root/3rdparty/openexr/Half/half.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. round
  2. isFinite
  3. isNormalized
  4. isDenormalized
  5. isZero
  6. isNan
  7. isInfinity
  8. isNegative
  9. posInf
  10. negInf
  11. qNan
  12. sNan
  13. bits
  14. setBits

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////

// Primary authors:
//     Florian Kainz <kainz@ilm.com>
//     Rod Bogart <rgb@ilm.com>

//---------------------------------------------------------------------------
//
//      half -- a 16-bit floating point number class:
//
//      Type half can represent positive and negative numbers whose
//      magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
//      error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
//      with an absolute error of 6.0e-8.  All integers from -2048 to
//      +2048 can be represented exactly.
//
//      Type half behaves (almost) like the built-in C++ floating point
//      types.  In arithmetic expressions, half, float and double can be
//      mixed freely.  Here are a few examples:
//
//          half a (3.5);
//          float b (a + sqrt (a));
//          a += b;
//          b += a;
//          b = a + 7;
//
//      Conversions from half to float are lossless; all half numbers
//      are exactly representable as floats.
//
//      Conversions from float to half may not preserve a float's value
//      exactly.  If a float is not representable as a half, then the
//      float value is rounded to the nearest representable half.  If a
//      float value is exactly in the middle between the two closest
//      representable half values, then the float value is rounded to
//      the closest half whose least significant bit is zero.
//
//      Overflows during float-to-half conversions cause arithmetic
//      exceptions.  An overflow occurs when the float value to be
//      converted is too large to be represented as a half, or if the
//      float value is an infinity or a NAN.
//
//      The implementation of type half makes the following assumptions
//      about the implementation of the built-in C++ types:
//
//          float is an IEEE 754 single-precision number
//          sizeof (float) == 4
//          sizeof (unsigned int) == sizeof (float)
//          alignof (unsigned int) == alignof (float)
//          sizeof (unsigned short) == 2
//
//---------------------------------------------------------------------------

#ifndef _HALF_H_
#define _HALF_H_

#include <iostream>

#if defined(OPENEXR_DLL)
    #if defined(HALF_EXPORTS)
    #define HALF_EXPORT __declspec(dllexport)
    #else
    #define HALF_EXPORT __declspec(dllimport)
    #endif
    #define HALF_EXPORT_CONST
#else
    #define HALF_EXPORT
    #define HALF_EXPORT_CONST const
#endif

class HALF_EXPORT half
{
  public:

    //-------------
    // Constructors
    //-------------

    half ();                    // no initialization
    half (float f);


    //--------------------
    // Conversion to float
    //--------------------

    operator            float () const;


    //------------
    // Unary minus
    //------------

    half                operator - () const;


    //-----------
    // Assignment
    //-----------

    half &              operator = (half  h);
    half &              operator = (float f);

    half &              operator += (half  h);
    half &              operator += (float f);

    half &              operator -= (half  h);
    half &              operator -= (float f);

    half &              operator *= (half  h);
    half &              operator *= (float f);

    half &              operator /= (half  h);
    half &              operator /= (float f);


    //---------------------------------------------------------
    // Round to n-bit precision (n should be between 0 and 10).
    // After rounding, the significand's 10-n least significant
    // bits will be zero.
    //---------------------------------------------------------

    half                round (unsigned int n) const;


    //--------------------------------------------------------------------
    // Classification:
    //
    //  h.isFinite()            returns true if h is a normalized number,
    //                          a denormalized number or zero
    //
    //  h.isNormalized()        returns true if h is a normalized number
    //
    //  h.isDenormalized()      returns true if h is a denormalized number
    //
    //  h.isZero()              returns true if h is zero
    //
    //  h.isNan()               returns true if h is a NAN
    //
    //  h.isInfinity()          returns true if h is a positive
    //                          or a negative infinity
    //
    //  h.isNegative()          returns true if the sign bit of h
    //                          is set (negative)
    //--------------------------------------------------------------------

    bool                isFinite () const;
    bool                isNormalized () const;
    bool                isDenormalized () const;
    bool                isZero () const;
    bool                isNan () const;
    bool                isInfinity () const;
    bool                isNegative () const;


