
        buffer += dsize;
    }

    assert( buffer <= buffer_end );

    icvRussel( state );

    state->enter_x = (state->end_x)++;
    return 0;
}


/****************************************************************************************\
*                              icvFindBasicVariables                                   *
\****************************************************************************************/
static int icvFindBasicVariables( float **cost, char **is_x,
                       CvNode1D * u, CvNode1D * v, int ssize, int dsize )
{
    int i, j, found;
    int u_cfound, v_cfound;
    CvNode1D u0_head, u1_head, *cur_u, *prev_u;
    CvNode1D v0_head, v1_head, *cur_v, *prev_v;

    /* initialize the rows list (u) and the columns list (v) */
    u0_head.next = u;
    for( i = 0; i < ssize; i++ )
    {
        u[i].next = u + i + 1;
    }
    u[ssize - 1].next = 0;
    u1_head.next = 0;

    v0_head.next = ssize > 1 ? v + 1 : 0;
    for( i = 1; i < dsize; i++ )
    {
        v[i].next = v + i + 1;
    }
    v[dsize - 1].next = 0;
    v1_head.next = 0;

    /* there are ssize+dsize variables but only ssize+dsize-1 independent equations,
       so set v[0]=0 */
    v[0].val = 0;
    v1_head.next = v;
    v1_head.next->next = 0;

    /* loop until all variables are found */
    u_cfound = v_cfound = 0;
    while( u_cfound < ssize || v_cfound < dsize )
    {
        found = 0;
        if( v_cfound < dsize )
        {
            /* loop over all marked columns */
            prev_v = &v1_head;

            for( found |= (cur_v = v1_head.next) != 0; cur_v != 0; cur_v = cur_v->next )
            {
                float cur_v_val = cur_v->val;

                j = (int)(cur_v - v);
                /* find the variables in column j */
                prev_u = &u0_head;
                for( cur_u = u0_head.next; cur_u != 0; )
                {
                    i = (int)(cur_u - u);
                    if( is_x[i][j] )
                    {
                        /* compute u[i] */
                        cur_u->val = cost[i][j] - cur_v_val;
                        /* ...and add it to the marked list */
                        prev_u->next = cur_u->next;
                        cur_u->next = u1_head.next;
                        u1_head.next = cur_u;
                        cur_u = prev_u->next;
                    }
                    else
                    {
                        prev_u = cur_u;
                        cur_u = cur_u->next;
                    }
                }
                prev_v->next = cur_v->next;
                v_cfound++;
            }
        }

        if( u_cfound < ssize )
        {
            /* loop over all marked rows */
            prev_u = &u1_head;
            for( found |= (cur_u = u1_head.next) != 0; cur_u != 0; cur_u = cur_u->next )
            {
                float cur_u_val = cur_u->val;
                float *_cost;
                char *_is_x;

                i = (int)(cur_u - u);
                _cost = cost[i];
                _is_x = is_x[i];
                /* find the variables in rows i */
                prev_v = &v0_head;
                for( cur_v = v0_head.next; cur_v != 0; )
                {
                    j = (int)(cur_v - v);
                    if( _is_x[j] )
                    {
                        /* compute v[j] */
                        cur_v->val = _cost[j] - cur_u_val;
                        /* ...and add it to the marked list */
                        prev_v->next = cur_v->next;
                        cur_v->next = v1_head.next;
                        v1_head.next = cur_v;
                        cur_v = prev_v->next;
                    }
                    else
                    {
                        prev_v = cur_v;
                        cur_v = cur_v->next;
                    }
                }
                prev_u->next = cur_u->next;
                u_cfound++;
            }
        }

        if( !found )
            return -1;
    }

    return 0;
}


/****************************************************************************************\
*                                   icvIsOptimal                                       *
\****************************************************************************************/
static float
icvIsOptimal( float **cost, char **is_x,
              CvNode1D * u, CvNode1D * v, int ssize, int dsize, CvNode2D * enter_x )
{
    float delta, min_delta = CV_EMD_INF;
    int i, j, min_i = 0, min_j = 0;

