root/ext/pdo_sqlite/sqlite/src/pager.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pager_refinfo
  2. pageInStatement
  3. pager_resize_hash_table
  4. read32bits
  5. put32bits
  6. write32bits
  7. retrieve32bits
  8. pager_error
  9. pager_pagehash
  10. checkPage
  11. readMasterJournal
  12. seekJournalHdr
  13. writeJournalHdr
  14. readJournalHdr
  15. writeMasterJournal
  16. page_add_to_stmt_list
  17. pager_lookup
  18. pager_unlock
  19. pagerUnlockAndRollback
  20. pager_reset
  21. pager_end_transaction
  22. pager_cksum
  23. pager_playback_one_page
  24. pager_delmaster
  25. pager_truncate
  26. pager_playback
  27. pager_stmt_playback
  28. sqlite3PagerSetCachesize
  29. sqlite3PagerSetSafetyLevel
  30. sqlite3PagerOpentemp
  31. sqlite3PagerOpen
  32. sqlite3PagerSetBusyhandler
  33. sqlite3PagerSetDestructor
  34. sqlite3PagerSetReiniter
  35. sqlite3PagerSetPagesize
  36. disable_simulated_io_errors
  37. enable_simulated_io_errors
  38. sqlite3PagerReadFileheader
  39. sqlite3PagerPagecount
  40. clearHistory
  41. unlinkHashChain
  42. unlinkPage
  43. pager_truncate_cache
  44. pager_wait_on_lock
  45. sqlite3PagerTruncate
  46. sqlite3PagerClose
  47. sqlite3PagerPagenumber
  48. _page_ref
  49. page_ref
  50. sqlite3PagerRef
  51. syncJournal
  52. merge_pagelist
  53. sort_pagelist
  54. pager_write_pagelist
  55. pager_get_all_dirty_pages
  56. hasHotJournal
  57. pager_recycle
  58. sqlite3PagerReleaseMemory
  59. readDbPage
  60. pagerSharedLock
  61. pagerAllocatePage
  62. sqlite3PagerAcquire
  63. sqlite3PagerLookup
  64. sqlite3PagerUnref
  65. pager_open_journal
  66. sqlite3PagerBegin
  67. makeDirty
  68. makeClean
  69. pager_write
  70. sqlite3PagerWrite
  71. sqlite3PagerIswriteable
  72. sqlite3PagerOverwrite
  73. sqlite3PagerDontWrite
  74. sqlite3PagerDontRollback
  75. pager_incr_changecounter
  76. sqlite3PagerCommitPhaseOne
  77. sqlite3PagerCommitPhaseTwo
  78. sqlite3PagerRollback
  79. sqlite3PagerIsreadonly
  80. sqlite3PagerRefcount
  81. sqlite3PagerStats
  82. sqlite3PagerStmtBegin
  83. sqlite3PagerStmtCommit
  84. sqlite3PagerStmtRollback
  85. sqlite3PagerFilename
  86. sqlite3PagerDirname
  87. sqlite3PagerJournalname
  88. sqlite3PagerNosync
  89. sqlite3PagerSetCodec
  90. sqlite3PagerMovepage
  91. sqlite3PagerGetData
  92. sqlite3PagerGetExtra
  93. sqlite3PagerLockingMode
  94. sqlite3PagerLockstate
  95. sqlite3PagerRefdump

/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This is the implementation of the page cache subsystem or "pager".
** 
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id$
*/
#ifndef SQLITE_OMIT_DISKIO
#include "sqliteInt.h"
#include "os.h"
#include "pager.h"
#include <assert.h>
#include <string.h>

/*
** Macros for troubleshooting.  Normally turned off
*/
#if 0
#define sqlite3DebugPrintf printf
#define PAGERTRACE1(X)       sqlite3DebugPrintf(X)
#define PAGERTRACE2(X,Y)     sqlite3DebugPrintf(X,Y)
#define PAGERTRACE3(X,Y,Z)   sqlite3DebugPrintf(X,Y,Z)
#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
#else
#define PAGERTRACE1(X)
#define PAGERTRACE2(X,Y)
#define PAGERTRACE3(X,Y,Z)
#define PAGERTRACE4(X,Y,Z,W)
#define PAGERTRACE5(X,Y,Z,W,V)
#endif

/*
** The following two macros are used within the PAGERTRACEX() macros above
** to print out file-descriptors. 
**
** PAGERID() takes a pointer to a Pager struct as it's argument. The
** associated file-descriptor is returned. FILEHANDLEID() takes an OsFile
** struct as it's argument.
*/
#define PAGERID(p) ((int)(p->fd))
#define FILEHANDLEID(fd) ((int)fd)

/*
** The page cache as a whole is always in one of the following
** states:
**
**   PAGER_UNLOCK        The page cache is not currently reading or 
**                       writing the database file.  There is no
**                       data held in memory.  This is the initial
**                       state.
**
**   PAGER_SHARED        The page cache is reading the database.
**                       Writing is not permitted.  There can be
**                       multiple readers accessing the same database
**                       file at the same time.
**
**   PAGER_RESERVED      This process has reserved the database for writing
**                       but has not yet made any changes.  Only one process
**                       at a time can reserve the database.  The original
**                       database file has not been modified so other
**                       processes may still be reading the on-disk
**                       database file.
**
**   PAGER_EXCLUSIVE     The page cache is writing the database.
**                       Access is exclusive.  No other processes or
**                       threads can be reading or writing while one
**                       process is writing.
**
**   PAGER_SYNCED        The pager moves to this state from PAGER_EXCLUSIVE
**                       after all dirty pages have been written to the
**                       database file and the file has been synced to
**                       disk. All that remains to do is to remove or
**                       truncate the journal file and the transaction 
**                       will be committed.
**
** The page cache comes up in PAGER_UNLOCK.  The first time a
** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
** After all pages have been released using sqlite_page_unref(),
** the state transitions back to PAGER_UNLOCK.  The first time
** that sqlite3PagerWrite() is called, the state transitions to
** PAGER_RESERVED.  (Note that sqlite3PagerWrite() can only be
** called on an outstanding page which means that the pager must
** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
** PAGER_RESERVED means that there is an open rollback journal.
** The transition to PAGER_EXCLUSIVE occurs before any changes
** are made to the database file, though writes to the rollback
** journal occurs with just PAGER_RESERVED.  After an sqlite3PagerRollback()
** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
*/
#define PAGER_UNLOCK      0
#define PAGER_SHARED      1   /* same as SHARED_LOCK */
#define PAGER_RESERVED    2   /* same as RESERVED_LOCK */
#define PAGER_EXCLUSIVE   4   /* same as EXCLUSIVE_LOCK */
#define PAGER_SYNCED      5

/*
** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
** then failed attempts to get a reserved lock will invoke the busy callback.
** This is off by default.  To see why, consider the following scenario:
** 
** Suppose thread A already has a shared lock and wants a reserved lock.
** Thread B already has a reserved lock and wants an exclusive lock.  If
** both threads are using their busy callbacks, it might be a long time
** be for one of the threads give up and allows the other to proceed.
** But if the thread trying to get the reserved lock gives up quickly
** (if it never invokes its busy callback) then the contention will be
** resolved quickly.
*/
#ifndef SQLITE_BUSY_RESERVED_LOCK
# define SQLITE_BUSY_RESERVED_LOCK 0
#endif

/*
** This macro rounds values up so that if the value is an address it
** is guaranteed to be an address that is aligned to an 8-byte boundary.
*/
#define FORCE_ALIGNMENT(X)   (((X)+7)&~7)

/*
** Each in-memory image of a page begins with the following header.
** This header is only visible to this pager module.  The client
** code that calls pager sees only the data that follows the header.
**
** Client code should call sqlite3PagerWrite() on a page prior to making
** any modifications to that page.  The first time sqlite3PagerWrite()
** is called, the original page contents are written into the rollback
** journal and PgHdr.inJournal and PgHdr.needSync are set.  Later, once
** the journal page has made it onto the disk surface, PgHdr.needSync
** is cleared.  The modified page cannot be written back into the original
** database file until the journal pages has been synced to disk and the
** PgHdr.needSync has been cleared.
**
** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
** is cleared again when the page content is written back to the original
** database file.
*/
typedef struct PgHdr PgHdr;
struct PgHdr {
  Pager *pPager;                 /* The pager to which this page belongs */
  Pgno pgno;                     /* The page number for this page */
  PgHdr *pNextHash, *pPrevHash;  /* Hash collision chain for PgHdr.pgno */
  PgHdr *pNextFree, *pPrevFree;  /* Freelist of pages where nRef==0 */
  PgHdr *pNextAll;               /* A list of all pages */
  u8 inJournal;                  /* TRUE if has been written to journal */
  u8 dirty;                      /* TRUE if we need to write back changes */
  u8 needSync;                   /* Sync journal before writing this page */
  u8 alwaysRollback;             /* Disable DontRollback() for this page */
  u8 needRead;                   /* Read content if PagerWrite() is called */
  short int nRef;                /* Number of users of this page */
  PgHdr *pDirty, *pPrevDirty;    /* Dirty pages */
  u32 notUsed;                   /* Buffer space */
#ifdef SQLITE_CHECK_PAGES
  u32 pageHash;
#endif
  /* pPager->pageSize bytes of page data follow this header */
  /* Pager.nExtra bytes of local data follow the page data */
};

/*
** For an in-memory only database, some extra information is recorded about
** each page so that changes can be rolled back.  (Journal files are not
** used for in-memory databases.)  The following information is added to
** the end of every EXTRA block for in-memory databases.
**
** This information could have been added directly to the PgHdr structure.
** But then it would take up an extra 8 bytes of storage on every PgHdr
** even for disk-based databases.  Splitting it out saves 8 bytes.  This
** is only a savings of 0.8% but those percentages add up.
*/
typedef struct PgHistory PgHistory;
struct PgHistory {
  u8 *pOrig;     /* Original page text.  Restore to this on a full rollback */
  u8 *pStmt;     /* Text as it was at the beginning of the current statement */
  PgHdr *pNextStmt, *pPrevStmt;  /* List of pages in the statement journal */
  u8 inStmt;                     /* TRUE if in the statement subjournal */
};

/*
** A macro used for invoking the codec if there is one
*/
#ifdef SQLITE_HAS_CODEC
# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
#else
# define CODEC1(P,D,N,X) /* NO-OP */
# define CODEC2(P,D,N,X) ((char*)D)
#endif

/*
** Convert a pointer to a PgHdr into a pointer to its data
** and back again.
*/
#define PGHDR_TO_DATA(P)  ((void*)(&(P)[1]))
#define DATA_TO_PGHDR(D)  (&((PgHdr*)(D))[-1])
#define PGHDR_TO_EXTRA(G,P) ((void*)&((char*)(&(G)[1]))[(P)->pageSize])
#define PGHDR_TO_HIST(P,PGR)  \
            ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->pageSize+(PGR)->nExtra])

/*
** A open page cache is an instance of the following structure.
**
** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
** or SQLITE_FULL. Once one of the first three errors occurs, it persists
** and is returned as the result of every major pager API call.  The
** SQLITE_FULL return code is slightly different. It persists only until the
** next successful rollback is performed on the pager cache. Also,
** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
** APIs, they may still be used successfully.
*/
struct Pager {
  u8 journalOpen;             /* True if journal file descriptors is valid */
  u8 journalStarted;          /* True if header of journal is synced */
  u8 useJournal;              /* Use a rollback journal on this file */
  u8 noReadlock;              /* Do not bother to obtain readlocks */
  u8 stmtOpen;                /* True if the statement subjournal is open */
  u8 stmtInUse;               /* True we are in a statement subtransaction */
  u8 stmtAutoopen;            /* Open stmt journal when main journal is opened*/
  u8 noSync;                  /* Do not sync the journal if true */
  u8 fullSync;                /* Do extra syncs of the journal for robustness */
  u8 full_fsync;              /* Use F_FULLFSYNC when available */
  u8 state;                   /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
  u8 tempFile;                /* zFilename is a temporary file */
  u8 readOnly;                /* True for a read-only database */
  u8 needSync;                /* True if an fsync() is needed on the journal */
  u8 dirtyCache;              /* True if cached pages have changed */
  u8 alwaysRollback;          /* Disable DontRollback() for all pages */
  u8 memDb;                   /* True to inhibit all file I/O */
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
  u8 doNotSync;               /* Boolean. While true, do not spill the cache */
  u8 exclusiveMode;           /* Boolean. True if locking_mode==EXCLUSIVE */
  u8 changeCountDone;         /* Set after incrementing the change-counter */
  int errCode;                /* One of several kinds of errors */
  int dbSize;                 /* Number of pages in the file */
  int origDbSize;             /* dbSize before the current change */
  int stmtSize;               /* Size of database (in pages) at stmt_begin() */
  int nRec;                   /* Number of pages written to the journal */
  u32 cksumInit;              /* Quasi-random value added to every checksum */
  int stmtNRec;               /* Number of records in stmt subjournal */
  int nExtra;                 /* Add this many bytes to each in-memory page */
  int pageSize;               /* Number of bytes in a page */
  int nPage;                  /* Total number of in-memory pages */
  int nMaxPage;               /* High water mark of nPage */
  int nRef;                   /* Number of in-memory pages with PgHdr.nRef>0 */
  int mxPage;                 /* Maximum number of pages to hold in cache */
  u8 *aInJournal;             /* One bit for each page in the database file */
  u8 *aInStmt;                /* One bit for each page in the database */
  char *zFilename;            /* Name of the database file */
  char *zJournal;             /* Name of the journal file */
  char *zDirectory;           /* Directory hold database and journal files */
  OsFile *fd, *jfd;           /* File descriptors for database and journal */
  OsFile *stfd;               /* File descriptor for the statement subjournal*/
  BusyHandler *pBusyHandler;  /* Pointer to sqlite.busyHandler */
  PgHdr *pFirst, *pLast;      /* List of free pages */
  PgHdr *pFirstSynced;        /* First free page with PgHdr.needSync==0 */
  PgHdr *pAll;                /* List of all pages */
  PgHdr *pStmt;               /* List of pages in the statement subjournal */
  PgHdr *pDirty;              /* List of all dirty pages */
  i64 journalOff;             /* Current byte offset in the journal file */
  i64 journalHdr;             /* Byte offset to previous journal header */
  i64 stmtHdrOff;             /* First journal header written this statement */
  i64 stmtCksum;              /* cksumInit when statement was started */
  i64 stmtJSize;              /* Size of journal at stmt_begin() */
  int sectorSize;             /* Assumed sector size during rollback */
#ifdef SQLITE_TEST
  int nHit, nMiss;            /* Cache hits and missing */
  int nRead, nWrite;          /* Database pages read/written */
#endif
  void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
  void (*xReiniter)(DbPage*,int);   /* Call this routine when reloading pages */
#ifdef SQLITE_HAS_CODEC
  void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
  void *pCodecArg;            /* First argument to xCodec() */
#endif
  int nHash;                  /* Size of the pager hash table */
  PgHdr **aHash;              /* Hash table to map page number to PgHdr */
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  Pager *pNext;               /* Linked list of pagers in this thread */
#endif
  char *pTmpSpace;            /* Pager.pageSize bytes of space for tmp use */
  char dbFileVers[16];        /* Changes whenever database file changes */
};

/*
** The following global variables hold counters used for
** testing purposes only.  These variables do not exist in
** a non-testing build.  These variables are not thread-safe.
*/
#ifdef SQLITE_TEST
int sqlite3_pager_readdb_count = 0;    /* Number of full pages read from DB */
int sqlite3_pager_writedb_count = 0;   /* Number of full pages written to DB */
int sqlite3_pager_writej_count = 0;    /* Number of pages written to journal */
int sqlite3_pager_pgfree_count = 0;    /* Number of cache pages freed */
# define PAGER_INCR(v)  v++
#else
# define PAGER_INCR(v)
#endif



/*
** Journal files begin with the following magic string.  The data
** was obtained from /dev/random.  It is used only as a sanity check.
**
** Since version 2.8.0, the journal format contains additional sanity
** checking information.  If the power fails while the journal is begin
** written, semi-random garbage data might appear in the journal
** file after power is restored.  If an attempt is then made
** to roll the journal back, the database could be corrupted.  The additional
** sanity checking data is an attempt to discover the garbage in the
** journal and ignore it.
**
** The sanity checking information for the new journal format consists
** of a 32-bit checksum on each page of data.  The checksum covers both
** the page number and the pPager->pageSize bytes of data for the page.
** This cksum is initialized to a 32-bit random value that appears in the
** journal file right after the header.  The random initializer is important,
** because garbage data that appears at the end of a journal is likely
** data that was once in other files that have now been deleted.  If the
** garbage data came from an obsolete journal file, the checksums might
** be correct.  But by initializing the checksum to random value which
** is different for every journal, we minimize that risk.
*/
static const unsigned char aJournalMagic[] = {
  0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
};

