/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_STITCHING_MATCHERS_HPP__ #define __OPENCV_STITCHING_MATCHERS_HPP__ #include "opencv2/core.hpp" #include "opencv2/features2d.hpp" #include "opencv2/opencv_modules.hpp" #ifdef HAVE_OPENCV_XFEATURES2D # include "opencv2/xfeatures2d/cuda.hpp" #endif namespace cv { namespace detail { //! @addtogroup stitching_match //! @{ /** @brief Structure containing image keypoints and descriptors. */ struct CV_EXPORTS ImageFeatures { int img_idx; Size img_size; std::vector<KeyPoint> keypoints; UMat descriptors; }; /** @brief Feature finders base class */ class CV_EXPORTS FeaturesFinder { public: virtual ~FeaturesFinder() {} /** @overload */ void operator ()(InputArray image, ImageFeatures &features); /** @brief Finds features in the given image. @param image Source image @param features Found features @param rois Regions of interest @sa detail::ImageFeatures, Rect_ */ void operator ()(InputArray image, ImageFeatures &features, const std::vector<cv::Rect> &rois); /** @brief Frees unused memory allocated before if there is any. */ virtual void collectGarbage() {} protected: /** @brief This method must implement features finding logic in order to make the wrappers detail::FeaturesFinder::operator()_ work. @param image Source image @param features Found features @sa detail::ImageFeatures */ virtual void find(InputArray image, ImageFeatures &features) = 0; }; /** @brief SURF features finder. @sa detail::FeaturesFinder, SURF */ class CV_EXPORTS SurfFeaturesFinder : public FeaturesFinder { public: SurfFeaturesFinder(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4, int num_octaves_descr = /*4*/3, int num_layers_descr = /*2*/4); private: void find(InputArray image, ImageFeatures &features); Ptr<FeatureDetector> detector_; Ptr<DescriptorExtractor> extractor_; Ptr<Feature2D> surf; }; /** @brief ORB features finder. : @sa detail::FeaturesFinder, ORB */ class CV_EXPORTS OrbFeaturesFinder : public FeaturesFinder { public: OrbFeaturesFinder(Size _grid_size = Size(3,1), int nfeatures=1500, float scaleFactor=1.3f, int nlevels=5); private: void find(InputArray image, ImageFeatures &features); Ptr<ORB> orb; Size grid_size; }; #ifdef HAVE_OPENCV_XFEATURES2D class CV_EXPORTS SurfFeaturesFinderGpu : public FeaturesFinder { public: SurfFeaturesFinderGpu(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4, int num_octaves_descr = 4, int num_layers_descr = 2); void collectGarbage(); private: void find(InputArray image, ImageFeatures &features); cuda::GpuMat image_; cuda::GpuMat gray_image_; cuda::SURF_CUDA surf_; cuda::GpuMat keypoints_; cuda::GpuMat descriptors_; int num_octaves_, num_layers_; int num_octaves_descr_, num_layers_descr_; }; #endif /** @brief Structure containing information about matches between two images. It's assumed that there is a homography between those images. */ struct CV_EXPORTS MatchesInfo { MatchesInfo(); MatchesInfo(const MatchesInfo &other); const MatchesInfo& operator =(const MatchesInfo &other); int src_img_idx, dst_img_idx; //!< Images indices (optional) std::vector<DMatch> matches; std::vector<uchar> inliers_mask; //!< Geometrically consistent matches mask int num_inliers; //!< Number of geometrically consistent matches Mat H; //!< Estimated homography double confidence; //!< Confidence two images are from the same panorama }; /** @brief Feature matchers base class. */ class CV_EXPORTS FeaturesMatcher { public: virtual ~FeaturesMatcher() {} /** @overload @param features1 First image features @param features2 Second image features @param matches_info Found matches */ void operator ()(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) { match(features1, features2, matches_info); } /** @brief Performs images matching. @param features Features of the source images @param pairwise_matches Found pairwise matches @param mask Mask indicating which image pairs must be matched The function is parallelized with the TBB library. @sa detail::MatchesInfo */ void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, const cv::UMat &mask = cv::UMat()); /** @return True, if it's possible to use the same matcher instance in parallel, false otherwise */ bool isThreadSafe() const { return is_thread_safe_; } /** @brief Frees unused memory allocated before if there is any. */ virtual void collectGarbage() {} protected: FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {} /** @brief This method must implement matching logic in order to make the wrappers detail::FeaturesMatcher::operator()_ work. @param features1 first image features @param features2 second image features @param matches_info found matches */ virtual void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) = 0; bool is_thread_safe_; }; /** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the ratio between descriptor distances is greater than the threshold match_conf @sa detail::FeaturesMatcher */ class CV_EXPORTS BestOf2NearestMatcher : public FeaturesMatcher { public: /** @brief Constructs a "best of 2 nearest" matcher. @param try_use_gpu Should try to use GPU or not @param match_conf Match distances ration threshold @param num_matches_thresh1 Minimum number of matches required for the 2D projective transform estimation used in the inliers classification step @param num_matches_thresh2 Minimum number of matches required for the 2D projective transform re-estimation on inliers */ BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6, int num_matches_thresh2 = 6); void collectGarbage(); protected: void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info); int num_matches_thresh1_; int num_matches_thresh2_; Ptr<FeaturesMatcher> impl_; }; class CV_EXPORTS BestOf2NearestRangeMatcher : public BestOf2NearestMatcher { public: BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6, int num_matches_thresh2 = 6); void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, const cv::UMat &mask = cv::UMat()); protected: int range_width_; }; //! @} stitching_match } // namespace detail } // namespace cv #endif // __OPENCV_STITCHING_MATCHERS_HPP__