    /* find the minimal cij-ui-vj over all i,j */
    for( i = 0; i < ssize; i++ )
    {
        float u_val = u[i].val;
        float *_cost = cost[i];
        char *_is_x = is_x[i];

        for( j = 0; j < dsize; j++ )
        {
            if( !_is_x[j] )
            {
                delta = _cost[j] - u_val - v[j].val;
                if( min_delta > delta )
                {
                    min_delta = delta;
                    min_i = i;
                    min_j = j;
                }
            }
        }
    }

    enter_x->i = min_i;
    enter_x->j = min_j;

    return min_delta;
}

/****************************************************************************************\
*                                   icvNewSolution                                     *
\****************************************************************************************/
static bool
icvNewSolution( CvEMDState * state )
{
    int i, j;
    float min_val = CV_EMD_INF;
    int steps;
    CvNode2D head, *cur_x, *next_x, *leave_x = 0;
    CvNode2D *enter_x = state->enter_x;
    CvNode2D **loop = state->loop;

    /* enter the new basic variable */
    i = enter_x->i;
    j = enter_x->j;
    state->is_x[i][j] = 1;
    enter_x->next[0] = state->rows_x[i];
    enter_x->next[1] = state->cols_x[j];
    enter_x->val = 0;
    state->rows_x[i] = enter_x;
    state->cols_x[j] = enter_x;

    /* find a chain reaction */
    steps = icvFindLoop( state );

    if( steps == 0 )
        return false;

    /* find the largest value in the loop */
    for( i = 1; i < steps; i += 2 )
    {
        float temp = loop[i]->val;

        if( min_val > temp )
        {
            leave_x = loop[i];
            min_val = temp;
        }
    }

    /* update the loop */
    for( i = 0; i < steps; i += 2 )
    {
        float temp0 = loop[i]->val + min_val;
        float temp1 = loop[i + 1]->val - min_val;

        loop[i]->val = temp0;
        loop[i + 1]->val = temp1;
    }

    /* remove the leaving basic variable */
    i = leave_x->i;
    j = leave_x->j;
    state->is_x[i][j] = 0;

    head.next[0] = state->rows_x[i];
    cur_x = &head;
    while( (next_x = cur_x->next[0]) != leave_x )
    {
        cur_x = next_x;
        assert( cur_x );
    }
    cur_x->next[0] = next_x->next[0];
    state->rows_x[i] = head.next[0];

    head.next[1] = state->cols_x[j];
    cur_x = &head;
    while( (next_x = cur_x->next[1]) != leave_x )
    {
        cur_x = next_x;
        assert( cur_x );
    }
    cur_x->next[1] = next_x->next[1];
    state->cols_x[j] = head.next[1];

    /* set enter_x to be the new empty slot */
    state->enter_x = leave_x;

    return true;
}



/****************************************************************************************\
*                                    icvFindLoop                                       *
\****************************************************************************************/
static int
icvFindLoop( CvEMDState * state )
{
    int i, steps = 1;
    CvNode2D *new_x;
    CvNode2D **loop = state->loop;
    CvNode2D *enter_x = state->enter_x, *_x = state->_x;
    char *is_used = state->is_used;

    memset( is_used, 0, state->ssize + state->dsize );

    new_x = loop[0] = enter_x;
    is_used[enter_x - _x] = 1;
    steps = 1;

    do
    {
        if( (steps & 1) == 1 )
        {
            /* find an unused x in the row */
            new_x = state->rows_x[new_x->i];
            while( new_x != 0 && is_used[new_x - _x] )
                new_x = new_x->next[0];
        }
        else
        {
            /* find an unused x in the column, or the entering x */
            new_x = state->cols_x[new_x->j];
            while( new_x != 0 && is_used[new_x - _x] && new_x != enter_x )
                new_x = new_x->next[1];
            if( new_x == enter_x )
                break;
        }

        if( new_x != 0 )        /* found the next x */
        {
            /* add x to the loop */
            loop[steps++] = new_x;
            is_used[new_x - _x] = 1;
        }
        else                    /* didn't find the next x */
        {
            /* backtrack */
            do
            {
                i = steps & 1;
                new_x = loop[steps - 1];
                do
                {
                    new_x = new_x->next[i];
                }
                while( new_x != 0 && is_used[new_x - _x] );