/*
** The size of the header and of each page in the journal is determined
** by the following macros.
*/
#define JOURNAL_PG_SZ(pPager)  ((pPager->pageSize) + 8)

/*
** The journal header size for this pager. In the future, this could be
** set to some value read from the disk controller. The important
** characteristic is that it is the same size as a disk sector.
*/
#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)

/*
** The macro MEMDB is true if we are dealing with an in-memory database.
** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
** the value of MEMDB will be a constant and the compiler will optimize
** out code that would never execute.
*/
#ifdef SQLITE_OMIT_MEMORYDB
# define MEMDB 0
#else
# define MEMDB pPager->memDb
#endif

/*
** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
** reserved for working around a windows/posix incompatibility). It is
** used in the journal to signify that the remainder of the journal file 
** is devoted to storing a master journal name - there are no more pages to
** roll back. See comments for function writeMasterJournal() for details.
*/
/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)

/*
** The maximum legal page number is (2^31 - 1).
*/
#define PAGER_MAX_PGNO 2147483647

/*
** Enable reference count tracking (for debugging) here:
*/
#ifdef SQLITE_DEBUG
  int pager3_refinfo_enable = 0;
  static void pager_refinfo(PgHdr *p){
    static int cnt = 0;
    if( !pager3_refinfo_enable ) return;
    sqlite3DebugPrintf(
       "REFCNT: %4d addr=%p nRef=%-3d total=%d\n",
       p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef
    );
    cnt++;   /* Something to set a breakpoint on */
  }
# define REFINFO(X)  pager_refinfo(X)
#else
# define REFINFO(X)
#endif

/*
** Return true if page *pPg has already been written to the statement
** journal (or statement snapshot has been created, if *pPg is part
** of an in-memory database).
*/
static int pageInStatement(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  if( MEMDB ){
    return PGHDR_TO_HIST(pPg, pPager)->inStmt;
  }else{
    Pgno pgno = pPg->pgno;
    u8 *a = pPager->aInStmt;
    return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7))));
  }
}

/*
** Change the size of the pager hash table to N.  N must be a power
** of two.
*/
static void pager_resize_hash_table(Pager *pPager, int N){
  PgHdr **aHash, *pPg;
  assert( N>0 && (N&(N-1))==0 );
  aHash = sqliteMalloc( sizeof(aHash[0])*N );
  if( aHash==0 ){
    /* Failure to rehash is not an error.  It is only a performance hit. */
    return;
  }
  sqliteFree(pPager->aHash);
  pPager->nHash = N;
  pPager->aHash = aHash;
  for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
    int h;
    if( pPg->pgno==0 ){
      assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
      continue;
    }
    h = pPg->pgno & (N-1);
    pPg->pNextHash = aHash[h];
    if( aHash[h] ){
      aHash[h]->pPrevHash = pPg;
    }
    aHash[h] = pPg;
    pPg->pPrevHash = 0;
  }
}

/*
** Read a 32-bit integer from the given file descriptor.  Store the integer
** that is read in *pRes.  Return SQLITE_OK if everything worked, or an
** error code is something goes wrong.
**
** All values are stored on disk as big-endian.
*/
static int read32bits(OsFile *fd, u32 *pRes){
  unsigned char ac[4];
  int rc = sqlite3OsRead(fd, ac, sizeof(ac));
  if( rc==SQLITE_OK ){
    *pRes = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
  }
  return rc;
}

/*
** Write a 32-bit integer into a string buffer in big-endian byte order.
*/
static void put32bits(char *ac, u32 val){
  ac[0] = (val>>24) & 0xff;
  ac[1] = (val>>16) & 0xff;
  ac[2] = (val>>8) & 0xff;
  ac[3] = val & 0xff;
}

/*
** Write a 32-bit integer into the given file descriptor.  Return SQLITE_OK
** on success or an error code is something goes wrong.
*/
static int write32bits(OsFile *fd, u32 val){
  char ac[4];
  put32bits(ac, val);
  return sqlite3OsWrite(fd, ac, 4);
}

/*
** Read a 32-bit integer at offset 'offset' from the page identified by
** page header 'p'.
*/
static u32 retrieve32bits(PgHdr *p, int offset){
  unsigned char *ac;
  ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
  return (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
}


/*
** This function should be called when an error occurs within the pager
** code. The first argument is a pointer to the pager structure, the
** second the error-code about to be returned by a pager API function. 
** The value returned is a copy of the second argument to this function. 
**
** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
** the error becomes persistent. All subsequent API calls on this Pager
** will immediately return the same error code.
*/
static int pager_error(Pager *pPager, int rc){
  int rc2 = rc & 0xff;
  assert( pPager->errCode==SQLITE_FULL || pPager->errCode==SQLITE_OK );
  if(
    rc2==SQLITE_FULL ||
    rc2==SQLITE_IOERR ||
    rc2==SQLITE_CORRUPT
  ){
    pPager->errCode = rc;
  }
  return rc;
}

#ifdef SQLITE_CHECK_PAGES
/*
** Return a 32-bit hash of the page data for pPage.
*/
static u32 pager_pagehash(PgHdr *pPage){
  u32 hash = 0;
  int i;
  unsigned char *pData = (unsigned char *)PGHDR_TO_DATA(pPage);
  for(i=0; i<pPage->pPager->pageSize; i++){
    hash = (hash+i)^pData[i];
  }
  return hash;
}

/*
** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
** is defined, and NDEBUG is not defined, an assert() statement checks
** that the page is either dirty or still matches the calculated page-hash.
*/
#define CHECK_PAGE(x) checkPage(x)
static void checkPage(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || 
      pPg->pageHash==pager_pagehash(pPg) );
}

#else
#define CHECK_PAGE(x)
#endif

/*
** When this is called the journal file for pager pPager must be open.
** The master journal file name is read from the end of the file and 
** written into memory obtained from sqliteMalloc(). *pzMaster is
** set to point at the memory and SQLITE_OK returned. The caller must
** sqliteFree() *pzMaster.
**
** If no master journal file name is present *pzMaster is set to 0 and
** SQLITE_OK returned.
*/
static int readMasterJournal(OsFile *pJrnl, char **pzMaster){
  int rc;
  u32 len;
  i64 szJ;
  u32 cksum;
  int i;
  unsigned char aMagic[8]; /* A buffer to hold the magic header */

  *pzMaster = 0;

  rc = sqlite3OsFileSize(pJrnl, &szJ);
  if( rc!=SQLITE_OK || szJ<16 ) return rc;

  rc = sqlite3OsSeek(pJrnl, szJ-16);
  if( rc!=SQLITE_OK ) return rc;
 
  rc = read32bits(pJrnl, &len);
  if( rc!=SQLITE_OK ) return rc;

  rc = read32bits(pJrnl, &cksum);
  if( rc!=SQLITE_OK ) return rc;

  rc = sqlite3OsRead(pJrnl, aMagic, 8);
  if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;

  rc = sqlite3OsSeek(pJrnl, szJ-16-len);
  if( rc!=SQLITE_OK ) return rc;

  *pzMaster = (char *)sqliteMalloc(len+1);
  if( !*pzMaster ){
    return SQLITE_NOMEM;
  }
  rc = sqlite3OsRead(pJrnl, *pzMaster, len);
  if( rc!=SQLITE_OK ){
    sqliteFree(*pzMaster);
    *pzMaster = 0;
    return rc;
  }

  /* See if the checksum matches the master journal name */
  for(i=0; i<len; i++){
    cksum -= (*pzMaster)[i];
  }
  if( cksum ){
    /* If the checksum doesn't add up, then one or more of the disk sectors
    ** containing the master journal filename is corrupted. This means
    ** definitely roll back, so just return SQLITE_OK and report a (nul)
    ** master-journal filename.
    */
    sqliteFree(*pzMaster);
    *pzMaster = 0;
  }else{
    (*pzMaster)[len] = '\0';
  }
   
  return SQLITE_OK;
}

/*
** Seek the journal file descriptor to the next sector boundary where a
** journal header may be read or written. Pager.journalOff is updated with
** the new seek offset.
**
** i.e for a sector size of 512:
**
** Input Offset              Output Offset
** ---------------------------------------
** 0                         0
** 512                       512
** 100                       512
** 2000                      2048
** 
*/
static int seekJournalHdr(Pager *pPager){
  i64 offset = 0;
  i64 c = pPager->journalOff;
  if( c ){
    offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
  }
  assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
  assert( offset>=c );
  assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
  pPager->journalOff = offset;
  return sqlite3OsSeek(pPager->jfd, pPager->journalOff);
}

/*
** The journal file must be open when this routine is called. A journal
** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
** current location.
**
** The format for the journal header is as follows:
** - 8 bytes: Magic identifying journal format.
** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
** - 4 bytes: Random number used for page hash.
** - 4 bytes: Initial database page count.
** - 4 bytes: Sector size used by the process that wrote this journal.
** 
** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space.
*/
static int writeJournalHdr(Pager *pPager){
  char zHeader[sizeof(aJournalMagic)+16];
  int rc;

  if( pPager->stmtHdrOff==0 ){
    pPager->stmtHdrOff = pPager->journalOff;
  }

  rc = seekJournalHdr(pPager);
  if( rc ) return rc;

  pPager->journalHdr = pPager->journalOff;
  pPager->journalOff += JOURNAL_HDR_SZ(pPager);

  /* FIX ME: 
  **
  ** Possibly for a pager not in no-sync mode, the journal magic should not
  ** be written until nRec is filled in as part of next syncJournal(). 
  **
  ** Actually maybe the whole journal header should be delayed until that
  ** point. Think about this.
  */
  memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
  /* The nRec Field. 0xFFFFFFFF for no-sync journals. */
  put32bits(&zHeader[sizeof(aJournalMagic)], pPager->noSync ? 0xffffffff : 0);
  /* The random check-hash initialiser */ 
  sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
  put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
  /* The initial database size */
  put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
  /* The assumed sector size for this process */
  put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
  IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader)))
  rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader));

  /* The journal header has been written successfully. Seek the journal
  ** file descriptor to the end of the journal header sector.
  */
  if( rc==SQLITE_OK ){
    IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1))
    rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff-1);
    if( rc==SQLITE_OK ){
      rc = sqlite3OsWrite(pPager->jfd, "\000", 1);
    }
  }
  return rc;
}

/*
** The journal file must be open when this is called. A journal header file
** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
** file. See comments above function writeJournalHdr() for a description of
** the journal header format.
**
** If the header is read successfully, *nRec is set to the number of
** page records following this header and *dbSize is set to the size of the
** database before the transaction began, in pages. Also, pPager->cksumInit
** is set to the value read from the journal header. SQLITE_OK is returned
** in this case.
**
** If the journal header file appears to be corrupted, SQLITE_DONE is
** returned and *nRec and *dbSize are not set.  If JOURNAL_HDR_SZ bytes
** cannot be read from the journal file an error code is returned.
*/
static int readJournalHdr(
  Pager *pPager, 
  i64 journalSize,
  u32 *pNRec, 
  u32 *pDbSize
){
  int rc;
  unsigned char aMagic[8]; /* A buffer to hold the magic header */

  rc = seekJournalHdr(pPager);
  if( rc ) return rc;

  if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
    return SQLITE_DONE;
  }

  rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic));
  if( rc ) return rc;

  if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
    return SQLITE_DONE;
  }

  rc = read32bits(pPager->jfd, pNRec);
  if( rc ) return rc;

  rc = read32bits(pPager->jfd, &pPager->cksumInit);
  if( rc ) return rc;

  rc = read32bits(pPager->jfd, pDbSize);
  if( rc ) return rc;

  /* Update the assumed sector-size to match the value used by 
  ** the process that created this journal. If this journal was
  ** created by a process other than this one, then this routine
  ** is being called from within pager_playback(). The local value
  ** of Pager.sectorSize is restored at the end of that routine.
  */
  rc = read32bits(pPager->jfd, (u32 *)&pPager->sectorSize);
  if( rc ) return rc;

  pPager->journalOff += JOURNAL_HDR_SZ(pPager);
  rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff);
  return rc;
}


/*
** Write the supplied master journal name into the journal file for pager
** pPager at the current location. The master journal name must be the last
** thing written to a journal file. If the pager is in full-sync mode, the
** journal file descriptor is advanced to the next sector boundary before
** anything is written. The format is:
**
** + 4 bytes: PAGER_MJ_PGNO.
** + N bytes: length of master journal name.
** + 4 bytes: N
** + 4 bytes: Master journal name checksum.
** + 8 bytes: aJournalMagic[].
**
** The master journal page checksum is the sum of the bytes in the master
** journal name.
**
** If zMaster is a NULL pointer (occurs for a single database transaction), 
** this call is a no-op.
*/
static int writeMasterJournal(Pager *pPager, const char *zMaster){
  int rc;
  int len; 
  int i; 
  u32 cksum = 0;
  char zBuf[sizeof(aJournalMagic)+2*4];

  if( !zMaster || pPager->setMaster) return SQLITE_OK;
  pPager->setMaster = 1;

  len = strlen(zMaster);
  for(i=0; i<len; i++){
    cksum += zMaster[i];
  }

  /* If in full-sync mode, advance to the next disk sector before writing
  ** the master journal name. This is in case the previous page written to
  ** the journal has already been synced.
  */
  if( pPager->fullSync ){
    rc = seekJournalHdr(pPager);
    if( rc!=SQLITE_OK ) return rc;
  }
  pPager->journalOff += (len+20);

  rc = write32bits(pPager->jfd, PAGER_MJ_PGNO(pPager));
  if( rc!=SQLITE_OK ) return rc;

  rc = sqlite3OsWrite(pPager->jfd, zMaster, len);
  if( rc!=SQLITE_OK ) return rc;

  put32bits(zBuf, len);
  put32bits(&zBuf[4], cksum);
  memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
  rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic));
  pPager->needSync = !pPager->noSync;
  return rc;
}

/*
** Add or remove a page from the list of all pages that are in the
** statement journal.
**
** The Pager keeps a separate list of pages that are currently in
** the statement journal.  This helps the sqlite3PagerStmtCommit()
** routine run MUCH faster for the common case where there are many
** pages in memory but only a few are in the statement journal.
*/
static void page_add_to_stmt_list(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
  assert( MEMDB );
  if( !pHist->inStmt ){
    assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
    if( pPager->pStmt ){
      PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
    }
    pHist->pNextStmt = pPager->pStmt;
    pPager->pStmt = pPg;
    pHist->inStmt = 1;
  }
}

/*
** Find a page in the hash table given its page number.  Return
** a pointer to the page or NULL if not found.
*/
static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
  PgHdr *p;
  if( pPager->aHash==0 ) return 0;
  p = pPager->aHash[pgno & (pPager->nHash-1)];
  while( p && p->pgno!=pgno ){
    p = p->pNextHash;
  }
  return p;
}

/*
** Unlock the database file.
*/
static void pager_unlock(Pager *pPager){
  if( !pPager->exclusiveMode ){
    if( !MEMDB ){
      sqlite3OsUnlock(pPager->fd, NO_LOCK);
      pPager->dbSize = -1;
      IOTRACE(("UNLOCK %p\n", pPager))
    }
    pPager->state = PAGER_UNLOCK;
    pPager->changeCountDone = 0;
  }
}

/*
** Execute a rollback if a transaction is active and unlock the 
** database file. This is a no-op if the pager has already entered
** the error-state.
*/
static void pagerUnlockAndRollback(Pager *p){
  if( p->errCode ) return;
  assert( p->state>=PAGER_RESERVED || p->journalOpen==0 );
  if( p->state>=PAGER_RESERVED ){
    sqlite3PagerRollback(p);
  }
  pager_unlock(p);
  assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
  assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
}


