root/modules/video/src/bgfg_KNN.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. initialize
  2. getHistory
  3. setHistory
  4. getNSamples
  5. setNSamples
  6. getkNNSamples
  7. setkNNSamples
  8. getDist2Threshold
  9. setDist2Threshold
  10. getDetectShadows
  11. setDetectShadows
  12. getShadowValue
  13. setShadowValue
  14. getShadowThreshold
  15. setShadowThreshold
  16. write
  17. read
  18. _cvUpdatePixelBackgroundNP
  19. _cvCheckPixelBackgroundNP
  20. icvUpdatePixelBackgroundNP
  21. apply
  22. getBackgroundImage
  23. createBackgroundSubtractorKNN

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//#include <math.h>

#include "precomp.hpp"

namespace cv
{

/*!
 The class implements the following algorithm:
 "Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction"
 Z.Zivkovic, F. van der Heijden
 Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
 http://www.zoranz.net/Publications/zivkovicPRL2006.pdf
*/

// default parameters of gaussian background detection algorithm
static const int defaultHistory2 = 500; // Learning rate; alpha = 1/defaultHistory2
static const int defaultNsamples = 7; // number of samples saved in memory
static const float defaultDist2Threshold = 20.0f*20.0f;//threshold on distance from the sample

// additional parameters
static const unsigned char defaultnShadowDetection2 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation

class BackgroundSubtractorKNNImpl : public BackgroundSubtractorKNN
{
public:
    //! the default constructor
    BackgroundSubtractorKNNImpl()
    {
    frameSize = Size(0,0);
    frameType = 0;
    nframes = 0;
    history = defaultHistory2;

    //set parameters
    // N - the number of samples stored in memory per model
    nN = defaultNsamples;

    //kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN]
    nkNN=MAX(1,cvRound(0.1*nN*3+0.40));

    //Tb - Threshold Tb*kernelwidth
    fTb = defaultDist2Threshold;

    // Shadow detection
    bShadowDetection = 1;//turn on
    nShadowDetection =  defaultnShadowDetection2;
    fTau = defaultfTau;// Tau - shadow threshold
    name_ = "BackgroundSubtractor.KNN";
    }
    //! the full constructor that takes the length of the history,
    // the number of gaussian mixtures, the background ratio parameter and the noise strength
    BackgroundSubtractorKNNImpl(int _history,  float _dist2Threshold, bool _bShadowDetection=true)
    {
    frameSize = Size(0,0);
    frameType = 0;

    nframes = 0;
    history = _history > 0 ? _history : defaultHistory2;

    //set parameters
    // N - the number of samples stored in memory per model
    nN = defaultNsamples;
    //kNN - k nearest neighbour - number on NN for detcting background - default K=[0.1*nN]
    nkNN=MAX(1,cvRound(0.1*nN*3+0.40));

    //Tb - Threshold Tb*kernelwidth
    fTb = _dist2Threshold>0? _dist2Threshold : defaultDist2Threshold;

    bShadowDetection = _bShadowDetection;
    nShadowDetection =  defaultnShadowDetection2;
    fTau = defaultfTau;
    name_ = "BackgroundSubtractor.KNN";
    }
    //! the destructor
    ~BackgroundSubtractorKNNImpl() {}
    //! the update operator
    void apply(InputArray image, OutputArray fgmask, double learningRate=-1);

    //! computes a background image which are the mean of all background gaussians
    virtual void getBackgroundImage(OutputArray backgroundImage) const;

    //! re-initiaization method
    void initialize(Size _frameSize, int _frameType)
    {
    frameSize = _frameSize;
    frameType = _frameType;
    nframes = 0;

    int nchannels = CV_MAT_CN(frameType);
    CV_Assert( nchannels <= CV_CN_MAX );

    // Reserve memory for the model
    int size=frameSize.height*frameSize.width;
    // for each sample of 3 speed pixel models each pixel bg model we store ...
    // values + flag (nchannels+1 values)
    bgmodel.create( 1,(nN * 3) * (nchannels+1)* size,CV_8U);

    //index through the three circular lists
    aModelIndexShort.create(1,size,CV_8U);
    aModelIndexMid.create(1,size,CV_8U);
    aModelIndexLong.create(1,size,CV_8U);
    //when to update next
    nNextShortUpdate.create(1,size,CV_8U);
    nNextMidUpdate.create(1,size,CV_8U);
    nNextLongUpdate.create(1,size,CV_8U);