    //--------------------------------------------
    // Special values
    //
    //  posInf()        returns +infinity
    //
    //  negInf()        returns -infinity
    //
    //  qNan()          returns a NAN with the bit
    //                  pattern 0111111111111111
    //
    //  sNan()          returns a NAN with the bit
    //                  pattern 0111110111111111
    //--------------------------------------------

    static half         posInf ();
    static half         negInf ();
    static half         qNan ();
    static half         sNan ();


    //--------------------------------------
    // Access to the internal representation
    //--------------------------------------

    unsigned short      bits () const;
    void                setBits (unsigned short bits);


  public:

    union uif
    {
    unsigned int        i;
    float               f;
    };

  private:

    static short        convert (int i);
    static float        overflow ();

    unsigned short      _h;

    static HALF_EXPORT_CONST uif                _toFloat[1 << 16];
    static HALF_EXPORT_CONST unsigned short _eLut[1 << 9];
};

//-----------
// Stream I/O
//-----------

HALF_EXPORT std::ostream &              operator << (std::ostream &os, half  h);
HALF_EXPORT std::istream &              operator >> (std::istream &is, half &h);


//----------
// Debugging
//----------

HALF_EXPORT void                        printBits   (std::ostream &os, half  h);
HALF_EXPORT void                        printBits   (std::ostream &os, float f);
HALF_EXPORT void                        printBits   (char  c[19], half  h);
HALF_EXPORT void                        printBits   (char  c[35], float f);


//-------------------------------------------------------------------------
// Limits
//
// Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
// constants, but at least one other compiler (gcc 2.96) produces incorrect
// results if they are.
//-------------------------------------------------------------------------

#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER

  #define HALF_MIN      5.96046448e-08f // Smallest positive half

  #define HALF_NRM_MIN  6.10351562e-05f // Smallest positive normalized half

  #define HALF_MAX      65504.0f        // Largest positive half

  #define HALF_EPSILON  0.00097656f     // Smallest positive e for which
                    // half (1.0 + e) != half (1.0)
#else

  #define HALF_MIN      5.96046448e-08  // Smallest positive half

  #define HALF_NRM_MIN  6.10351562e-05  // Smallest positive normalized half

  #define HALF_MAX      65504.0         // Largest positive half

  #define HALF_EPSILON  0.00097656      // Smallest positive e for which
                    // half (1.0 + e) != half (1.0)
#endif


#define HALF_MANT_DIG   11              // Number of digits in mantissa
                    // (significand + hidden leading 1)

#define HALF_DIG        2               // Number of base 10 digits that
                    // can be represented without change

#define HALF_RADIX      2               // Base of the exponent

#define HALF_MIN_EXP    -13             // Minimum negative integer such that
                    // HALF_RADIX raised to the power of
                    // one less than that integer is a
                    // normalized half

#define HALF_MAX_EXP    16              // Maximum positive integer such that
                    // HALF_RADIX raised to the power of
                    // one less than that integer is a
                    // normalized half

#define HALF_MIN_10_EXP -4              // Minimum positive integer such
                    // that 10 raised to that power is
                    // a normalized half

#define HALF_MAX_10_EXP 4               // Maximum positive integer such
                    // that 10 raised to that power is
                    // a normalized half