/*
** Clear the in-memory cache.  This routine
** sets the state of the pager back to what it was when it was first
** opened.  Any outstanding pages are invalidated and subsequent attempts
** to access those pages will likely result in a coredump.
*/
static void pager_reset(Pager *pPager){
  PgHdr *pPg, *pNext;
  if( pPager->errCode ) return;
  for(pPg=pPager->pAll; pPg; pPg=pNext){
    IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
    PAGER_INCR(sqlite3_pager_pgfree_count);
    pNext = pPg->pNextAll;
    sqliteFree(pPg);
  }
  pPager->pStmt = 0;
  pPager->pFirst = 0;
  pPager->pFirstSynced = 0;
  pPager->pLast = 0;
  pPager->pAll = 0;
  pPager->nHash = 0;
  sqliteFree(pPager->aHash);
  pPager->nPage = 0;
  pPager->aHash = 0;
  pPager->nRef = 0;
}

/*
** This routine ends a transaction.  A transaction is ended by either
** a COMMIT or a ROLLBACK.
**
** When this routine is called, the pager has the journal file open and
** a RESERVED or EXCLUSIVE lock on the database.  This routine will release
** the database lock and acquires a SHARED lock in its place if that is
** the appropriate thing to do.  Release locks usually is appropriate,
** unless we are in exclusive access mode or unless this is a 
** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
**
** The journal file is either deleted or truncated.
**
** TODO: Consider keeping the journal file open for temporary databases.
** This might give a performance improvement on windows where opening
** a file is an expensive operation.
*/
static int pager_end_transaction(Pager *pPager){
  PgHdr *pPg;
  int rc = SQLITE_OK;
  int rc2 = SQLITE_OK;
  assert( !MEMDB );
  if( pPager->state<PAGER_RESERVED ){
    return SQLITE_OK;
  }
  sqlite3PagerStmtCommit(pPager);
  if( pPager->stmtOpen && !pPager->exclusiveMode ){
    sqlite3OsClose(&pPager->stfd);
    pPager->stmtOpen = 0;
  }
  if( pPager->journalOpen ){
    if( pPager->exclusiveMode 
          && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){;
      sqlite3OsSeek(pPager->jfd, 0);
      pPager->journalOff = 0;
      pPager->journalStarted = 0;
    }else{
      sqlite3OsClose(&pPager->jfd);
      pPager->journalOpen = 0;
      if( rc==SQLITE_OK ){
        rc = sqlite3OsDelete(pPager->zJournal);
      }
    }
    sqliteFree( pPager->aInJournal );
    pPager->aInJournal = 0;
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      pPg->inJournal = 0;
      pPg->dirty = 0;
      pPg->needSync = 0;
      pPg->alwaysRollback = 0;
#ifdef SQLITE_CHECK_PAGES
      pPg->pageHash = pager_pagehash(pPg);
#endif
    }
    pPager->pDirty = 0;
    pPager->dirtyCache = 0;
    pPager->nRec = 0;
  }else{
    assert( pPager->aInJournal==0 );
    assert( pPager->dirtyCache==0 || pPager->useJournal==0 );
  }

  if( !pPager->exclusiveMode ){
    rc2 = sqlite3OsUnlock(pPager->fd, SHARED_LOCK);
    pPager->state = PAGER_SHARED;
  }else if( pPager->state==PAGER_SYNCED ){
    pPager->state = PAGER_EXCLUSIVE;
  }
  pPager->origDbSize = 0;
  pPager->setMaster = 0;
  pPager->needSync = 0;
  pPager->pFirstSynced = pPager->pFirst;
  pPager->dbSize = -1;

  return (rc==SQLITE_OK?rc2:rc);
}

/*
** Compute and return a checksum for the page of data.
**
** This is not a real checksum.  It is really just the sum of the 
** random initial value and the page number.  We experimented with
** a checksum of the entire data, but that was found to be too slow.
**
** Note that the page number is stored at the beginning of data and
** the checksum is stored at the end.  This is important.  If journal
** corruption occurs due to a power failure, the most likely scenario
** is that one end or the other of the record will be changed.  It is
** much less likely that the two ends of the journal record will be
** correct and the middle be corrupt.  Thus, this "checksum" scheme,
** though fast and simple, catches the mostly likely kind of corruption.
**
** FIX ME:  Consider adding every 200th (or so) byte of the data to the
** checksum.  That way if a single page spans 3 or more disk sectors and
** only the middle sector is corrupt, we will still have a reasonable
** chance of failing the checksum and thus detecting the problem.
*/
static u32 pager_cksum(Pager *pPager, const u8 *aData){
  u32 cksum = pPager->cksumInit;
  int i = pPager->pageSize-200;
  while( i>0 ){
    cksum += aData[i];
    i -= 200;
  }
  return cksum;
}

/* Forward declaration */
static void makeClean(PgHdr*);

/*
** Read a single page from the journal file opened on file descriptor
** jfd.  Playback this one page.
**
** If useCksum==0 it means this journal does not use checksums.  Checksums
** are not used in statement journals because statement journals do not
** need to survive power failures.
*/
static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){
  int rc;
  PgHdr *pPg;                   /* An existing page in the cache */
  Pgno pgno;                    /* The page number of a page in journal */
  u32 cksum;                    /* Checksum used for sanity checking */
  u8 *aData = (u8 *)pPager->pTmpSpace;   /* Temp storage for a page */

  /* useCksum should be true for the main journal and false for
  ** statement journals.  Verify that this is always the case
  */
  assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
  assert( aData );

  rc = read32bits(jfd, &pgno);
  if( rc!=SQLITE_OK ) return rc;
  rc = sqlite3OsRead(jfd, aData, pPager->pageSize);
  if( rc!=SQLITE_OK ) return rc;
  pPager->journalOff += pPager->pageSize + 4;

  /* Sanity checking on the page.  This is more important that I originally
  ** thought.  If a power failure occurs while the journal is being written,
  ** it could cause invalid data to be written into the journal.  We need to
  ** detect this invalid data (with high probability) and ignore it.
  */
  if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
    return SQLITE_DONE;
  }
  if( pgno>(unsigned)pPager->dbSize ){
    return SQLITE_OK;
  }
  if( useCksum ){
    rc = read32bits(jfd, &cksum);
    if( rc ) return rc;
    pPager->journalOff += 4;
    if( pager_cksum(pPager, aData)!=cksum ){
      return SQLITE_DONE;
    }
  }

  assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );

  /* If the pager is in RESERVED state, then there must be a copy of this
  ** page in the pager cache. In this case just update the pager cache,
  ** not the database file. The page is left marked dirty in this case.
  **
  ** If in EXCLUSIVE state, then we update the pager cache if it exists
  ** and the main file. The page is then marked not dirty.
  **
  ** Ticket #1171:  The statement journal might contain page content that is
  ** different from the page content at the start of the transaction.
  ** This occurs when a page is changed prior to the start of a statement
  ** then changed again within the statement.  When rolling back such a
  ** statement we must not write to the original database unless we know
  ** for certain that original page contents are in the main rollback
  ** journal.  Otherwise, if a full ROLLBACK occurs after the statement
  ** rollback the full ROLLBACK will not restore the page to its original
  ** content.  Two conditions must be met before writing to the database
  ** files. (1) the database must be locked.  (2) we know that the original
  ** page content is in the main journal either because the page is not in
  ** cache or else it is marked as needSync==0.
  */
  pPg = pager_lookup(pPager, pgno);
  assert( pPager->state>=PAGER_EXCLUSIVE || pPg!=0 );
  PAGERTRACE3("PLAYBACK %d page %d\n", PAGERID(pPager), pgno);
  if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){
    rc = sqlite3OsSeek(pPager->fd, (pgno-1)*(i64)pPager->pageSize);
    if( rc==SQLITE_OK ){
      rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize);
    }
    if( pPg ){
      makeClean(pPg);
    }
  }
  if( pPg ){
    /* No page should ever be explicitly rolled back that is in use, except
    ** for page 1 which is held in use in order to keep the lock on the
    ** database active. However such a page may be rolled back as a result
    ** of an internal error resulting in an automatic call to
    ** sqlite3PagerRollback().
    */
    void *pData;
    /* assert( pPg->nRef==0 || pPg->pgno==1 ); */
    pData = PGHDR_TO_DATA(pPg);
    memcpy(pData, aData, pPager->pageSize);
    if( pPager->xReiniter ){
      pPager->xReiniter(pPg, pPager->pageSize);
    }
#ifdef SQLITE_CHECK_PAGES
    pPg->pageHash = pager_pagehash(pPg);
#endif
    /* If this was page 1, then restore the value of Pager.dbFileVers.
    ** Do this before any decoding. */
    if( pgno==1 ){
      memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
    }

    /* Decode the page just read from disk */
    CODEC1(pPager, pData, pPg->pgno, 3);
  }
  return rc;
}

/*
** Parameter zMaster is the name of a master journal file. A single journal
** file that referred to the master journal file has just been rolled back.
** This routine checks if it is possible to delete the master journal file,
** and does so if it is.
**
** The master journal file contains the names of all child journals.
** To tell if a master journal can be deleted, check to each of the
** children.  If all children are either missing or do not refer to
** a different master journal, then this master journal can be deleted.
*/
static int pager_delmaster(const char *zMaster){
  int rc;
  int master_open = 0;
  OsFile *master = 0;
  char *zMasterJournal = 0; /* Contents of master journal file */
  i64 nMasterJournal;       /* Size of master journal file */

  /* Open the master journal file exclusively in case some other process
  ** is running this routine also. Not that it makes too much difference.
  */
  rc = sqlite3OsOpenReadOnly(zMaster, &master);
  assert( rc!=SQLITE_OK || master );
  if( rc!=SQLITE_OK ) goto delmaster_out;
  master_open = 1;
  rc = sqlite3OsFileSize(master, &nMasterJournal);
  if( rc!=SQLITE_OK ) goto delmaster_out;

  if( nMasterJournal>0 ){
    char *zJournal;
    char *zMasterPtr = 0;

    /* Load the entire master journal file into space obtained from
    ** sqliteMalloc() and pointed to by zMasterJournal. 
    */
    zMasterJournal = (char *)sqliteMalloc(nMasterJournal);
    if( !zMasterJournal ){
      rc = SQLITE_NOMEM;
      goto delmaster_out;
    }
    rc = sqlite3OsRead(master, zMasterJournal, nMasterJournal);
    if( rc!=SQLITE_OK ) goto delmaster_out;

    zJournal = zMasterJournal;
    while( (zJournal-zMasterJournal)<nMasterJournal ){
      if( sqlite3OsFileExists(zJournal) ){
        /* One of the journals pointed to by the master journal exists.
        ** Open it and check if it points at the master journal. If
        ** so, return without deleting the master journal file.
        */
        OsFile *journal = 0;
        int c;

        rc = sqlite3OsOpenReadOnly(zJournal, &journal);
        assert( rc!=SQLITE_OK || journal );
        if( rc!=SQLITE_OK ){
          goto delmaster_out;
        }

        rc = readMasterJournal(journal, &zMasterPtr);
        sqlite3OsClose(&journal);
        if( rc!=SQLITE_OK ){
          goto delmaster_out;
        }

        c = zMasterPtr!=0 && strcmp(zMasterPtr, zMaster)==0;
        sqliteFree(zMasterPtr);
        if( c ){
          /* We have a match. Do not delete the master journal file. */
          goto delmaster_out;
        }
      }
      zJournal += (strlen(zJournal)+1);
    }
  }
  
  rc = sqlite3OsDelete(zMaster);

delmaster_out:
  if( zMasterJournal ){
    sqliteFree(zMasterJournal);
  }  
  if( master_open ){
    sqlite3OsClose(&master);
  }
  return rc;
}


static void pager_truncate_cache(Pager *pPager);

/*
** Truncate the main file of the given pager to the number of pages
** indicated. Also truncate the cached representation of the file.
*/
static int pager_truncate(Pager *pPager, int nPage){
  int rc = SQLITE_OK;
  if( pPager->state>=PAGER_EXCLUSIVE ){
    rc = sqlite3OsTruncate(pPager->fd, pPager->pageSize*(i64)nPage);
  }
  if( rc==SQLITE_OK ){
    pPager->dbSize = nPage;
    pager_truncate_cache(pPager);
  }
  return rc;
}

/*
** Playback the journal and thus restore the database file to
** the state it was in before we started making changes.  
**
** The journal file format is as follows: 
**
**  (1)  8 byte prefix.  A copy of aJournalMagic[].
**  (2)  4 byte big-endian integer which is the number of valid page records
**       in the journal.  If this value is 0xffffffff, then compute the
**       number of page records from the journal size.
**  (3)  4 byte big-endian integer which is the initial value for the 
**       sanity checksum.
**  (4)  4 byte integer which is the number of pages to truncate the
**       database to during a rollback.
**  (5)  4 byte integer which is the number of bytes in the master journal
**       name.  The value may be zero (indicate that there is no master
**       journal.)
**  (6)  N bytes of the master journal name.  The name will be nul-terminated
**       and might be shorter than the value read from (5).  If the first byte
**       of the name is \000 then there is no master journal.  The master
**       journal name is stored in UTF-8.
**  (7)  Zero or more pages instances, each as follows:
**        +  4 byte page number.
**        +  pPager->pageSize bytes of data.
**        +  4 byte checksum
**
** When we speak of the journal header, we mean the first 6 items above.
** Each entry in the journal is an instance of the 7th item.
**
** Call the value from the second bullet "nRec".  nRec is the number of
** valid page entries in the journal.  In most cases, you can compute the
** value of nRec from the size of the journal file.  But if a power
** failure occurred while the journal was being written, it could be the
** case that the size of the journal file had already been increased but
** the extra entries had not yet made it safely to disk.  In such a case,
** the value of nRec computed from the file size would be too large.  For
** that reason, we always use the nRec value in the header.
**
** If the nRec value is 0xffffffff it means that nRec should be computed
** from the file size.  This value is used when the user selects the
** no-sync option for the journal.  A power failure could lead to corruption
** in this case.  But for things like temporary table (which will be
** deleted when the power is restored) we don't care.  
**
** If the file opened as the journal file is not a well-formed
** journal file then all pages up to the first corrupted page are rolled
** back (or no pages if the journal header is corrupted). The journal file
** is then deleted and SQLITE_OK returned, just as if no corruption had
** been encountered.
**
** If an I/O or malloc() error occurs, the journal-file is not deleted
** and an error code is returned.
*/
static int pager_playback(Pager *pPager, int isHot){
  i64 szJ;                 /* Size of the journal file in bytes */
  u32 nRec;                /* Number of Records in the journal */
  int i;                   /* Loop counter */
  Pgno mxPg = 0;           /* Size of the original file in pages */
  int rc;                  /* Result code of a subroutine */
  char *zMaster = 0;       /* Name of master journal file if any */

  /* Figure out how many records are in the journal.  Abort early if
  ** the journal is empty.
  */
  assert( pPager->journalOpen );
  rc = sqlite3OsFileSize(pPager->jfd, &szJ);
  if( rc!=SQLITE_OK || szJ==0 ){
    goto end_playback;
  }

  /* Read the master journal name from the journal, if it is present.
  ** If a master journal file name is specified, but the file is not
  ** present on disk, then the journal is not hot and does not need to be
  ** played back.
  */
  rc = readMasterJournal(pPager->jfd, &zMaster);
  assert( rc!=SQLITE_DONE );
  if( rc!=SQLITE_OK || (zMaster && !sqlite3OsFileExists(zMaster)) ){
    sqliteFree(zMaster);
    zMaster = 0;
    if( rc==SQLITE_DONE ) rc = SQLITE_OK;
    goto end_playback;
  }
  sqlite3OsSeek(pPager->jfd, 0);
  pPager->journalOff = 0;

  /* This loop terminates either when the readJournalHdr() call returns
  ** SQLITE_DONE or an IO error occurs. */
  while( 1 ){

    /* Read the next journal header from the journal file.  If there are
    ** not enough bytes left in the journal file for a complete header, or
    ** it is corrupted, then a process must of failed while writing it.
    ** This indicates nothing more needs to be rolled back.
    */
    rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
    if( rc!=SQLITE_OK ){ 
      if( rc==SQLITE_DONE ){
        rc = SQLITE_OK;
      }
      goto end_playback;
    }

    /* If nRec is 0xffffffff, then this journal was created by a process
    ** working in no-sync mode. This means that the rest of the journal
    ** file consists of pages, there are no more journal headers. Compute
    ** the value of nRec based on this assumption.
    */
    if( nRec==0xffffffff ){
      assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
      nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
    }