    //Reset counters
    nShortCounter = 0;
    nMidCounter = 0;
    nLongCounter = 0;

    aModelIndexShort = Scalar::all(0);//random? //((m_nN)*rand())/(RAND_MAX+1);//0...m_nN-1
    aModelIndexMid = Scalar::all(0);
    aModelIndexLong = Scalar::all(0);
    nNextShortUpdate = Scalar::all(0);
    nNextMidUpdate = Scalar::all(0);
    nNextLongUpdate = Scalar::all(0);
    }

    virtual int getHistory() const { return history; }
    virtual void setHistory(int _nframes) { history = _nframes; }

    virtual int getNSamples() const { return nN; }
    virtual void setNSamples(int _nN) { nN = _nN; }//needs reinitialization!

    virtual int getkNNSamples() const { return nkNN; }
    virtual void setkNNSamples(int _nkNN) { nkNN = _nkNN; }

    virtual double getDist2Threshold() const { return fTb; }
    virtual void setDist2Threshold(double _dist2Threshold) { fTb = (float)_dist2Threshold; }

    virtual bool getDetectShadows() const { return bShadowDetection; }
    virtual void setDetectShadows(bool detectshadows) { bShadowDetection = detectshadows; }

    virtual int getShadowValue() const { return nShadowDetection; }
    virtual void setShadowValue(int value) { nShadowDetection = (uchar)value; }

    virtual double getShadowThreshold() const { return fTau; }
    virtual void setShadowThreshold(double value) { fTau = (float)value; }

    virtual void write(FileStorage& fs) const
    {
        fs << "name" << name_
        << "history" << history
        << "nsamples" << nN
        << "nKNN" << nkNN
        << "dist2Threshold" << fTb
        << "detectShadows" << (int)bShadowDetection
        << "shadowValue" << (int)nShadowDetection
        << "shadowThreshold" << fTau;
    }

    virtual void read(const FileNode& fn)
    {
        CV_Assert( (String)fn["name"] == name_ );
        history = (int)fn["history"];
        nN = (int)fn["nsamples"];
        nkNN = (int)fn["nKNN"];
        fTb = (float)fn["dist2Threshold"];
        bShadowDetection = (int)fn["detectShadows"] != 0;
        nShadowDetection = saturate_cast<uchar>((int)fn["shadowValue"]);
        fTau = (float)fn["shadowThreshold"];
    }

protected:
    Size frameSize;
    int frameType;
    int nframes;
    /////////////////////////
    //very important parameters - things you will change
    ////////////////////////
    int history;
    //alpha=1/history - speed of update - if the time interval you want to average over is T
    //set alpha=1/history. It is also usefull at start to make T slowly increase
    //from 1 until the desired T
    float fTb;
    //Tb - threshold on the squared distance from the sample used to decide if it is well described
    //by the background model or not. A typical value could be 2 sigma
    //and that is Tb=2*2*10*10 =400; where we take typical pixel level sigma=10

    /////////////////////////
    //less important parameters - things you might change but be carefull
    ////////////////////////
    int nN;//totlal number of samples
    int nkNN;//number on NN for detcting background - default K=[0.1*nN]

    //shadow detection parameters
    bool bShadowDetection;//default 1 - do shadow detection
    unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.

    //model data
    int nLongCounter;//circular counter
    int nMidCounter;
    int nShortCounter;
    Mat bgmodel; // model data pixel values
    Mat aModelIndexShort;// index into the models
    Mat aModelIndexMid;
    Mat aModelIndexLong;
    Mat nNextShortUpdate;//random update points per model
    Mat nNextMidUpdate;
    Mat nNextLongUpdate;

    String name_;
};