//---------------------------------------------------------------------------
//
// Implementation --
//
// Representation of a float:
//
//      We assume that a float, f, is an IEEE 754 single-precision
//      floating point number, whose bits are arranged as follows:
//
//          31 (msb)
//          |
//          | 30     23
//          | |      |
//          | |      | 22                    0 (lsb)
//          | |      | |                     |
//          X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
//
//          s e        m
//
//      S is the sign-bit, e is the exponent and m is the significand.
//
//      If e is between 1 and 254, f is a normalized number:
//
//                  s    e-127
//          f = (-1)  * 2      * 1.m
//
//      If e is 0, and m is not zero, f is a denormalized number:
//
//                  s    -126
//          f = (-1)  * 2      * 0.m
//
//      If e and m are both zero, f is zero:
//
//          f = 0.0
//
//      If e is 255, f is an "infinity" or "not a number" (NAN),
//      depending on whether m is zero or not.
//
//      Examples:
//
//          0 00000000 00000000000000000000000 = 0.0
//          0 01111110 00000000000000000000000 = 0.5
//          0 01111111 00000000000000000000000 = 1.0
//          0 10000000 00000000000000000000000 = 2.0
//          0 10000000 10000000000000000000000 = 3.0
//          1 10000101 11110000010000000000000 = -124.0625
//          0 11111111 00000000000000000000000 = +infinity
//          1 11111111 00000000000000000000000 = -infinity
//          0 11111111 10000000000000000000000 = NAN
//          1 11111111 11111111111111111111111 = NAN
//
// Representation of a half:
//
//      Here is the bit-layout for a half number, h:
//
//          15 (msb)
//          |
//          | 14  10
//          | |   |
//          | |   | 9        0 (lsb)
//          | |   | |        |
//          X XXXXX XXXXXXXXXX
//
//          s e     m
//
//      S is the sign-bit, e is the exponent and m is the significand.
//
//      If e is between 1 and 30, h is a normalized number:
//
//                  s    e-15
//          h = (-1)  * 2     * 1.m
//
//      If e is 0, and m is not zero, h is a denormalized number:
//
//                  S    -14
//          h = (-1)  * 2     * 0.m
//
//      If e and m are both zero, h is zero:
//
//          h = 0.0
//
//      If e is 31, h is an "infinity" or "not a number" (NAN),
//      depending on whether m is zero or not.
//
//      Examples:
//
//          0 00000 0000000000 = 0.0
//          0 01110 0000000000 = 0.5
//          0 01111 0000000000 = 1.0
//          0 10000 0000000000 = 2.0
//          0 10000 1000000000 = 3.0
//          1 10101 1111000001 = -124.0625
//          0 11111 0000000000 = +infinity
//          1 11111 0000000000 = -infinity
//          0 11111 1000000000 = NAN
//          1 11111 1111111111 = NAN
//
// Conversion:
//
//      Converting from a float to a half requires some non-trivial bit
//      manipulations.  In some cases, this makes conversion relatively
//      slow, but the most common case is accelerated via table lookups.
//
//      Converting back from a half to a float is easier because we don't
//      have to do any rounding.  In addition, there are only 65536
//      different half numbers; we can convert each of those numbers once
//      and store the results in a table.  Later, all conversions can be
//      done using only simple table lookups.
//
//---------------------------------------------------------------------------


//--------------------
// Simple constructors
//--------------------

inline
half::half ()
{
    // no initialization
}


//----------------------------
// Half-from-float constructor
//----------------------------

inline
half::half (float f)
{
    uif x;

    x.f = f;

    if (f == 0)
    {
    //
    // Common special case - zero.
    // Preserve the zero's sign bit.
    //

    _h = (x.i >> 16);
    }
    else
    {
    //
    // We extract the combined sign and exponent, e, from our
    // floating-point number, f.  Then we convert e to the sign
    // and exponent of the half number via a table lookup.
    //
    // For the most common case, where a normalized half is produced,
    // the table lookup returns a non-zero value; in this case, all
    // we have to do is round f's significand to 10 bits and combine
    // the result with e.
    //
    // For all other cases (overflow, zeroes, denormalized numbers
    // resulting from underflow, infinities and NANs), the table
    // lookup returns zero, and we call a longer, non-inline function
    // to do the float-to-half conversion.
    //

    register int e = (x.i >> 23) & 0x000001ff;

    e = _eLut[e];

    if (e)
    {
        //
        // Simple case - round the significand, m, to 10
        // bits and combine it with the sign and exponent.
        //

        register int m = x.i & 0x007fffff;
        _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13);
    }
    else
    {
        //
        // Difficult case - call a function.
        //