    /* If nRec is 0 and this rollback is of a transaction created by this
    ** process. In this case the rest of the journal file consists of
    ** journalled copies of pages that need to be read back into the cache.
    */
    if( nRec==0 && !isHot ){
      nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
    }

    /* If this is the first header read from the journal, truncate the
    ** database file back to it's original size.
    */
    if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
      rc = pager_truncate(pPager, mxPg);
      if( rc!=SQLITE_OK ){
        goto end_playback;
      }
    }

    /* Copy original pages out of the journal and back into the database file.
    */
    for(i=0; i<nRec; i++){
      rc = pager_playback_one_page(pPager, pPager->jfd, 1);
      if( rc!=SQLITE_OK ){
        if( rc==SQLITE_DONE ){
          rc = SQLITE_OK;
          pPager->journalOff = szJ;
          break;
        }else{
          goto end_playback;
        }
      }
    }
  }
  /*NOTREACHED*/
  assert( 0 );

end_playback:
  if( rc==SQLITE_OK ){
    rc = pager_end_transaction(pPager);
  }
  if( zMaster ){
    /* If there was a master journal and this routine will return success,
    ** see if it is possible to delete the master journal.
    */
    if( rc==SQLITE_OK ){
      rc = pager_delmaster(zMaster);
    }
    sqliteFree(zMaster);
  }

  /* The Pager.sectorSize variable may have been updated while rolling
  ** back a journal created by a process with a different sector size
  ** value. Reset it to the correct value for this process.
  */
  pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
  return rc;
}

/*
** Playback the statement journal.
**
** This is similar to playing back the transaction journal but with
** a few extra twists.
**
**    (1)  The number of pages in the database file at the start of
**         the statement is stored in pPager->stmtSize, not in the
**         journal file itself.
**
**    (2)  In addition to playing back the statement journal, also
**         playback all pages of the transaction journal beginning
**         at offset pPager->stmtJSize.
*/
static int pager_stmt_playback(Pager *pPager){
  i64 szJ;                 /* Size of the full journal */
  i64 hdrOff;
  int nRec;                /* Number of Records */
  int i;                   /* Loop counter */
  int rc;

  szJ = pPager->journalOff;
#ifndef NDEBUG 
  {
    i64 os_szJ;
    rc = sqlite3OsFileSize(pPager->jfd, &os_szJ);
    if( rc!=SQLITE_OK ) return rc;
    assert( szJ==os_szJ );
  }
#endif

  /* Set hdrOff to be the offset just after the end of the last journal
  ** page written before the first journal-header for this statement
  ** transaction was written, or the end of the file if no journal
  ** header was written.
  */
  hdrOff = pPager->stmtHdrOff;
  assert( pPager->fullSync || !hdrOff );
  if( !hdrOff ){
    hdrOff = szJ;
  }
  
  /* Truncate the database back to its original size.
  */
  rc = pager_truncate(pPager, pPager->stmtSize);
  assert( pPager->state>=PAGER_SHARED );

  /* Figure out how many records are in the statement journal.
  */
  assert( pPager->stmtInUse && pPager->journalOpen );
  sqlite3OsSeek(pPager->stfd, 0);
  nRec = pPager->stmtNRec;
  
  /* Copy original pages out of the statement journal and back into the
  ** database file.  Note that the statement journal omits checksums from
  ** each record since power-failure recovery is not important to statement
  ** journals.
  */
  for(i=nRec-1; i>=0; i--){
    rc = pager_playback_one_page(pPager, pPager->stfd, 0);
    assert( rc!=SQLITE_DONE );
    if( rc!=SQLITE_OK ) goto end_stmt_playback;
  }

  /* Now roll some pages back from the transaction journal. Pager.stmtJSize
  ** was the size of the journal file when this statement was started, so
  ** everything after that needs to be rolled back, either into the
  ** database, the memory cache, or both.
  **
  ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
  ** of the first journal header written during this statement transaction.
  */
  rc = sqlite3OsSeek(pPager->jfd, pPager->stmtJSize);
  if( rc!=SQLITE_OK ){
    goto end_stmt_playback;
  }
  pPager->journalOff = pPager->stmtJSize;
  pPager->cksumInit = pPager->stmtCksum;
  while( pPager->journalOff < hdrOff ){
    rc = pager_playback_one_page(pPager, pPager->jfd, 1);
    assert( rc!=SQLITE_DONE );
    if( rc!=SQLITE_OK ) goto end_stmt_playback;
  }

  while( pPager->journalOff < szJ ){
    u32 nJRec;         /* Number of Journal Records */
    u32 dummy;
    rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
    if( rc!=SQLITE_OK ){
      assert( rc!=SQLITE_DONE );
      goto end_stmt_playback;
    }
    if( nJRec==0 ){
      nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
    }
    for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
      rc = pager_playback_one_page(pPager, pPager->jfd, 1);
      assert( rc!=SQLITE_DONE );
      if( rc!=SQLITE_OK ) goto end_stmt_playback;
    }
  }

  pPager->journalOff = szJ;
  
end_stmt_playback:
  if( rc==SQLITE_OK) {
    pPager->journalOff = szJ;
    /* pager_reload_cache(pPager); */
  }
  return rc;
}

/*
** Change the maximum number of in-memory pages that are allowed.
*/
void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
  if( mxPage>10 ){
    pPager->mxPage = mxPage;
  }else{
    pPager->mxPage = 10;
  }
}

/*
** Adjust the robustness of the database to damage due to OS crashes
** or power failures by changing the number of syncs()s when writing
** the rollback journal.  There are three levels:
**
**    OFF       sqlite3OsSync() is never called.  This is the default
**              for temporary and transient files.
**
**    NORMAL    The journal is synced once before writes begin on the
**              database.  This is normally adequate protection, but
**              it is theoretically possible, though very unlikely,
**              that an inopertune power failure could leave the journal
**              in a state which would cause damage to the database
**              when it is rolled back.
**
**    FULL      The journal is synced twice before writes begin on the
**              database (with some additional information - the nRec field
**              of the journal header - being written in between the two
**              syncs).  If we assume that writing a
**              single disk sector is atomic, then this mode provides
**              assurance that the journal will not be corrupted to the
**              point of causing damage to the database during rollback.
**
** Numeric values associated with these states are OFF==1, NORMAL=2,
** and FULL=3.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
  pPager->noSync =  level==1 || pPager->tempFile;
  pPager->fullSync = level==3 && !pPager->tempFile;
  pPager->full_fsync = full_fsync;
  if( pPager->noSync ) pPager->needSync = 0;
}
#endif

/*
** The following global variable is incremented whenever the library
** attempts to open a temporary file.  This information is used for
** testing and analysis only.  
*/
#ifdef SQLITE_TEST
int sqlite3_opentemp_count = 0;
#endif

/*
** Open a temporary file. 
**
** Write the file descriptor into *fd.  Return SQLITE_OK on success or some
** other error code if we fail.
**
** The OS will automatically delete the temporary file when it is
** closed.
*/
static int sqlite3PagerOpentemp(OsFile **pFd){
  int cnt = 8;
  int rc;
  char zFile[SQLITE_TEMPNAME_SIZE];

#ifdef SQLITE_TEST
  sqlite3_opentemp_count++;  /* Used for testing and analysis only */
#endif
  do{
    cnt--;
    sqlite3OsTempFileName(zFile);
    rc = sqlite3OsOpenExclusive(zFile, pFd, 1);
    assert( rc!=SQLITE_OK || *pFd );
  }while( cnt>0 && rc!=SQLITE_OK && rc!=SQLITE_NOMEM );
  return rc;
}

/*
** Create a new page cache and put a pointer to the page cache in *ppPager.
** The file to be cached need not exist.  The file is not locked until
** the first call to sqlite3PagerGet() and is only held open until the
** last page is released using sqlite3PagerUnref().
**
** If zFilename is NULL then a randomly-named temporary file is created
** and used as the file to be cached.  The file will be deleted
** automatically when it is closed.
**
** If zFilename is ":memory:" then all information is held in cache.
** It is never written to disk.  This can be used to implement an
** in-memory database.
*/
int sqlite3PagerOpen(
  Pager **ppPager,         /* Return the Pager structure here */
  const char *zFilename,   /* Name of the database file to open */
  int nExtra,              /* Extra bytes append to each in-memory page */
  int flags                /* flags controlling this file */
){
  Pager *pPager = 0;
  char *zFullPathname = 0;
  int nameLen;  /* Compiler is wrong. This is always initialized before use */
  OsFile *fd = 0;
  int rc = SQLITE_OK;
  int i;
  int tempFile = 0;
  int memDb = 0;
  int readOnly = 0;
  int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
  int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
  char zTemp[SQLITE_TEMPNAME_SIZE];
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  /* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to 
  ** malloc() must have already been made by this thread before it gets
  ** to this point. This means the ThreadData must have been allocated already
  ** so that ThreadData.nAlloc can be set. It would be nice to assert
  ** that ThreadData.nAlloc is non-zero, but alas this breaks test cases 
  ** written to invoke the pager directly.
  */
  ThreadData *pTsd = sqlite3ThreadData();
  assert( pTsd );
#endif

  /* We used to test if malloc() had already failed before proceeding. 
  ** But the way this function is used in SQLite means that can never
  ** happen. Furthermore, if the malloc-failed flag is already set, 
  ** either the call to sqliteStrDup() or sqliteMalloc() below will
  ** fail shortly and SQLITE_NOMEM returned anyway.
  */
  *ppPager = 0;

  /* Open the pager file and set zFullPathname to point at malloc()ed 
  ** memory containing the complete filename (i.e. including the directory).
  */
  if( zFilename && zFilename[0] ){
#ifndef SQLITE_OMIT_MEMORYDB
    if( strcmp(zFilename,":memory:")==0 ){
      memDb = 1;
      zFullPathname = sqliteStrDup("");
    }else
#endif
    {
      zFullPathname = sqlite3OsFullPathname(zFilename);
      if( zFullPathname ){
        rc = sqlite3OsOpenReadWrite(zFullPathname, &fd, &readOnly);
        assert( rc!=SQLITE_OK || fd );
      }
    }
  }else{
    rc = sqlite3PagerOpentemp(&fd);
    sqlite3OsTempFileName(zTemp);
    zFilename = zTemp;
    zFullPathname = sqlite3OsFullPathname(zFilename);
    if( rc==SQLITE_OK ){
      tempFile = 1;
    }
  }

  /* Allocate the Pager structure. As part of the same allocation, allocate
  ** space for the full paths of the file, directory and journal 
  ** (Pager.zFilename, Pager.zDirectory and Pager.zJournal).
  */
  if( zFullPathname ){
    nameLen = strlen(zFullPathname);
    pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 );
    if( pPager && rc==SQLITE_OK ){
      pPager->pTmpSpace = (char *)sqliteMallocRaw(SQLITE_DEFAULT_PAGE_SIZE);
    }
  }


  /* If an error occured in either of the blocks above, free the memory 
  ** pointed to by zFullPathname, free the Pager structure and close the 
  ** file. Since the pager is not allocated there is no need to set 
  ** any Pager.errMask variables.
  */
  if( !pPager || !zFullPathname || !pPager->pTmpSpace || rc!=SQLITE_OK ){
    sqlite3OsClose(&fd);
    sqliteFree(zFullPathname);
    sqliteFree(pPager);
    return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
  }

  PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(fd), zFullPathname);
  IOTRACE(("OPEN %p %s\n", pPager, zFullPathname))
  pPager->zFilename = (char*)&pPager[1];
  pPager->zDirectory = &pPager->zFilename[nameLen+1];
  pPager->zJournal = &pPager->zDirectory[nameLen+1];
  strcpy(pPager->zFilename, zFullPathname);
  strcpy(pPager->zDirectory, zFullPathname);

  for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){}
  if( i>0 ) pPager->zDirectory[i-1] = 0;
  strcpy(pPager->zJournal, zFullPathname);
  sqliteFree(zFullPathname);
  strcpy(&pPager->zJournal[nameLen], "-journal");
  pPager->fd = fd;
  /* pPager->journalOpen = 0; */
  pPager->useJournal = useJournal && !memDb;
  pPager->noReadlock = noReadlock && readOnly;
  /* pPager->stmtOpen = 0; */
  /* pPager->stmtInUse = 0; */
  /* pPager->nRef = 0; */
  pPager->dbSize = memDb-1;
  pPager->pageSize = SQLITE_DEFAULT_PAGE_SIZE;
  /* pPager->stmtSize = 0; */
  /* pPager->stmtJSize = 0; */
  /* pPager->nPage = 0; */
  /* pPager->nMaxPage = 0; */
  pPager->mxPage = 100;
  assert( PAGER_UNLOCK==0 );
  /* pPager->state = PAGER_UNLOCK; */
  /* pPager->errMask = 0; */
  pPager->tempFile = tempFile;
  assert( tempFile==PAGER_LOCKINGMODE_NORMAL 
          || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
  assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
  pPager->exclusiveMode = tempFile; 
  pPager->memDb = memDb;
  pPager->readOnly = readOnly;
  /* pPager->needSync = 0; */
  pPager->noSync = pPager->tempFile || !useJournal;
  pPager->fullSync = (pPager->noSync?0:1);
  /* pPager->pFirst = 0; */
  /* pPager->pFirstSynced = 0; */
  /* pPager->pLast = 0; */
  pPager->nExtra = FORCE_ALIGNMENT(nExtra);
  assert(fd||memDb);
  if( !memDb ){
    pPager->sectorSize = sqlite3OsSectorSize(fd);
  }
  /* pPager->pBusyHandler = 0; */
  /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
  *ppPager = pPager;
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  pPager->pNext = pTsd->pPager;
  pTsd->pPager = pPager;
#endif
  return SQLITE_OK;
}

/*
** Set the busy handler function.
*/
void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
  pPager->pBusyHandler = pBusyHandler;
}

/*
** Set the destructor for this pager.  If not NULL, the destructor is called
** when the reference count on each page reaches zero.  The destructor can
** be used to clean up information in the extra segment appended to each page.
**
** The destructor is not called as a result sqlite3PagerClose().  
** Destructors are only called by sqlite3PagerUnref().
*/
void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
  pPager->xDestructor = xDesc;
}

/*
** Set the reinitializer for this pager.  If not NULL, the reinitializer
** is called when the content of a page in cache is restored to its original
** value as a result of a rollback.  The callback gives higher-level code
** an opportunity to restore the EXTRA section to agree with the restored
** page data.
*/
void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
  pPager->xReiniter = xReinit;
}

/*
** Set the page size.  Return the new size.  If the suggest new page
** size is inappropriate, then an alternative page size is selected
** and returned.
*/
int sqlite3PagerSetPagesize(Pager *pPager, int pageSize){
  assert( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE );
  if( !pPager->memDb && pPager->nRef==0 ){
    pager_reset(pPager);
    pPager->pageSize = pageSize;
    pPager->pTmpSpace = sqlite3ReallocOrFree(pPager->pTmpSpace, pageSize);
  }
  return pPager->pageSize;
}

/*
** The following set of routines are used to disable the simulated
** I/O error mechanism.  These routines are used to avoid simulated
** errors in places where we do not care about errors.
**
** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
** and generate no code.
*/
#ifdef SQLITE_TEST
extern int sqlite3_io_error_pending;
extern int sqlite3_io_error_hit;
static int saved_cnt;
void disable_simulated_io_errors(void){
  saved_cnt = sqlite3_io_error_pending;
  sqlite3_io_error_pending = -1;
}
void enable_simulated_io_errors(void){
  sqlite3_io_error_pending = saved_cnt;
}
#else
# define disable_simulated_io_errors()
# define enable_simulated_io_errors()
#endif

/*
** Read the first N bytes from the beginning of the file into memory
** that pDest points to. 
**
** No error checking is done. The rational for this is that this function 
** may be called even if the file does not exist or contain a header. In 
** these cases sqlite3OsRead() will return an error, to which the correct 
** response is to zero the memory at pDest and continue.  A real IO error 
** will presumably recur and be picked up later (Todo: Think about this).
*/
int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
  int rc = SQLITE_OK;
  memset(pDest, 0, N);
  if( MEMDB==0 ){
    disable_simulated_io_errors();
    sqlite3OsSeek(pPager->fd, 0);
    enable_simulated_io_errors();
    IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
    rc = sqlite3OsRead(pPager->fd, pDest, N);
    if( rc==SQLITE_IOERR_SHORT_READ ){
      rc = SQLITE_OK;
    }
  }
  return rc;
}