//{ to do - paralelization ...
//struct KNNInvoker....
CV_INLINE void
        _cvUpdatePixelBackgroundNP(     long pixel,const uchar* data, int nchannels, int m_nN,
        uchar* m_aModel,
        uchar* m_nNextLongUpdate,
        uchar* m_nNextMidUpdate,
        uchar* m_nNextShortUpdate,
        uchar* m_aModelIndexLong,
        uchar* m_aModelIndexMid,
        uchar* m_aModelIndexShort,
        int m_nLongCounter,
        int m_nMidCounter,
        int m_nShortCounter,
        int m_nLongUpdate,
        int m_nMidUpdate,
        int m_nShortUpdate,
        uchar include
        )
{
    // hold the offset
    int ndata=1+nchannels;
    long offsetLong =  ndata * (pixel * m_nN * 3 + m_aModelIndexLong[pixel] + m_nN * 2);
    long offsetMid =   ndata * (pixel * m_nN * 3 + m_aModelIndexMid[pixel]  + m_nN * 1);
    long offsetShort = ndata * (pixel * m_nN * 3 + m_aModelIndexShort[pixel]);

    // Long update?
    if (m_nNextLongUpdate[pixel] == m_nLongCounter)
    {
        // add the oldest pixel from Mid to the list of values (for each color)
        memcpy(&m_aModel[offsetLong],&m_aModel[offsetMid],ndata*sizeof(unsigned char));
        // increase the index
        m_aModelIndexLong[pixel] = (m_aModelIndexLong[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexLong[pixel] + 1);
    };
    if (m_nLongCounter == (m_nLongUpdate-1))
    {
        //m_nNextLongUpdate[pixel] = (uchar)(((m_nLongUpdate)*(rand()-1))/RAND_MAX);//0,...m_nLongUpdate-1;
        m_nNextLongUpdate[pixel] = (uchar)( rand() % m_nLongUpdate );//0,...m_nLongUpdate-1;
    };

    // Mid update?
    if (m_nNextMidUpdate[pixel] == m_nMidCounter)
    {
        // add this pixel to the list of values (for each color)
        memcpy(&m_aModel[offsetMid],&m_aModel[offsetShort],ndata*sizeof(unsigned char));
        // increase the index
        m_aModelIndexMid[pixel] = (m_aModelIndexMid[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexMid[pixel] + 1);
    };
    if (m_nMidCounter == (m_nMidUpdate-1))
    {
        m_nNextMidUpdate[pixel] = (uchar)( rand() % m_nMidUpdate );
    };

    // Short update?
    if (m_nNextShortUpdate[pixel] == m_nShortCounter)
    {
        // add this pixel to the list of values (for each color)
        memcpy(&m_aModel[offsetShort],data,ndata*sizeof(unsigned char));
        //set the include flag
        m_aModel[offsetShort+nchannels]=include;
        // increase the index
        m_aModelIndexShort[pixel] = (m_aModelIndexShort[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexShort[pixel] + 1);
    };
    if (m_nShortCounter == (m_nShortUpdate-1))
    {
        m_nNextShortUpdate[pixel] = (uchar)( rand() % m_nShortUpdate );
    };
};

CV_INLINE int
        _cvCheckPixelBackgroundNP(long pixel,
        const uchar* data, int nchannels,
        int m_nN,
        uchar* m_aModel,
        float m_fTb,
        int m_nkNN,
        float tau,
        int m_nShadowDetection,
        uchar& include)
{
    int Pbf = 0; // the total probability that this pixel is background
    int Pb = 0; //background model probability
    float dData[CV_CN_MAX];

    //uchar& include=data[nchannels];
    include=0;//do we include this pixel into background model?

    int ndata=nchannels+1;
    long posPixel = pixel * ndata * m_nN * 3;
//      float k;
    // now increase the probability for each pixel
    for (int n = 0; n < m_nN*3; n++)
    {
        uchar* mean_m = &m_aModel[posPixel + n*ndata];

        //calculate difference and distance
        float dist2;

        if( nchannels == 3 )
        {
            dData[0] = (float)mean_m[0] - data[0];
            dData[1] = (float)mean_m[1] - data[1];
            dData[2] = (float)mean_m[2] - data[2];
            dist2 = dData[0]*dData[0] + dData[1]*dData[1] + dData[2]*dData[2];
        }
        else
        {
            dist2 = 0.f;
            for( int c = 0; c < nchannels; c++ )
            {
                dData[c] = (float)mean_m[c] - data[c];
                dist2 += dData[c]*dData[c];
            }
        }

        if (dist2<m_fTb)
        {
            Pbf++;//all
            //background only
            //if(m_aModel[subPosPixel + nchannels])//indicator
            if(mean_m[nchannels])//indicator
            {
                Pb++;
                if (Pb >= m_nkNN)//Tb
                {
                    include=1;//include
                    return 1;//background ->exit
                };
            }
        };
    };