        _h = convert (x.i);
    }
    }
}


//------------------------------------------
// Half-to-float conversion via table lookup
//------------------------------------------

inline
half::operator float () const
{
    return _toFloat[_h].f;
}


//-------------------------
// Round to n-bit precision
//-------------------------

inline half
half::round (unsigned int n) const
{
    //
    // Parameter check.
    //

    if (n >= 10)
    return *this;

    //
    // Disassemble h into the sign, s,
    // and the combined exponent and significand, e.
    //

    unsigned short s = _h & 0x8000;
    unsigned short e = _h & 0x7fff;

    //
    // Round the exponent and significand to the nearest value
    // where ones occur only in the (10-n) most significant bits.
    // Note that the exponent adjusts automatically if rounding
    // up causes the significand to overflow.
    //

    e >>= 9 - n;
    e  += e & 1;
    e <<= 9 - n;

    //
    // Check for exponent overflow.
    //

    if (e >= 0x7c00)
    {
    //
    // Overflow occurred -- truncate instead of rounding.
    //

    e = _h;
    e >>= 10 - n;
    e <<= 10 - n;
    }

    //
    // Put the original sign bit back.
    //

    half h;
    h._h = s | e;

    return h;
}


//-----------------------
// Other inline functions
//-----------------------

inline half
half::operator - () const
{
    half h;
    h._h = _h ^ 0x8000;
    return h;
}


inline half &
half::operator = (half h)
{
    _h = h._h;
    return *this;
}


inline half &
half::operator = (float f)
{
    *this = half (f);
    return *this;
}


inline half &
half::operator += (half h)
{
    *this = half (float (*this) + float (h));
    return *this;
}


inline half &
half::operator += (float f)
{
    *this = half (float (*this) + f);
    return *this;
}


inline half &
half::operator -= (half h)
{
    *this = half (float (*this) - float (h));
    return *this;
}


inline half &
half::operator -= (float f)
{
    *this = half (float (*this) - f);
    return *this;
}


inline half &
half::operator *= (half h)
{
    *this = half (float (*this) * float (h));
    return *this;
}


inline half &
half::operator *= (float f)
{
    *this = half (float (*this) * f);
    return *this;
}


inline half &
half::operator /= (half h)
{
    *this = half (float (*this) / float (h));
    return *this;
}


inline half &
half::operator /= (float f)
{
    *this = half (float (*this) / f);
    return *this;
}


inline bool
half::isFinite () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    return e < 31;
}


inline bool
half::isNormalized () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    return e > 0 && e < 31;
}


inline bool
half::isDenormalized () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    unsigned short m =  _h & 0x3ff;
    return e == 0 && m != 0;
}


inline bool
half::isZero () const
{
    return (_h & 0x7fff) == 0;
}


inline bool
half::isNan () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    unsigned short m =  _h & 0x3ff;
    return e == 31 && m != 0;
}


inline bool
half::isInfinity () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    unsigned short m =  _h & 0x3ff;
    return e == 31 && m == 0;
}


inline bool
half::isNegative () const
{
    return (_h & 0x8000) != 0;
}


inline half
half::posInf ()
{
    half h;
    h._h = 0x7c00;
    return h;
}


inline half
half::negInf ()
{
    half h;
    h._h = 0xfc00;
    return h;
}


inline half
half::qNan ()
{
    half h;
    h._h = 0x7fff;
    return h;
}


inline half
half::sNan ()
{
    half h;
    h._h = 0x7dff;
    return h;
}


inline unsigned short
half::bits () const
{
    return _h;
}


inline void
half::setBits (unsigned short bits)
{
    _h = bits;
}

#endif

/* [<][>][^][v][top][bottom][index][help] */