/*
** Return the total number of pages in the disk file associated with
** pPager. 
**
** If the PENDING_BYTE lies on the page directly after the end of the
** file, then consider this page part of the file too. For example, if
** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
** file is 4096 bytes, 5 is returned instead of 4.
*/
int sqlite3PagerPagecount(Pager *pPager){
  i64 n;
  int rc;
  assert( pPager!=0 );
  if( pPager->errCode ){
    return 0;
  }
  if( pPager->dbSize>=0 ){
    n = pPager->dbSize;
  } else {
    if( (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
      pager_error(pPager, rc);
      return 0;
    }
    if( n>0 && n<pPager->pageSize ){
      n = 1;
    }else{
      n /= pPager->pageSize;
    }
    if( pPager->state!=PAGER_UNLOCK ){
      pPager->dbSize = n;
    }
  }
  if( n==(PENDING_BYTE/pPager->pageSize) ){
    n++;
  }
  return n;
}


#ifndef SQLITE_OMIT_MEMORYDB
/*
** Clear a PgHistory block
*/
static void clearHistory(PgHistory *pHist){
  sqliteFree(pHist->pOrig);
  sqliteFree(pHist->pStmt);
  pHist->pOrig = 0;
  pHist->pStmt = 0;
}
#else
#define clearHistory(x)
#endif

/*
** Forward declaration
*/
static int syncJournal(Pager*);

/*
** Unlink pPg from it's hash chain. Also set the page number to 0 to indicate
** that the page is not part of any hash chain. This is required because the
** sqlite3PagerMovepage() routine can leave a page in the 
** pNextFree/pPrevFree list that is not a part of any hash-chain.
*/
static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
  if( pPg->pgno==0 ){
    assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
    return;
  }
  if( pPg->pNextHash ){
    pPg->pNextHash->pPrevHash = pPg->pPrevHash;
  }
  if( pPg->pPrevHash ){
    assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
    pPg->pPrevHash->pNextHash = pPg->pNextHash;
  }else{
    int h = pPg->pgno & (pPager->nHash-1);
    pPager->aHash[h] = pPg->pNextHash;
  }
  if( MEMDB ){
    clearHistory(PGHDR_TO_HIST(pPg, pPager));
  }
  pPg->pgno = 0;
  pPg->pNextHash = pPg->pPrevHash = 0;
}

/*
** Unlink a page from the free list (the list of all pages where nRef==0)
** and from its hash collision chain.
*/
static void unlinkPage(PgHdr *pPg){
  Pager *pPager = pPg->pPager;

  /* Keep the pFirstSynced pointer pointing at the first synchronized page */
  if( pPg==pPager->pFirstSynced ){
    PgHdr *p = pPg->pNextFree;
    while( p && p->needSync ){ p = p->pNextFree; }
    pPager->pFirstSynced = p;
  }

  /* Unlink from the freelist */
  if( pPg->pPrevFree ){
    pPg->pPrevFree->pNextFree = pPg->pNextFree;
  }else{
    assert( pPager->pFirst==pPg );
    pPager->pFirst = pPg->pNextFree;
  }
  if( pPg->pNextFree ){
    pPg->pNextFree->pPrevFree = pPg->pPrevFree;
  }else{
    assert( pPager->pLast==pPg );
    pPager->pLast = pPg->pPrevFree;
  }
  pPg->pNextFree = pPg->pPrevFree = 0;

  /* Unlink from the pgno hash table */
  unlinkHashChain(pPager, pPg);
}

/*
** This routine is used to truncate the cache when a database
** is truncated.  Drop from the cache all pages whose pgno is
** larger than pPager->dbSize and is unreferenced.
**
** Referenced pages larger than pPager->dbSize are zeroed.
**
** Actually, at the point this routine is called, it would be
** an error to have a referenced page.  But rather than delete
** that page and guarantee a subsequent segfault, it seems better
** to zero it and hope that we error out sanely.
*/
static void pager_truncate_cache(Pager *pPager){
  PgHdr *pPg;
  PgHdr **ppPg;
  int dbSize = pPager->dbSize;

  ppPg = &pPager->pAll;
  while( (pPg = *ppPg)!=0 ){
    if( pPg->pgno<=dbSize ){
      ppPg = &pPg->pNextAll;
    }else if( pPg->nRef>0 ){
      memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
      ppPg = &pPg->pNextAll;
    }else{
      *ppPg = pPg->pNextAll;
      IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
      PAGER_INCR(sqlite3_pager_pgfree_count);
      unlinkPage(pPg);
      makeClean(pPg);
      sqliteFree(pPg);
      pPager->nPage--;
    }
  }
}

/*
** Try to obtain a lock on a file.  Invoke the busy callback if the lock
** is currently not available.  Repeat until the busy callback returns
** false or until the lock succeeds.
**
** Return SQLITE_OK on success and an error code if we cannot obtain
** the lock.
*/
static int pager_wait_on_lock(Pager *pPager, int locktype){
  int rc;

  /* The OS lock values must be the same as the Pager lock values */
  assert( PAGER_SHARED==SHARED_LOCK );
  assert( PAGER_RESERVED==RESERVED_LOCK );
  assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );

  /* If the file is currently unlocked then the size must be unknown */
  assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );

  if( pPager->state>=locktype ){
    rc = SQLITE_OK;
  }else{
    do {
      rc = sqlite3OsLock(pPager->fd, locktype);
    }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
    if( rc==SQLITE_OK ){
      pPager->state = locktype;
      IOTRACE(("LOCK %p %d\n", pPager, locktype))
    }
  }
  return rc;
}

/*
** Truncate the file to the number of pages specified.
*/
int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
  int rc;
  assert( pPager->state>=PAGER_SHARED || MEMDB );
  sqlite3PagerPagecount(pPager);
  if( pPager->errCode ){
    rc = pPager->errCode;
    return rc;
  }
  if( nPage>=(unsigned)pPager->dbSize ){
    return SQLITE_OK;
  }
  if( MEMDB ){
    pPager->dbSize = nPage;
    pager_truncate_cache(pPager);
    return SQLITE_OK;
  }
  rc = syncJournal(pPager);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* Get an exclusive lock on the database before truncating. */
  rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  rc = pager_truncate(pPager, nPage);
  return rc;
}

/*
** Shutdown the page cache.  Free all memory and close all files.
**
** If a transaction was in progress when this routine is called, that
** transaction is rolled back.  All outstanding pages are invalidated
** and their memory is freed.  Any attempt to use a page associated
** with this page cache after this function returns will likely
** result in a coredump.
**
** This function always succeeds. If a transaction is active an attempt
** is made to roll it back. If an error occurs during the rollback 
** a hot journal may be left in the filesystem but no error is returned
** to the caller.
*/
int sqlite3PagerClose(Pager *pPager){
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  /* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to 
  ** malloc() must have already been made by this thread before it gets
  ** to this point. This means the ThreadData must have been allocated already
  ** so that ThreadData.nAlloc can be set.
  */
  ThreadData *pTsd = sqlite3ThreadData();
  assert( pPager );
  assert( pTsd && pTsd->nAlloc );
#endif

  disable_simulated_io_errors();
  pPager->errCode = 0;
  pPager->exclusiveMode = 0;
  pager_reset(pPager);
  pagerUnlockAndRollback(pPager);
  enable_simulated_io_errors();
  PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
  IOTRACE(("CLOSE %p\n", pPager))
  assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) );
  if( pPager->journalOpen ){
    sqlite3OsClose(&pPager->jfd);
  }
  sqliteFree(pPager->aInJournal);
  if( pPager->stmtOpen ){
    sqlite3OsClose(&pPager->stfd);
  }
  sqlite3OsClose(&pPager->fd);
  /* Temp files are automatically deleted by the OS
  ** if( pPager->tempFile ){
  **   sqlite3OsDelete(pPager->zFilename);
  ** }
  */

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  /* Remove the pager from the linked list of pagers starting at 
  ** ThreadData.pPager if memory-management is enabled.
  */
  if( pPager==pTsd->pPager ){
    pTsd->pPager = pPager->pNext;
  }else{
    Pager *pTmp;
    for(pTmp = pTsd->pPager; pTmp->pNext!=pPager; pTmp=pTmp->pNext){}
    pTmp->pNext = pPager->pNext;
  }
#endif
  sqliteFree(pPager->aHash);
  sqliteFree(pPager->pTmpSpace);
  sqliteFree(pPager);
  return SQLITE_OK;
}

/*
** Return the page number for the given page data.
*/
Pgno sqlite3PagerPagenumber(DbPage *p){
  return p->pgno;
}

/*
** The page_ref() function increments the reference count for a page.
** If the page is currently on the freelist (the reference count is zero) then
** remove it from the freelist.
**
** For non-test systems, page_ref() is a macro that calls _page_ref()
** online of the reference count is zero.  For test systems, page_ref()
** is a real function so that we can set breakpoints and trace it.
*/
static void _page_ref(PgHdr *pPg){
  if( pPg->nRef==0 ){
    /* The page is currently on the freelist.  Remove it. */
    if( pPg==pPg->pPager->pFirstSynced ){
      PgHdr *p = pPg->pNextFree;
      while( p && p->needSync ){ p = p->pNextFree; }
      pPg->pPager->pFirstSynced = p;
    }
    if( pPg->pPrevFree ){
      pPg->pPrevFree->pNextFree = pPg->pNextFree;
    }else{
      pPg->pPager->pFirst = pPg->pNextFree;
    }
    if( pPg->pNextFree ){
      pPg->pNextFree->pPrevFree = pPg->pPrevFree;
    }else{
      pPg->pPager->pLast = pPg->pPrevFree;
    }
    pPg->pPager->nRef++;
  }
  pPg->nRef++;
  REFINFO(pPg);
}
#ifdef SQLITE_DEBUG
  static void page_ref(PgHdr *pPg){
    if( pPg->nRef==0 ){
      _page_ref(pPg);
    }else{
      pPg->nRef++;
      REFINFO(pPg);
    }
  }
#else
# define page_ref(P)   ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
#endif

/*
** Increment the reference count for a page.  The input pointer is
** a reference to the page data.
*/
int sqlite3PagerRef(DbPage *pPg){
  page_ref(pPg);
  return SQLITE_OK;
}

/*
** Sync the journal.  In other words, make sure all the pages that have
** been written to the journal have actually reached the surface of the
** disk.  It is not safe to modify the original database file until after
** the journal has been synced.  If the original database is modified before
** the journal is synced and a power failure occurs, the unsynced journal
** data would be lost and we would be unable to completely rollback the
** database changes.  Database corruption would occur.
** 
** This routine also updates the nRec field in the header of the journal.
** (See comments on the pager_playback() routine for additional information.)
** If the sync mode is FULL, two syncs will occur.  First the whole journal
** is synced, then the nRec field is updated, then a second sync occurs.
**
** For temporary databases, we do not care if we are able to rollback
** after a power failure, so sync occurs.
**
** This routine clears the needSync field of every page current held in
** memory.
*/
static int syncJournal(Pager *pPager){
  PgHdr *pPg;
  int rc = SQLITE_OK;

  /* Sync the journal before modifying the main database
  ** (assuming there is a journal and it needs to be synced.)
  */
  if( pPager->needSync ){
    if( !pPager->tempFile ){
      assert( pPager->journalOpen );
      /* assert( !pPager->noSync ); // noSync might be set if synchronous
      ** was turned off after the transaction was started.  Ticket #615 */
#ifndef NDEBUG
      {
        /* Make sure the pPager->nRec counter we are keeping agrees
        ** with the nRec computed from the size of the journal file.
        */
        i64 jSz;
        rc = sqlite3OsFileSize(pPager->jfd, &jSz);
        if( rc!=0 ) return rc;
        assert( pPager->journalOff==jSz );
      }
#endif
      {
        /* Write the nRec value into the journal file header. If in
        ** full-synchronous mode, sync the journal first. This ensures that
        ** all data has really hit the disk before nRec is updated to mark
        ** it as a candidate for rollback. 
        */
        if( pPager->fullSync ){
          PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
          IOTRACE(("JSYNC %p\n", pPager))
          rc = sqlite3OsSync(pPager->jfd, 0);
          if( rc!=0 ) return rc;
        }
        rc = sqlite3OsSeek(pPager->jfd,
                           pPager->journalHdr + sizeof(aJournalMagic));
        if( rc ) return rc;
        IOTRACE(("JHDR %p %lld %d\n", pPager,
                  pPager->journalHdr + sizeof(aJournalMagic), 4))
        rc = write32bits(pPager->jfd, pPager->nRec);
        if( rc ) return rc;

        rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff);
        if( rc ) return rc;
      }
      PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
      IOTRACE(("JSYNC %d\n", pPager))
      rc = sqlite3OsSync(pPager->jfd, pPager->full_fsync);
      if( rc!=0 ) return rc;
      pPager->journalStarted = 1;
    }
    pPager->needSync = 0;

    /* Erase the needSync flag from every page.
    */
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      pPg->needSync = 0;
    }
    pPager->pFirstSynced = pPager->pFirst;
  }

#ifndef NDEBUG
  /* If the Pager.needSync flag is clear then the PgHdr.needSync
  ** flag must also be clear for all pages.  Verify that this
  ** invariant is true.
  */
  else{
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      assert( pPg->needSync==0 );
    }
    assert( pPager->pFirstSynced==pPager->pFirst );
  }
#endif

  return rc;
}

/*
** Merge two lists of pages connected by pDirty and in pgno order.
** Do not both fixing the pPrevDirty pointers.
*/
static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
  PgHdr result, *pTail;
  pTail = &result;
  while( pA && pB ){
    if( pA->pgno<pB->pgno ){
      pTail->pDirty = pA;
      pTail = pA;
      pA = pA->pDirty;
    }else{
      pTail->pDirty = pB;
      pTail = pB;
      pB = pB->pDirty;
    }
  }
  if( pA ){
    pTail->pDirty = pA;
  }else if( pB ){
    pTail->pDirty = pB;
  }else{
    pTail->pDirty = 0;
  }
  return result.pDirty;
}

/*
** Sort the list of pages in accending order by pgno.  Pages are
** connected by pDirty pointers.  The pPrevDirty pointers are
** corrupted by this sort.
*/
#define N_SORT_BUCKET_ALLOC 25
#define N_SORT_BUCKET       25
#ifdef SQLITE_TEST
  int sqlite3_pager_n_sort_bucket = 0;
  #undef N_SORT_BUCKET
  #define N_SORT_BUCKET \
   (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
#endif
static PgHdr *sort_pagelist(PgHdr *pIn){
  PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
  int i;
  memset(a, 0, sizeof(a));
  while( pIn ){
    p = pIn;
    pIn = p->pDirty;
    p->pDirty = 0;
    for(i=0; i<N_SORT_BUCKET-1; i++){
      if( a[i]==0 ){
        a[i] = p;
        break;
      }else{
        p = merge_pagelist(a[i], p);
        a[i] = 0;
      }
    }
    if( i==N_SORT_BUCKET-1 ){
      /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET) 
      ** elements in the input list. This is possible, but impractical.
      ** Testing this line is the point of global variable
      ** sqlite3_pager_n_sort_bucket.
      */
      a[i] = merge_pagelist(a[i], p);
    }
  }
  p = a[0];
  for(i=1; i<N_SORT_BUCKET; i++){
    p = merge_pagelist(p, a[i]);
  }
  return p;
}

/*
** Given a list of pages (connected by the PgHdr.pDirty pointer) write
** every one of those pages out to the database file and mark them all
** as clean.
*/
static int pager_write_pagelist(PgHdr *pList){
  Pager *pPager;
  int rc;

  if( pList==0 ) return SQLITE_OK;
  pPager = pList->pPager;