    //include?
    if (Pbf>=m_nkNN)//m_nTbf)
    {
        include=1;
    }

    int Ps = 0; // the total probability that this pixel is background shadow
    // Detected as moving object, perform shadow detection
    if (m_nShadowDetection)
    {
        for (int n = 0; n < m_nN*3; n++)
        {
            //long subPosPixel = posPixel + n*ndata;
            uchar* mean_m = &m_aModel[posPixel + n*ndata];

            if(mean_m[nchannels])//check only background
            {
                float numerator = 0.0f;
                float denominator = 0.0f;
                for( int c = 0; c < nchannels; c++ )
                {
                    numerator   += (float)data[c] * mean_m[c];
                    denominator += (float)mean_m[c] * mean_m[c];
                }

                // no division by zero allowed
                if( denominator == 0 )
                    return 0;

                // if tau < a < 1 then also check the color distortion
                if( numerator <= denominator && numerator >= tau*denominator )
                {
                    float a = numerator / denominator;
                    float dist2a = 0.0f;

                    for( int c = 0; c < nchannels; c++ )
                    {
                        float dD= a*mean_m[c] - data[c];
                        dist2a += dD*dD;
                    }

                    if (dist2a<m_fTb*a*a)
                    {
                        Ps++;
                        if (Ps >= m_nkNN)//shadow
                            return 2;
                    };
                };
            };
        };
    }
    return 0;
};

CV_INLINE void
        icvUpdatePixelBackgroundNP(const Mat& _src, Mat& _dst,
        Mat& _bgmodel,
        Mat& _nNextLongUpdate,
        Mat& _nNextMidUpdate,
        Mat& _nNextShortUpdate,
        Mat& _aModelIndexLong,
        Mat& _aModelIndexMid,
        Mat& _aModelIndexShort,
        int& _nLongCounter,
        int& _nMidCounter,
        int& _nShortCounter,
        int _nN,
        float _fAlphaT,
        float _fTb,
        int _nkNN,
        float _fTau,
        int _bShadowDetection,
        uchar nShadowDetection
        )
{
    int nchannels = CV_MAT_CN(_src.type());

    //model
    uchar* m_aModel=_bgmodel.ptr(0);
    uchar* m_nNextLongUpdate=_nNextLongUpdate.ptr(0);
    uchar* m_nNextMidUpdate=_nNextMidUpdate.ptr(0);
    uchar* m_nNextShortUpdate=_nNextShortUpdate.ptr(0);
    uchar* m_aModelIndexLong=_aModelIndexLong.ptr(0);
    uchar* m_aModelIndexMid=_aModelIndexMid.ptr(0);
    uchar* m_aModelIndexShort=_aModelIndexShort.ptr(0);

    //some constants
    int m_nN=_nN;
    float m_fAlphaT=_fAlphaT;
    float m_fTb=_fTb;//Tb - threshold on the distance
    float m_fTau=_fTau;
    int m_nkNN=_nkNN;
    int m_bShadowDetection=_bShadowDetection;

    //recalculate update rates - in case alpha is changed
    // calculate update parameters (using alpha)
    int Kshort,Kmid,Klong;
    //approximate exponential learning curve
    Kshort=(int)(log(0.7)/log(1-m_fAlphaT))+1;//Kshort
    Kmid=(int)(log(0.4)/log(1-m_fAlphaT))-Kshort+1;//Kmid
    Klong=(int)(log(0.1)/log(1-m_fAlphaT))-Kshort-Kmid+1;//Klong

    //refresh rates
    int m_nShortUpdate = (Kshort/m_nN)+1;
    int m_nMidUpdate = (Kmid/m_nN)+1;
    int m_nLongUpdate = (Klong/m_nN)+1;

    //int       m_nShortUpdate = MAX((Kshort/m_nN),m_nN);
    //int m_nMidUpdate = MAX((Kmid/m_nN),m_nN);
    //int m_nLongUpdate = MAX((Klong/m_nN),m_nN);

    //update counters for the refresh rate
    int m_nLongCounter=_nLongCounter;
    int m_nMidCounter=_nMidCounter;
    int m_nShortCounter=_nShortCounter;