                if( new_x == 0 )
                {
                    is_used[loop[--steps] - _x] = 0;
                }
            }
            while( new_x == 0 && steps > 0 );

            is_used[loop[steps - 1] - _x] = 0;
            loop[steps - 1] = new_x;
            is_used[new_x - _x] = 1;
        }
    }
    while( steps > 0 );

    return steps;
}



/****************************************************************************************\
*                                        icvRussel                                     *
\****************************************************************************************/
static void
icvRussel( CvEMDState * state )
{
    int i, j, min_i = -1, min_j = -1;
    float min_delta, diff;
    CvNode1D u_head, *cur_u, *prev_u;
    CvNode1D v_head, *cur_v, *prev_v;
    CvNode1D *prev_u_min_i = 0, *prev_v_min_j = 0, *remember;
    CvNode1D *u = state->u, *v = state->v;
    int ssize = state->ssize, dsize = state->dsize;
    float eps = CV_EMD_EPS * state->max_cost;
    float **cost = state->cost;
    float **delta = state->delta;

    /* initialize the rows list (ur), and the columns list (vr) */
    u_head.next = u;
    for( i = 0; i < ssize; i++ )
    {
        u[i].next = u + i + 1;
    }
    u[ssize - 1].next = 0;

    v_head.next = v;
    for( i = 0; i < dsize; i++ )
    {
        v[i].val = -CV_EMD_INF;
        v[i].next = v + i + 1;
    }
    v[dsize - 1].next = 0;

    /* find the maximum row and column values (ur[i] and vr[j]) */
    for( i = 0; i < ssize; i++ )
    {
        float u_val = -CV_EMD_INF;
        float *cost_row = cost[i];

        for( j = 0; j < dsize; j++ )
        {
            float temp = cost_row[j];

            if( u_val < temp )
                u_val = temp;
            if( v[j].val < temp )
                v[j].val = temp;
        }
        u[i].val = u_val;
    }

    /* compute the delta matrix */
    for( i = 0; i < ssize; i++ )
    {
        float u_val = u[i].val;
        float *delta_row = delta[i];
        float *cost_row = cost[i];

        for( j = 0; j < dsize; j++ )
        {
            delta_row[j] = cost_row[j] - u_val - v[j].val;
        }
    }

    /* find the basic variables */
    do
    {
        /* find the smallest delta[i][j] */
        min_i = -1;
        min_delta = CV_EMD_INF;
        prev_u = &u_head;
        for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next )
        {
            i = (int)(cur_u - u);
            float *delta_row = delta[i];

            prev_v = &v_head;
            for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next )
            {
                j = (int)(cur_v - v);
                if( min_delta > delta_row[j] )
                {
                    min_delta = delta_row[j];
                    min_i = i;
                    min_j = j;
                    prev_u_min_i = prev_u;
                    prev_v_min_j = prev_v;
                }
                prev_v = cur_v;
            }
            prev_u = cur_u;
        }

        if( min_i < 0 )
            break;

        /* add x[min_i][min_j] to the basis, and adjust supplies and cost */
        remember = prev_u_min_i->next;
        icvAddBasicVariable( state, min_i, min_j, prev_u_min_i, prev_v_min_j, &u_head );

        /* update the necessary delta[][] */
        if( remember == prev_u_min_i->next )    /* line min_i was deleted */
        {
            for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next )
            {
                j = (int)(cur_v - v);
                if( cur_v->val == cost[min_i][j] )      /* column j needs updating */
                {
                    float max_val = -CV_EMD_INF;

                    /* find the new maximum value in the column */
                    for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next )
                    {
                        float temp = cost[cur_u - u][j];

                        if( max_val < temp )
                            max_val = temp;
                    }

                    /* if needed, adjust the relevant delta[*][j] */
                    diff = max_val - cur_v->val;
                    cur_v->val = max_val;
                    if( fabs( diff ) < eps )
                    {
                        for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next )
                            delta[cur_u - u][j] += diff;
                    }
                }
            }
        }
        else                    /* column min_j was deleted */
        {
            for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next )
            {
                i = (int)(cur_u - u);
                if( cur_u->val == cost[i][min_j] )      /* row i needs updating */
                {
                    float max_val = -CV_EMD_INF;