  /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
  ** database file. If there is already an EXCLUSIVE lock, the following
  ** calls to sqlite3OsLock() are no-ops.
  **
  ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
  ** through an intermediate state PENDING.   A PENDING lock prevents new
  ** readers from attaching to the database but is unsufficient for us to
  ** write.  The idea of a PENDING lock is to prevent new readers from
  ** coming in while we wait for existing readers to clear.
  **
  ** While the pager is in the RESERVED state, the original database file
  ** is unchanged and we can rollback without having to playback the
  ** journal into the original database file.  Once we transition to
  ** EXCLUSIVE, it means the database file has been changed and any rollback
  ** will require a journal playback.
  */
  rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  pList = sort_pagelist(pList);
  while( pList ){
    assert( pList->dirty );
    rc = sqlite3OsSeek(pPager->fd, (pList->pgno-1)*(i64)pPager->pageSize);
    if( rc ) return rc;
    /* If there are dirty pages in the page cache with page numbers greater
    ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
    ** make the file smaller (presumably by auto-vacuum code). Do not write
    ** any such pages to the file.
    */
    if( pList->pgno<=pPager->dbSize ){
      char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
      PAGERTRACE3("STORE %d page %d\n", PAGERID(pPager), pList->pgno);
      IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
      rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize);
      PAGER_INCR(sqlite3_pager_writedb_count);
      PAGER_INCR(pPager->nWrite);
      if( pList->pgno==1 ){
        memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
      }
    }
#ifndef NDEBUG
    else{
      PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
    }
#endif
    if( rc ) return rc;
    pList->dirty = 0;
#ifdef SQLITE_CHECK_PAGES
    pList->pageHash = pager_pagehash(pList);
#endif
    pList = pList->pDirty;
  }
  return SQLITE_OK;
}

/*
** Collect every dirty page into a dirty list and
** return a pointer to the head of that list.  All pages are
** collected even if they are still in use.
*/
static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
  return pPager->pDirty;
}

/*
** Return TRUE if there is a hot journal on the given pager.
** A hot journal is one that needs to be played back.
**
** If the current size of the database file is 0 but a journal file
** exists, that is probably an old journal left over from a prior
** database with the same name.  Just delete the journal.
*/
static int hasHotJournal(Pager *pPager){
  if( !pPager->useJournal ) return 0;
  if( !sqlite3OsFileExists(pPager->zJournal) ){
    return 0;
  }
  if( sqlite3OsCheckReservedLock(pPager->fd) ){
    return 0;
  }
  if( sqlite3PagerPagecount(pPager)==0 ){
    sqlite3OsDelete(pPager->zJournal);
    return 0;
  }else{
    return 1;
  }
}

/*
** Try to find a page in the cache that can be recycled. 
**
** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It 
** does not set the pPager->errCode variable.
*/
static int pager_recycle(Pager *pPager, int syncOk, PgHdr **ppPg){
  PgHdr *pPg;
  *ppPg = 0;

  assert(!MEMDB);

  /* Find a page to recycle.  Try to locate a page that does not
  ** require us to do an fsync() on the journal.
  */
  pPg = pPager->pFirstSynced;

  /* If we could not find a page that does not require an fsync()
  ** on the journal file then fsync the journal file.  This is a
  ** very slow operation, so we work hard to avoid it.  But sometimes
  ** it can't be helped.
  */
  if( pPg==0 && pPager->pFirst && syncOk && !MEMDB){
    int rc = syncJournal(pPager);
    if( rc!=0 ){
      return rc;
    }
    if( pPager->fullSync ){
      /* If in full-sync mode, write a new journal header into the
      ** journal file. This is done to avoid ever modifying a journal
      ** header that is involved in the rollback of pages that have
      ** already been written to the database (in case the header is
      ** trashed when the nRec field is updated).
      */
      pPager->nRec = 0;
      assert( pPager->journalOff > 0 );
      assert( pPager->doNotSync==0 );
      rc = writeJournalHdr(pPager);
      if( rc!=0 ){
        return rc;
      }
    }
    pPg = pPager->pFirst;
  }
  if( pPg==0 ){
    return SQLITE_OK;
  }

  assert( pPg->nRef==0 );

  /* Write the page to the database file if it is dirty.
  */
  if( pPg->dirty ){
    int rc;
    assert( pPg->needSync==0 );
    makeClean(pPg);
    pPg->dirty = 1;
    pPg->pDirty = 0;
    rc = pager_write_pagelist( pPg );
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }
  assert( pPg->dirty==0 );

  /* If the page we are recycling is marked as alwaysRollback, then
  ** set the global alwaysRollback flag, thus disabling the
  ** sqlite3PagerDontRollback() optimization for the rest of this transaction.
  ** It is necessary to do this because the page marked alwaysRollback
  ** might be reloaded at a later time but at that point we won't remember
  ** that is was marked alwaysRollback.  This means that all pages must
  ** be marked as alwaysRollback from here on out.
  */
  if( pPg->alwaysRollback ){
    IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
    pPager->alwaysRollback = 1;
  }

  /* Unlink the old page from the free list and the hash table
  */
  unlinkPage(pPg);
  assert( pPg->pgno==0 );

  *ppPg = pPg;
  return SQLITE_OK;
}

/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqliteFree()ed.
**
** nReq is the number of bytes of memory required. Once this much has
** been released, the function returns. A negative value for nReq means
** free as much memory as possible. The return value is the total number 
** of bytes of memory released.
*/
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
int sqlite3PagerReleaseMemory(int nReq){
  const ThreadData *pTsdro = sqlite3ThreadDataReadOnly();
  int nReleased = 0;
  int i;

  /* If the the global mutex is held, this subroutine becomes a
  ** o-op; zero bytes of memory are freed.  This is because
  ** some of the code invoked by this function may also
  ** try to obtain the mutex, resulting in a deadlock.
  */
  if( sqlite3OsInMutex(0) ){
    return 0;
  }

  /* Outermost loop runs for at most two iterations. First iteration we
  ** try to find memory that can be released without calling fsync(). Second
  ** iteration (which only runs if the first failed to free nReq bytes of
  ** memory) is permitted to call fsync(). This is of course much more 
  ** expensive.
  */
  for(i=0; i<=1; i++){

    /* Loop through all the SQLite pagers opened by the current thread. */
    Pager *pPager = pTsdro->pPager;
    for( ; pPager && (nReq<0 || nReleased<nReq); pPager=pPager->pNext){
      PgHdr *pPg;
      int rc;

      if( MEMDB ){
        continue;
      }

      /* For each pager, try to free as many pages as possible (without 
      ** calling fsync() if this is the first iteration of the outermost 
      ** loop).
      */
      while( SQLITE_OK==(rc = pager_recycle(pPager, i, &pPg)) && pPg) {
        /* We've found a page to free. At this point the page has been 
        ** removed from the page hash-table, free-list and synced-list 
        ** (pFirstSynced). It is still in the all pages (pAll) list. 
        ** Remove it from this list before freeing.
        **
        ** Todo: Check the Pager.pStmt list to make sure this is Ok. It 
        ** probably is though.
        */
        PgHdr *pTmp;
        assert( pPg );
        if( pPg==pPager->pAll ){
           pPager->pAll = pPg->pNextAll;
        }else{
          for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
          pTmp->pNextAll = pPg->pNextAll;
        }
        nReleased += sqliteAllocSize(pPg);
        IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
        PAGER_INCR(sqlite3_pager_pgfree_count);
        sqliteFree(pPg);
      }

      if( rc!=SQLITE_OK ){
        /* An error occured whilst writing to the database file or 
        ** journal in pager_recycle(). The error is not returned to the 
        ** caller of this function. Instead, set the Pager.errCode variable.
        ** The error will be returned to the user (or users, in the case 
        ** of a shared pager cache) of the pager for which the error occured.
        */
        assert( (rc&0xff)==SQLITE_IOERR || rc==SQLITE_FULL );
        assert( pPager->state>=PAGER_RESERVED );
        pager_error(pPager, rc);
      }
    }
  }

  return nReleased;
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */

/*
** Read the content of page pPg out of the database file.
*/
static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
  int rc;
  assert( MEMDB==0 );
  rc = sqlite3OsSeek(pPager->fd, (pgno-1)*(i64)pPager->pageSize);
  if( rc==SQLITE_OK ){
    rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg),
                          pPager->pageSize);
  }
  PAGER_INCR(sqlite3_pager_readdb_count);
  PAGER_INCR(pPager->nRead);
  IOTRACE(("PGIN %p %d\n", pPager, pgno));
  PAGERTRACE3("FETCH %d page %d\n", PAGERID(pPager), pPg->pgno);
  if( pgno==1 ){
    memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
                                              sizeof(pPager->dbFileVers));
  }
  CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
  return rc;
}


/*
** This function is called to obtain the shared lock required before
** data may be read from the pager cache. If the shared lock has already
** been obtained, this function is a no-op.
**
** Immediately after obtaining the shared lock (if required), this function
** checks for a hot-journal file. If one is found, an emergency rollback
** is performed immediately.
*/
static int pagerSharedLock(Pager *pPager){
  int rc = SQLITE_OK;

  if( pPager->state==PAGER_UNLOCK ){
    if( !MEMDB ){
      assert( pPager->nRef==0 );
      if( !pPager->noReadlock ){
        rc = pager_wait_on_lock(pPager, SHARED_LOCK);
        if( rc!=SQLITE_OK ){
          return pager_error(pPager, rc);
        }
        assert( pPager->state>=SHARED_LOCK );
      }
  
      /* If a journal file exists, and there is no RESERVED lock on the
      ** database file, then it either needs to be played back or deleted.
      */
      if( hasHotJournal(pPager) ){
        /* Get an EXCLUSIVE lock on the database file. At this point it is
        ** important that a RESERVED lock is not obtained on the way to the
        ** EXCLUSIVE lock. If it were, another process might open the
        ** database file, detect the RESERVED lock, and conclude that the
        ** database is safe to read while this process is still rolling it 
        ** back.
        ** 
        ** Because the intermediate RESERVED lock is not requested, the
        ** second process will get to this point in the code and fail to
        ** obtain it's own EXCLUSIVE lock on the database file.
        */
        rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
        if( rc!=SQLITE_OK ){
          pager_unlock(pPager);
          return pager_error(pPager, rc);
        }
        pPager->state = PAGER_EXCLUSIVE;
 
        /* Open the journal for reading only.  Return SQLITE_BUSY if
        ** we are unable to open the journal file. 
        **
        ** The journal file does not need to be locked itself.  The
        ** journal file is never open unless the main database file holds
        ** a write lock, so there is never any chance of two or more
        ** processes opening the journal at the same time.
        **
        ** Open the journal for read/write access. This is because in 
        ** exclusive-access mode the file descriptor will be kept open and
        ** possibly used for a transaction later on. On some systems, the
        ** OsTruncate() call used in exclusive-access mode also requires
        ** a read/write file handle.
        */
        rc = SQLITE_BUSY;
        if( sqlite3OsFileExists(pPager->zJournal) ){
          int ro;
          assert( !pPager->tempFile );
          rc = sqlite3OsOpenReadWrite(pPager->zJournal, &pPager->jfd, &ro);
          assert( rc!=SQLITE_OK || pPager->jfd );
          if( ro ){
            rc = SQLITE_BUSY;
            sqlite3OsClose(&pPager->jfd);
          }
        }
        if( rc!=SQLITE_OK ){
          pager_unlock(pPager);
          return SQLITE_BUSY;
        }
        pPager->journalOpen = 1;
        pPager->journalStarted = 0;
        pPager->journalOff = 0;
        pPager->setMaster = 0;
        pPager->journalHdr = 0;
 
        /* Playback and delete the journal.  Drop the database write
        ** lock and reacquire the read lock.
        */
        rc = pager_playback(pPager, 1);
        if( rc!=SQLITE_OK ){
          return pager_error(pPager, rc);
        }
        assert(pPager->state==PAGER_SHARED || 
            (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
        );
      }

      if( pPager->pAll ){
        /* The shared-lock has just been acquired on the database file
        ** and there are already pages in the cache (from a previous
        ** read or write transaction).  Check to see if the database
        ** has been modified.  If the database has changed, flush the
        ** cache.
        **
        ** Database changes is detected by looking at 15 bytes beginning
        ** at offset 24 into the file.  The first 4 of these 16 bytes are
        ** a 32-bit counter that is incremented with each change.  The
        ** other bytes change randomly with each file change when
        ** a codec is in use.
        ** 
        ** There is a vanishingly small chance that a change will not be 
        ** deteched.  The chance of an undetected change is so small that
        ** it can be neglected.
        */
        char dbFileVers[sizeof(pPager->dbFileVers)];
        sqlite3PagerPagecount(pPager);

        if( pPager->errCode ){
          return pPager->errCode;
        }

        if( pPager->dbSize>0 ){
          rc = sqlite3OsSeek(pPager->fd, 24);
          if( rc!=SQLITE_OK ){
            return rc;
          }
          rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers));
          if( rc!=SQLITE_OK ){
            return rc;
          }
        }else{
          memset(dbFileVers, 0, sizeof(dbFileVers));
        }

        if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
          pager_reset(pPager);
        }
      }
    }
    assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
    if( pPager->state==PAGER_UNLOCK ){
      pPager->state = PAGER_SHARED;
    }
  }

  return rc;
}

/*
** Allocate a PgHdr object.   Either create a new one or reuse
** an existing one that is not otherwise in use.
**
** A new PgHdr structure is created if any of the following are
** true:
**
**     (1)  We have not exceeded our maximum allocated cache size
**          as set by the "PRAGMA cache_size" command.
**
**     (2)  There are no unused PgHdr objects available at this time.
**
**     (3)  This is an in-memory database.
**
**     (4)  There are no PgHdr objects that do not require a journal
**          file sync and a sync of the journal file is currently
**          prohibited.
**
** Otherwise, reuse an existing PgHdr.  In other words, reuse an
** existing PgHdr if all of the following are true:
**
**     (1)  We have reached or exceeded the maximum cache size
**          allowed by "PRAGMA cache_size".
**
**     (2)  There is a PgHdr available with PgHdr->nRef==0
**
**     (3)  We are not in an in-memory database
**
**     (4)  Either there is an available PgHdr that does not need
**          to be synced to disk or else disk syncing is currently
**          allowed.
*/
static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
  int rc = SQLITE_OK;
  PgHdr *pPg;

  /* Create a new PgHdr if any of the four conditions defined 
  ** above is met: */
  if( pPager->nPage<pPager->mxPage
   || pPager->pFirst==0 
   || MEMDB
   || (pPager->pFirstSynced==0 && pPager->doNotSync)
  ){
    if( pPager->nPage>=pPager->nHash ){
      pager_resize_hash_table(pPager,
         pPager->nHash<256 ? 256 : pPager->nHash*2);
      if( pPager->nHash==0 ){
        rc = SQLITE_NOMEM;
        goto pager_allocate_out;
      }
    }
    pPg = sqliteMallocRaw( sizeof(*pPg) + pPager->pageSize
                            + sizeof(u32) + pPager->nExtra
                            + MEMDB*sizeof(PgHistory) );
    if( pPg==0 ){
      rc = SQLITE_NOMEM;
      goto pager_allocate_out;
    }
    memset(pPg, 0, sizeof(*pPg));
    if( MEMDB ){
      memset(PGHDR_TO_HIST(pPg, pPager), 0, sizeof(PgHistory));
    }
    pPg->pPager = pPager;
    pPg->pNextAll = pPager->pAll;
    pPager->pAll = pPg;
    pPager->nPage++;
    if( pPager->nPage>pPager->nMaxPage ){
      assert( pPager->nMaxPage==(pPager->nPage-1) );
      pPager->nMaxPage++;
    }
  }else{
    /* Recycle an existing page with a zero ref-count. */
    rc = pager_recycle(pPager, 1, &pPg);
    if( rc!=SQLITE_OK ){
      goto pager_allocate_out;
    }
    assert( pPager->state>=SHARED_LOCK );
    assert(pPg);
  }
  *ppPg = pPg;

pager_allocate_out:
  return rc;
}

/*
** Acquire a page.
**
** A read lock on the disk file is obtained when the first page is acquired. 
** This read lock is dropped when the last page is released.
**
** A _get works for any page number greater than 0.  If the database
** file is smaller than the requested page, then no actual disk
** read occurs and the memory image of the page is initialized to
** all zeros.  The extra data appended to a page is always initialized
** to zeros the first time a page is loaded into memory.
**
** The acquisition might fail for several reasons.  In all cases,
** an appropriate error code is returned and *ppPage is set to NULL.
**
** See also sqlite3PagerLookup().  Both this routine and _lookup() attempt
** to find a page in the in-memory cache first.  If the page is not already
** in memory, this routine goes to disk to read it in whereas _lookup()
** just returns 0.  This routine acquires a read-lock the first time it
** has to go to disk, and could also playback an old journal if necessary.
** Since _lookup() never goes to disk, it never has to deal with locks
** or journal files.
**
** If noContent is false, the page contents are actually read from disk.
** If noContent is true, it means that we do not care about the contents
** of the page at this time, so do not do a disk read.  Just fill in the
** page content with zeros.  But mark the fact that we have not read the
** content by setting the PgHdr.needRead flag.  Later on, if 
** sqlite3PagerWrite() is called on this page, that means that the
** content is needed and the disk read should occur at that point.
*/
int sqlite3PagerAcquire(
  Pager *pPager,      /* The pager open on the database file */
  Pgno pgno,          /* Page number to fetch */
  DbPage **ppPage,    /* Write a pointer to the page here */
  int noContent       /* Do not bother reading content from disk if true */
){
  PgHdr *pPg;
  int rc;

  assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );

  /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
  ** number greater than this, or zero, is requested.
  */
  if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
    return SQLITE_CORRUPT_BKPT;
  }

  /* Make sure we have not hit any critical errors.
  */ 
  assert( pPager!=0 );
  *ppPage = 0;
  if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
    return pPager->errCode;
  }

  /* If this is the first page accessed, then get a SHARED lock
  ** on the database file. pagerSharedLock() is a no-op if 
  ** a database lock is already held.
  */
  rc = pagerSharedLock(pPager);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pPager->state!=PAGER_UNLOCK );

  pPg = pager_lookup(pPager, pgno);
  if( pPg==0 ){
    /* The requested page is not in the page cache. */
    int nMax;
    int h;
    PAGER_INCR(pPager->nMiss);
    rc = pagerAllocatePage(pPager, &pPg);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    pPg->pgno = pgno;
    assert( !MEMDB || pgno>pPager->stmtSize );
    if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
      sqlite3CheckMemory(pPager->aInJournal, pgno/8);
      assert( pPager->journalOpen );
      pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
      pPg->needSync = 0;
    }else{
      pPg->inJournal = 0;
      pPg->needSync = 0;
    }

    makeClean(pPg);
    pPg->nRef = 1;
    REFINFO(pPg);

    pPager->nRef++;
    if( pPager->nExtra>0 ){
      memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
    }
    nMax = sqlite3PagerPagecount(pPager);
    if( pPager->errCode ){
      sqlite3PagerUnref(pPg);
      rc = pPager->errCode;
      return rc;
    }

    /* Populate the page with data, either by reading from the database
    ** file, or by setting the entire page to zero.
    */
    if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
      memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
      pPg->needRead = noContent && !pPager->alwaysRollback;
      IOTRACE(("ZERO %p %d\n", pPager, pgno));
    }else{
      rc = readDbPage(pPager, pPg, pgno);
      if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
        pPg->pgno = 0;
        sqlite3PagerUnref(pPg);
        return rc;
      }
    }

    /* Link the page into the page hash table */
    h = pgno & (pPager->nHash-1);
    assert( pgno!=0 );
    pPg->pNextHash = pPager->aHash[h];
    pPager->aHash[h] = pPg;
    if( pPg->pNextHash ){
      assert( pPg->pNextHash->pPrevHash==0 );
      pPg->pNextHash->pPrevHash = pPg;
    }

#ifdef SQLITE_CHECK_PAGES
    pPg->pageHash = pager_pagehash(pPg);
#endif
  }else{
    /* The requested page is in the page cache. */
    assert(pPager->nRef>0 || pgno==1);
    PAGER_INCR(pPager->nHit);
    page_ref(pPg);
  }
  *ppPage = pPg;
  return SQLITE_OK;
}

/*
** Acquire a page if it is already in the in-memory cache.  Do
** not read the page from disk.  Return a pointer to the page,
** or 0 if the page is not in cache.
**
** See also sqlite3PagerGet().  The difference between this routine
** and sqlite3PagerGet() is that _get() will go to the disk and read
** in the page if the page is not already in cache.  This routine
** returns NULL if the page is not in cache or if a disk I/O error 
** has ever happened.
*/
DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
  PgHdr *pPg;

  assert( pPager!=0 );
  assert( pgno!=0 );

  if( pPager->state==PAGER_UNLOCK ){
    assert( !pPager->pAll || pPager->exclusiveMode );
    return 0;
  }
  if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
    return 0;
  }
  pPg = pager_lookup(pPager, pgno);
  if( pPg==0 ) return 0;
  page_ref(pPg);
  return pPg;
}

/*
** Release a page.
**
** If the number of references to the page drop to zero, then the
** page is added to the LRU list.  When all references to all pages
** are released, a rollback occurs and the lock on the database is
** removed.
*/
int sqlite3PagerUnref(DbPage *pPg){

  /* Decrement the reference count for this page
  */
  assert( pPg->nRef>0 );
  pPg->nRef--;
  REFINFO(pPg);

  CHECK_PAGE(pPg);

  /* When the number of references to a page reach 0, call the
  ** destructor and add the page to the freelist.
  */
  if( pPg->nRef==0 ){
    Pager *pPager;
    pPager = pPg->pPager;
    pPg->pNextFree = 0;
    pPg->pPrevFree = pPager->pLast;
    pPager->pLast = pPg;
    if( pPg->pPrevFree ){
      pPg->pPrevFree->pNextFree = pPg;
    }else{
      pPager->pFirst = pPg;
    }
    if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
      pPager->pFirstSynced = pPg;
    }
    if( pPager->xDestructor ){
      pPager->xDestructor(pPg, pPager->pageSize);
    }
  
    /* When all pages reach the freelist, drop the read lock from
    ** the database file.
    */
    pPager->nRef--;
    assert( pPager->nRef>=0 );
    if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
      pagerUnlockAndRollback(pPager);
    }
  }
  return SQLITE_OK;
}

/*
** Create a journal file for pPager.  There should already be a RESERVED
** or EXCLUSIVE lock on the database file when this routine is called.
**
** Return SQLITE_OK if everything.  Return an error code and release the
** write lock if anything goes wrong.
*/
static int pager_open_journal(Pager *pPager){
  int rc;
  assert( !MEMDB );
  assert( pPager->state>=PAGER_RESERVED );
  assert( pPager->journalOpen==0 );
  assert( pPager->useJournal );
  assert( pPager->aInJournal==0 );
  sqlite3PagerPagecount(pPager);
  pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
  if( pPager->aInJournal==0 ){
    rc = SQLITE_NOMEM;
    goto failed_to_open_journal;
  }
  rc = sqlite3OsOpenExclusive(pPager->zJournal, &pPager->jfd,
                                 pPager->tempFile);
  assert( rc!=SQLITE_OK || pPager->jfd );
  pPager->journalOff = 0;
  pPager->setMaster = 0;
  pPager->journalHdr = 0;
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      sqlite3OsDelete(pPager->zJournal);
    }
    goto failed_to_open_journal;
  }
  sqlite3OsSetFullSync(pPager->jfd, pPager->full_fsync);
  sqlite3OsSetFullSync(pPager->fd, pPager->full_fsync);
  sqlite3OsOpenDirectory(pPager->jfd, pPager->zDirectory);
  pPager->journalOpen = 1;
  pPager->journalStarted = 0;
  pPager->needSync = 0;
  pPager->alwaysRollback = 0;
  pPager->nRec = 0;
  if( pPager->errCode ){
    rc = pPager->errCode;
    goto failed_to_open_journal;
  }
  pPager->origDbSize = pPager->dbSize;

  rc = writeJournalHdr(pPager);

  if( pPager->stmtAutoopen && rc==SQLITE_OK ){
    rc = sqlite3PagerStmtBegin(pPager);
  }
  if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){
    rc = pager_end_transaction(pPager);
    if( rc==SQLITE_OK ){
      rc = SQLITE_FULL;
    }
  }
  return rc;

failed_to_open_journal:
  sqliteFree(pPager->aInJournal);
  pPager->aInJournal = 0;
  return rc;
}

/*
** Acquire a write-lock on the database.  The lock is removed when
** the any of the following happen:
**
**   *  sqlite3PagerCommitPhaseTwo() is called.
**   *  sqlite3PagerRollback() is called.
**   *  sqlite3PagerClose() is called.
**   *  sqlite3PagerUnref() is called to on every outstanding page.
**
** The first parameter to this routine is a pointer to any open page of the
** database file.  Nothing changes about the page - it is used merely to
** acquire a pointer to the Pager structure and as proof that there is
** already a read-lock on the database.
**
** The second parameter indicates how much space in bytes to reserve for a
** master journal file-name at the start of the journal when it is created.
**
** A journal file is opened if this is not a temporary file.  For temporary
** files, the opening of the journal file is deferred until there is an
** actual need to write to the journal.
**
** If the database is already reserved for writing, this routine is a no-op.
**
** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
** immediately instead of waiting until we try to flush the cache.  The
** exFlag is ignored if a transaction is already active.
*/
int sqlite3PagerBegin(DbPage *pPg, int exFlag){
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;
  assert( pPg->nRef>0 );
  assert( pPager->state!=PAGER_UNLOCK );
  if( pPager->state==PAGER_SHARED ){
    assert( pPager->aInJournal==0 );
    if( MEMDB ){
      pPager->state = PAGER_EXCLUSIVE;
      pPager->origDbSize = pPager->dbSize;
    }else{
      rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
      if( rc==SQLITE_OK ){
        pPager->state = PAGER_RESERVED;
        if( exFlag ){
          rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
        }
      }
      if( rc!=SQLITE_OK ){
        return rc;
      }
      pPager->dirtyCache = 0;
      PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
      if( pPager->useJournal && !pPager->tempFile ){
        rc = pager_open_journal(pPager);
      }
    }
  }else if( pPager->journalOpen && pPager->journalOff==0 ){
    /* This happens when the pager was in exclusive-access mode last
    ** time a (read or write) transaction was successfully concluded
    ** by this connection. Instead of deleting the journal file it was 
    ** kept open and truncated to 0 bytes.
    */
    assert( pPager->nRec==0 );
    assert( pPager->origDbSize==0 );
    assert( pPager->aInJournal==0 );
    sqlite3PagerPagecount(pPager);
    pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
    if( !pPager->aInJournal ){
      rc = SQLITE_NOMEM;
    }else{
      pPager->origDbSize = pPager->dbSize;
      rc = writeJournalHdr(pPager);
    }
  }
  assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
  return rc;
}

/*
** Make a page dirty.  Set its dirty flag and add it to the dirty
** page list.
*/
static void makeDirty(PgHdr *pPg){
  if( pPg->dirty==0 ){
    Pager *pPager = pPg->pPager;
    pPg->dirty = 1;
    pPg->pDirty = pPager->pDirty;
    if( pPager->pDirty ){
      pPager->pDirty->pPrevDirty = pPg;
    }
    pPg->pPrevDirty = 0;
    pPager->pDirty = pPg;
  }
}

/*
** Make a page clean.  Clear its dirty bit and remove it from the
** dirty page list.
*/
static void makeClean(PgHdr *pPg){
  if( pPg->dirty ){
    pPg->dirty = 0;
    if( pPg->pDirty ){
      pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
    }
    if( pPg->pPrevDirty ){
      pPg->pPrevDirty->pDirty = pPg->pDirty;
    }else{
      pPg->pPager->pDirty = pPg->pDirty;
    }
  }
}


/*
** Mark a data page as writeable.  The page is written into the journal 
** if it is not there already.  This routine must be called before making
** changes to a page.
**
** The first time this routine is called, the pager creates a new
** journal and acquires a RESERVED lock on the database.  If the RESERVED
** lock could not be acquired, this routine returns SQLITE_BUSY.  The
** calling routine must check for that return value and be careful not to
** change any page data until this routine returns SQLITE_OK.
**
** If the journal file could not be written because the disk is full,
** then this routine returns SQLITE_FULL and does an immediate rollback.
** All subsequent write attempts also return SQLITE_FULL until there
** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
** reset.
*/
static int pager_write(PgHdr *pPg){
  void *pData = PGHDR_TO_DATA(pPg);
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;

  /* Check for errors
  */
  if( pPager->errCode ){ 
    return pPager->errCode;
  }
  if( pPager->readOnly ){
    return SQLITE_PERM;
  }

  assert( !pPager->setMaster );

  CHECK_PAGE(pPg);

  /* If this page was previously acquired with noContent==1, that means
  ** we didn't really read in the content of the page.  This can happen
  ** (for example) when the page is being moved to the freelist.  But
  ** now we are (perhaps) moving the page off of the freelist for
  ** reuse and we need to know its original content so that content
  ** can be stored in the rollback journal.  So do the read at this
  ** time.
  */
  if( pPg->needRead ){
    rc = readDbPage(pPager, pPg, pPg->pgno);
    if( rc==SQLITE_OK ){
      pPg->needRead = 0;
    }else{
      return rc;
    }
  }

  /* Mark the page as dirty.  If the page has already been written
  ** to the journal then we can return right away.
  */
  makeDirty(pPg);
  if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
    pPager->dirtyCache = 1;
  }else{

    /* If we get this far, it means that the page needs to be
    ** written to the transaction journal or the ckeckpoint journal
    ** or both.
    **
    ** First check to see that the transaction journal exists and
    ** create it if it does not.
    */
    assert( pPager->state!=PAGER_UNLOCK );
    rc = sqlite3PagerBegin(pPg, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    assert( pPager->state>=PAGER_RESERVED );
    if( !pPager->journalOpen && pPager->useJournal ){
      rc = pager_open_journal(pPager);
      if( rc!=SQLITE_OK ) return rc;
    }
    assert( pPager->journalOpen || !pPager->useJournal );
    pPager->dirtyCache = 1;
  
    /* The transaction journal now exists and we have a RESERVED or an
    ** EXCLUSIVE lock on the main database file.  Write the current page to
    ** the transaction journal if it is not there already.
    */
    if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){
      if( (int)pPg->pgno <= pPager->origDbSize ){
        int szPg;
        if( MEMDB ){
          PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
          PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
          assert( pHist->pOrig==0 );
          pHist->pOrig = sqliteMallocRaw( pPager->pageSize );
          if( pHist->pOrig ){
            memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
          }
        }else{
          u32 cksum, saved;
          char *pData2, *pEnd;
          /* We should never write to the journal file the page that
          ** contains the database locks.  The following assert verifies
          ** that we do not. */
          assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
          pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
          cksum = pager_cksum(pPager, (u8*)pData2);
          pEnd = pData2 + pPager->pageSize;
          pData2 -= 4;
          saved = *(u32*)pEnd;
          put32bits(pEnd, cksum);
          szPg = pPager->pageSize+8;
          put32bits(pData2, pPg->pgno);
          rc = sqlite3OsWrite(pPager->jfd, pData2, szPg);
          IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
                   pPager->journalOff, szPg));
          PAGER_INCR(sqlite3_pager_writej_count);
          pPager->journalOff += szPg;
          PAGERTRACE4("JOURNAL %d page %d needSync=%d\n",
                  PAGERID(pPager), pPg->pgno, pPg->needSync);
          *(u32*)pEnd = saved;

          /* An error has occured writing to the journal file. The 
          ** transaction will be rolled back by the layer above.
          */
          if( rc!=SQLITE_OK ){
            return rc;
          }

          pPager->nRec++;
          assert( pPager->aInJournal!=0 );
          pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
          pPg->needSync = !pPager->noSync;
          if( pPager->stmtInUse ){
            pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
          }
        }
      }else{
        pPg->needSync = !pPager->journalStarted && !pPager->noSync;
        PAGERTRACE4("APPEND %d page %d needSync=%d\n",
                PAGERID(pPager), pPg->pgno, pPg->needSync);
      }
      if( pPg->needSync ){
        pPager->needSync = 1;
      }
      pPg->inJournal = 1;
    }
  
    /* If the statement journal is open and the page is not in it,
    ** then write the current page to the statement journal.  Note that
    ** the statement journal format differs from the standard journal format
    ** in that it omits the checksums and the header.
    */
    if( pPager->stmtInUse 
     && !pageInStatement(pPg) 
     && (int)pPg->pgno<=pPager->stmtSize 
    ){
      assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
      if( MEMDB ){
        PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
        assert( pHist->pStmt==0 );
        pHist->pStmt = sqliteMallocRaw( pPager->pageSize );
        if( pHist->pStmt ){
          memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
        }
        PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
        page_add_to_stmt_list(pPg);
      }else{
        char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7)-4;
        put32bits(pData2, pPg->pgno);
        rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize+4);
        PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        pPager->stmtNRec++;
        assert( pPager->aInStmt!=0 );
        pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
      }
    }
  }