    _nShortCounter++;//0,1,...,m_nShortUpdate-1
    _nMidCounter++;
    _nLongCounter++;
    if (_nShortCounter >= m_nShortUpdate) _nShortCounter = 0;
    if (_nMidCounter >= m_nMidUpdate) _nMidCounter = 0;
    if (_nLongCounter >= m_nLongUpdate) _nLongCounter = 0;

    //go through the image
    long i = 0;
    for (long y = 0; y < _src.rows; y++)
    {
        for (long x = 0; x < _src.cols; x++)
        {
            const uchar* data = _src.ptr((int)y, (int)x);

            //update model+ background subtract
            uchar include=0;
            int result= _cvCheckPixelBackgroundNP(i, data, nchannels,
                    m_nN, m_aModel, m_fTb,m_nkNN, m_fTau,m_bShadowDetection,include);

            _cvUpdatePixelBackgroundNP(i,data,nchannels,
                    m_nN, m_aModel,
                    m_nNextLongUpdate,
                    m_nNextMidUpdate,
                    m_nNextShortUpdate,
                    m_aModelIndexLong,
                    m_aModelIndexMid,
                    m_aModelIndexShort,
                    m_nLongCounter,
                    m_nMidCounter,
                    m_nShortCounter,
                    m_nLongUpdate,
                    m_nMidUpdate,
                    m_nShortUpdate,
                    include
                    );
            switch (result)
            {
                case 0:
                    //foreground
                    *_dst.ptr((int)y, (int)x) = 255;
                    break;
                case 1:
                    //background
                    *_dst.ptr((int)y, (int)x) = 0;
                    break;
                case 2:
                    //shadow
                    *_dst.ptr((int)y, (int)x) = nShadowDetection;
                    break;
            }
            i++;
        }
    }
};



void BackgroundSubtractorKNNImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
{
    Mat image = _image.getMat();
    bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;

    if( needToInitialize )
        initialize(image.size(), image.type());

    _fgmask.create( image.size(), CV_8U );
    Mat fgmask = _fgmask.getMat();

    ++nframes;
    learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
    CV_Assert(learningRate >= 0);

    //parallel_for_(Range(0, image.rows),
    //              KNNInvoker(image, fgmask,
    icvUpdatePixelBackgroundNP(image, fgmask,
            bgmodel,
            nNextLongUpdate,
            nNextMidUpdate,
            nNextShortUpdate,
            aModelIndexLong,
            aModelIndexMid,
            aModelIndexShort,
            nLongCounter,
            nMidCounter,
            nShortCounter,
            nN,
            (float)learningRate,
            fTb,
            nkNN,
            fTau,
            bShadowDetection,
            nShadowDetection
            );
}

void BackgroundSubtractorKNNImpl::getBackgroundImage(OutputArray backgroundImage) const
{
    int nchannels = CV_MAT_CN(frameType);
    //CV_Assert( nchannels == 3 );
    Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));

    int ndata=nchannels+1;
    int modelstep=(ndata * nN * 3);

    const uchar* pbgmodel=bgmodel.ptr(0);
    for(int row=0; row<meanBackground.rows; row++)
    {
        for(int col=0; col<meanBackground.cols; col++)
        {
            for (int n = 0; n < nN*3; n++)
            {
                const uchar* mean_m = &pbgmodel[n*ndata];
                if (mean_m[nchannels])
                {
                    meanBackground.at<Vec3b>(row, col) = Vec3b(mean_m);
                    break;
                }
            }
            pbgmodel=pbgmodel+modelstep;
        }
    }

    switch(CV_MAT_CN(frameType))
    {
        case 1:
        {
            std::vector<Mat> channels;
            split(meanBackground, channels);
            channels[0].copyTo(backgroundImage);
            break;
        }
        case 3:
        {
            meanBackground.copyTo(backgroundImage);
            break;
        }
        default:
            CV_Error(Error::StsUnsupportedFormat, "");
    }
}


Ptr<BackgroundSubtractorKNN> createBackgroundSubtractorKNN(int _history, double _threshold2,
                                                           bool _bShadowDetection)
{
    return makePtr<BackgroundSubtractorKNNImpl>(_history, (float)_threshold2, _bShadowDetection);
}

}

/* End of file. */

/* [<][>][^][v][top][bottom][index][help] */