                    /* find the new maximum value in the row */
                    for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next )
                    {
                        float temp = cost[i][cur_v - v];

                        if( max_val < temp )
                            max_val = temp;
                    }

                    /* if needed, adjust the relevant delta[i][*] */
                    diff = max_val - cur_u->val;
                    cur_u->val = max_val;

                    if( fabs( diff ) < eps )
                    {
                        for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next )
                            delta[i][cur_v - v] += diff;
                    }
                }
            }
        }
    }
    while( u_head.next != 0 || v_head.next != 0 );
}



/****************************************************************************************\
*                                   icvAddBasicVariable                                *
\****************************************************************************************/
static void
icvAddBasicVariable( CvEMDState * state,
                     int min_i, int min_j,
                     CvNode1D * prev_u_min_i, CvNode1D * prev_v_min_j, CvNode1D * u_head )
{
    float temp;
    CvNode2D *end_x = state->end_x;

    if( state->s[min_i] < state->d[min_j] + state->weight * CV_EMD_EPS )
    {                           /* supply exhausted */
        temp = state->s[min_i];
        state->s[min_i] = 0;
        state->d[min_j] -= temp;
    }
    else                        /* demand exhausted */
    {
        temp = state->d[min_j];
        state->d[min_j] = 0;
        state->s[min_i] -= temp;
    }

    /* x(min_i,min_j) is a basic variable */
    state->is_x[min_i][min_j] = 1;

    end_x->val = temp;
    end_x->i = min_i;
    end_x->j = min_j;
    end_x->next[0] = state->rows_x[min_i];
    end_x->next[1] = state->cols_x[min_j];
    state->rows_x[min_i] = end_x;
    state->cols_x[min_j] = end_x;
    state->end_x = end_x + 1;

    /* delete supply row only if the empty, and if not last row */
    if( state->s[min_i] == 0 && u_head->next->next != 0 )
        prev_u_min_i->next = prev_u_min_i->next->next;  /* remove row from list */
    else
        prev_v_min_j->next = prev_v_min_j->next->next;  /* remove column from list */
}


/****************************************************************************************\
*                                  standard  metrics                                     *
\****************************************************************************************/
static float
icvDistL1( const float *x, const float *y, void *user_param )
{
    int i, dims = (int)(size_t)user_param;
    double s = 0;

    for( i = 0; i < dims; i++ )
    {
        double t = x[i] - y[i];

        s += fabs( t );
    }
    return (float)s;
}

static float
icvDistL2( const float *x, const float *y, void *user_param )
{
    int i, dims = (int)(size_t)user_param;
    double s = 0;

    for( i = 0; i < dims; i++ )
    {
        double t = x[i] - y[i];

        s += t * t;
    }
    return cvSqrt( (float)s );
}

static float
icvDistC( const float *x, const float *y, void *user_param )
{
    int i, dims = (int)(size_t)user_param;
    double s = 0;

    for( i = 0; i < dims; i++ )
    {
        double t = fabs( x[i] - y[i] );

        if( s < t )
            s = t;
    }
    return (float)s;
}


float cv::EMD( InputArray _signature1, InputArray _signature2,
               int distType, InputArray _cost,
               float* lowerBound, OutputArray _flow )
{
    Mat signature1 = _signature1.getMat(), signature2 = _signature2.getMat();
    Mat cost = _cost.getMat(), flow;

    CvMat _csignature1 = signature1;
    CvMat _csignature2 = signature2;
    CvMat _ccost = cost, _cflow;
    if( _flow.needed() )
    {
        _flow.create(signature1.rows, signature2.rows, CV_32F);
        flow = _flow.getMat();
        flow = Scalar::all(0);
        _cflow = flow;
    }

    return cvCalcEMD2( &_csignature1, &_csignature2, distType, 0, cost.empty() ? 0 : &_ccost,
                       _flow.needed() ? &_cflow : 0, lowerBound, 0 );
}

/* End of file. */

/* [<][>][^][v][top][bottom][index][help] */