  /* Update the database size and return.
  */
  assert( pPager->state>=PAGER_SHARED );
  if( pPager->dbSize<(int)pPg->pgno ){
    pPager->dbSize = pPg->pgno;
    if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
      pPager->dbSize++;
    }
  }
  return rc;
}

/*
** This function is used to mark a data-page as writable. It uses 
** pager_write() to open a journal file (if it is not already open)
** and write the page *pData to the journal.
**
** The difference between this function and pager_write() is that this
** function also deals with the special case where 2 or more pages
** fit on a single disk sector. In this case all co-resident pages
** must have been written to the journal file before returning.
*/
int sqlite3PagerWrite(DbPage *pDbPage){
  int rc = SQLITE_OK;

  PgHdr *pPg = pDbPage;
  Pager *pPager = pPg->pPager;
  Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);

  if( !MEMDB && nPagePerSector>1 ){
    Pgno nPageCount;          /* Total number of pages in database file */
    Pgno pg1;                 /* First page of the sector pPg is located on. */
    int nPage;                /* Number of pages starting at pg1 to journal */
    int ii;

    /* Set the doNotSync flag to 1. This is because we cannot allow a journal
    ** header to be written between the pages journaled by this function.
    */
    assert( pPager->doNotSync==0 );
    pPager->doNotSync = 1;

    /* This trick assumes that both the page-size and sector-size are
    ** an integer power of 2. It sets variable pg1 to the identifier
    ** of the first page of the sector pPg is located on.
    */
    pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;

    nPageCount = sqlite3PagerPagecount(pPager);
    if( pPg->pgno>nPageCount ){
      nPage = (pPg->pgno - pg1)+1;
    }else if( (pg1+nPagePerSector-1)>nPageCount ){
      nPage = nPageCount+1-pg1;
    }else{
      nPage = nPagePerSector;
    }
    assert(nPage>0);
    assert(pg1<=pPg->pgno);
    assert((pg1+nPage)>pPg->pgno);

    for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
      Pgno pg = pg1+ii;
      if( !pPager->aInJournal || pg==pPg->pgno || 
          pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7)))
      ) {
        if( pg!=PAGER_MJ_PGNO(pPager) ){
          PgHdr *pPage;
          rc = sqlite3PagerGet(pPager, pg, &pPage);
          if( rc==SQLITE_OK ){
            rc = pager_write(pPage);
            sqlite3PagerUnref(pPage);
          }
        }
      }
    }

    assert( pPager->doNotSync==1 );
    pPager->doNotSync = 0;
  }else{
    rc = pager_write(pDbPage);
  }
  return rc;
}

/*
** Return TRUE if the page given in the argument was previously passed
** to sqlite3PagerWrite().  In other words, return TRUE if it is ok
** to change the content of the page.
*/
#ifndef NDEBUG
int sqlite3PagerIswriteable(DbPage *pPg){
  return pPg->dirty;
}
#endif

#ifndef SQLITE_OMIT_VACUUM
/*
** Replace the content of a single page with the information in the third
** argument.
*/
int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){
  PgHdr *pPg;
  int rc;

  rc = sqlite3PagerGet(pPager, pgno, &pPg);
  if( rc==SQLITE_OK ){
    rc = sqlite3PagerWrite(pPg);
    if( rc==SQLITE_OK ){
      memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize);
    }
    sqlite3PagerUnref(pPg);
  }
  return rc;
}
#endif

/*
** A call to this routine tells the pager that it is not necessary to
** write the information on page pPg back to the disk, even though
** that page might be marked as dirty.
**
** The overlying software layer calls this routine when all of the data
** on the given page is unused.  The pager marks the page as clean so
** that it does not get written to disk.
**
** Tests show that this optimization, together with the
** sqlite3PagerDontRollback() below, more than double the speed
** of large INSERT operations and quadruple the speed of large DELETEs.
**
** When this routine is called, set the alwaysRollback flag to true.
** Subsequent calls to sqlite3PagerDontRollback() for the same page
** will thereafter be ignored.  This is necessary to avoid a problem
** where a page with data is added to the freelist during one part of
** a transaction then removed from the freelist during a later part
** of the same transaction and reused for some other purpose.  When it
** is first added to the freelist, this routine is called.  When reused,
** the sqlite3PagerDontRollback() routine is called.  But because the
** page contains critical data, we still need to be sure it gets
** rolled back in spite of the sqlite3PagerDontRollback() call.
*/
void sqlite3PagerDontWrite(DbPage *pDbPage){
  PgHdr *pPg = pDbPage;
  Pager *pPager = pPg->pPager;

  if( MEMDB ) return;
  pPg->alwaysRollback = 1;
  if( pPg->dirty && !pPager->stmtInUse ){
    assert( pPager->state>=PAGER_SHARED );
    if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
      /* If this pages is the last page in the file and the file has grown
      ** during the current transaction, then do NOT mark the page as clean.
      ** When the database file grows, we must make sure that the last page
      ** gets written at least once so that the disk file will be the correct
      ** size. If you do not write this page and the size of the file
      ** on the disk ends up being too small, that can lead to database
      ** corruption during the next transaction.
      */
    }else{
      PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
      IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
      makeClean(pPg);
#ifdef SQLITE_CHECK_PAGES
      pPg->pageHash = pager_pagehash(pPg);
#endif
    }
  }
}

/*
** A call to this routine tells the pager that if a rollback occurs,
** it is not necessary to restore the data on the given page.  This
** means that the pager does not have to record the given page in the
** rollback journal.
**
** If we have not yet actually read the content of this page (if
** the PgHdr.needRead flag is set) then this routine acts as a promise
** that we will never need to read the page content in the future.
** so the needRead flag can be cleared at this point.
*/
void sqlite3PagerDontRollback(DbPage *pPg){
  Pager *pPager = pPg->pPager;

  assert( pPager->state>=PAGER_RESERVED );
  if( pPager->journalOpen==0 ) return;
  if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return;
  if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
    assert( pPager->aInJournal!=0 );
    pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    pPg->inJournal = 1;
    pPg->needRead = 0;
    if( pPager->stmtInUse ){
      pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    }
    PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
    IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
  }
  if( pPager->stmtInUse 
   && !pageInStatement(pPg) 
   && (int)pPg->pgno<=pPager->stmtSize 
  ){
    assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
    assert( pPager->aInStmt!=0 );
    pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
  }
}


/*
** This routine is called to increment the database file change-counter,
** stored at byte 24 of the pager file.
*/
static int pager_incr_changecounter(Pager *pPager){
  PgHdr *pPgHdr;
  u32 change_counter;
  int rc;

  if( !pPager->changeCountDone ){
    /* Open page 1 of the file for writing. */
    rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
    if( rc!=SQLITE_OK ) return rc;
    rc = sqlite3PagerWrite(pPgHdr);
    if( rc!=SQLITE_OK ) return rc;
  
    /* Read the current value at byte 24. */
    change_counter = retrieve32bits(pPgHdr, 24);
  
    /* Increment the value just read and write it back to byte 24. */
    change_counter++;
    put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
  
    /* Release the page reference. */
    sqlite3PagerUnref(pPgHdr);
    pPager->changeCountDone = 1;
  }
  return SQLITE_OK;
}

/*
** Sync the database file for the pager pPager. zMaster points to the name
** of a master journal file that should be written into the individual
** journal file. zMaster may be NULL, which is interpreted as no master
** journal (a single database transaction).
**
** This routine ensures that the journal is synced, all dirty pages written
** to the database file and the database file synced. The only thing that
** remains to commit the transaction is to delete the journal file (or
** master journal file if specified).
**
** Note that if zMaster==NULL, this does not overwrite a previous value
** passed to an sqlite3PagerCommitPhaseOne() call.
**
** If parameter nTrunc is non-zero, then the pager file is truncated to
** nTrunc pages (this is used by auto-vacuum databases).
*/
int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){
  int rc = SQLITE_OK;

  PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", 
      pPager->zFilename, zMaster, nTrunc);

  /* If this is an in-memory db, or no pages have been written to, or this
  ** function has already been called, it is a no-op.
  */
  if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
    PgHdr *pPg;
    assert( pPager->journalOpen );

    /* If a master journal file name has already been written to the
    ** journal file, then no sync is required. This happens when it is
    ** written, then the process fails to upgrade from a RESERVED to an
    ** EXCLUSIVE lock. The next time the process tries to commit the
    ** transaction the m-j name will have already been written.
    */
    if( !pPager->setMaster ){
      rc = pager_incr_changecounter(pPager);
      if( rc!=SQLITE_OK ) goto sync_exit;
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( nTrunc!=0 ){
        /* If this transaction has made the database smaller, then all pages
        ** being discarded by the truncation must be written to the journal
        ** file.
        */
        Pgno i;
        int iSkip = PAGER_MJ_PGNO(pPager);
        for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
          if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){
            rc = sqlite3PagerGet(pPager, i, &pPg);
            if( rc!=SQLITE_OK ) goto sync_exit;
            rc = sqlite3PagerWrite(pPg);
            sqlite3PagerUnref(pPg);
            if( rc!=SQLITE_OK ) goto sync_exit;
          }
        } 
      }
#endif
      rc = writeMasterJournal(pPager, zMaster);
      if( rc!=SQLITE_OK ) goto sync_exit;
      rc = syncJournal(pPager);
      if( rc!=SQLITE_OK ) goto sync_exit;
    }

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( nTrunc!=0 ){
      rc = sqlite3PagerTruncate(pPager, nTrunc);
      if( rc!=SQLITE_OK ) goto sync_exit;
    }
#endif

    /* Write all dirty pages to the database file */
    pPg = pager_get_all_dirty_pages(pPager);
    rc = pager_write_pagelist(pPg);
    if( rc!=SQLITE_OK ) goto sync_exit;
    pPager->pDirty = 0;

    /* Sync the database file. */
    if( !pPager->noSync ){
      rc = sqlite3OsSync(pPager->fd, 0);
    }
    IOTRACE(("DBSYNC %p\n", pPager))

    pPager->state = PAGER_SYNCED;
  }else if( MEMDB && nTrunc!=0 ){
    rc = sqlite3PagerTruncate(pPager, nTrunc);
  }

sync_exit:
  return rc;
}


/*
** Commit all changes to the database and release the write lock.
**
** If the commit fails for any reason, a rollback attempt is made
** and an error code is returned.  If the commit worked, SQLITE_OK
** is returned.
*/
int sqlite3PagerCommitPhaseTwo(Pager *pPager){
  int rc;
  PgHdr *pPg;

  if( pPager->errCode ){
    return pPager->errCode;
  }
  if( pPager->state<PAGER_RESERVED ){
    return SQLITE_ERROR;
  }
  PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
  if( MEMDB ){
    pPg = pager_get_all_dirty_pages(pPager);
    while( pPg ){
      PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
      clearHistory(pHist);
      pPg->dirty = 0;
      pPg->inJournal = 0;
      pHist->inStmt = 0;
      pPg->needSync = 0;
      pHist->pPrevStmt = pHist->pNextStmt = 0;
      pPg = pPg->pDirty;
    }
    pPager->pDirty = 0;
#ifndef NDEBUG
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
      assert( !pPg->alwaysRollback );
      assert( !pHist->pOrig );
      assert( !pHist->pStmt );
    }
#endif
    pPager->pStmt = 0;
    pPager->state = PAGER_SHARED;
    return SQLITE_OK;
  }
  assert( pPager->journalOpen || !pPager->dirtyCache );
  assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
  rc = pager_end_transaction(pPager);
  return pager_error(pPager, rc);
}

/*
** Rollback all changes.  The database falls back to PAGER_SHARED mode.
** All in-memory cache pages revert to their original data contents.
** The journal is deleted.
**
** This routine cannot fail unless some other process is not following
** the correct locking protocol or unless some other
** process is writing trash into the journal file (SQLITE_CORRUPT) or
** unless a prior malloc() failed (SQLITE_NOMEM).  Appropriate error
** codes are returned for all these occasions.  Otherwise,
** SQLITE_OK is returned.
*/
int sqlite3PagerRollback(Pager *pPager){
  int rc;
  PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
  if( MEMDB ){
    PgHdr *p;
    for(p=pPager->pAll; p; p=p->pNextAll){
      PgHistory *pHist;
      assert( !p->alwaysRollback );
      if( !p->dirty ){
        assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
        assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
        continue;
      }

      pHist = PGHDR_TO_HIST(p, pPager);
      if( pHist->pOrig ){
        memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
        PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
      }else{
        PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
      }
      clearHistory(pHist);
      p->dirty = 0;
      p->inJournal = 0;
      pHist->inStmt = 0;
      pHist->pPrevStmt = pHist->pNextStmt = 0;
      if( pPager->xReiniter ){
        pPager->xReiniter(p, pPager->pageSize);
      }
    }
    pPager->pDirty = 0;
    pPager->pStmt = 0;
    pPager->dbSize = pPager->origDbSize;
    pager_truncate_cache(pPager);
    pPager->stmtInUse = 0;
    pPager->state = PAGER_SHARED;
    return SQLITE_OK;
  }

  if( !pPager->dirtyCache || !pPager->journalOpen ){
    rc = pager_end_transaction(pPager);
    return rc;
  }

  if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
    if( pPager->state>=PAGER_EXCLUSIVE ){
      pager_playback(pPager, 0);
    }
    return pPager->errCode;
  }
  if( pPager->state==PAGER_RESERVED ){
    int rc2;
    rc = pager_playback(pPager, 0);
    rc2 = pager_end_transaction(pPager);
    if( rc==SQLITE_OK ){
      rc = rc2;
    }
  }else{
    rc = pager_playback(pPager, 0);
  }
  /* pager_reset(pPager); */
  pPager->dbSize = -1;

  /* If an error occurs during a ROLLBACK, we can no longer trust the pager
  ** cache. So call pager_error() on the way out to make any error 
  ** persistent.
  */
  return pager_error(pPager, rc);
}

/*
** Return TRUE if the database file is opened read-only.  Return FALSE
** if the database is (in theory) writable.
*/
int sqlite3PagerIsreadonly(Pager *pPager){
  return pPager->readOnly;
}

/*
** Return the number of references to the pager.
*/
int sqlite3PagerRefcount(Pager *pPager){
  return pPager->nRef;
}

#ifdef SQLITE_TEST
/*
** This routine is used for testing and analysis only.
*/
int *sqlite3PagerStats(Pager *pPager){
  static int a[11];
  a[0] = pPager->nRef;
  a[1] = pPager->nPage;
  a[2] = pPager->mxPage;
  a[3] = pPager->dbSize;
  a[4] = pPager->state;
  a[5] = pPager->errCode;
  a[6] = pPager->nHit;
  a[7] = pPager->nMiss;
  a[8] = 0;  /* Used to be pPager->nOvfl */
  a[9] = pPager->nRead;
  a[10] = pPager->nWrite;
  return a;
}
#endif

/*
** Set the statement rollback point.
**
** This routine should be called with the transaction journal already
** open.  A new statement journal is created that can be used to rollback
** changes of a single SQL command within a larger transaction.
*/
int sqlite3PagerStmtBegin(Pager *pPager){
  int rc;
  assert( !pPager->stmtInUse );
  assert( pPager->state>=PAGER_SHARED );
  assert( pPager->dbSize>=0 );
  PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
  if( MEMDB ){
    pPager->stmtInUse = 1;
    pPager->stmtSize = pPager->dbSize;
    return SQLITE_OK;
  }
  if( !pPager->journalOpen ){
    pPager->stmtAutoopen = 1;
    return SQLITE_OK;
  }
  assert( pPager->journalOpen );
  pPager->aInStmt = sqliteMalloc( pPager->dbSize/8 + 1 );
  if( pPager->aInStmt==0 ){
    /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
    return SQLITE_NOMEM;
  }
#ifndef NDEBUG
  rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize);
  if( rc ) goto stmt_begin_failed;
  assert( pPager->stmtJSize == pPager->journalOff );
#endif
  pPager->stmtJSize = pPager->journalOff;
  pPager->stmtSize = pPager->dbSize;
  pPager->stmtHdrOff = 0;
  pPager->stmtCksum = pPager->cksumInit;
  if( !pPager->stmtOpen ){
    rc = sqlite3PagerOpentemp(&pPager->stfd);
    if( rc ) goto stmt_begin_failed;
    pPager->stmtOpen = 1;
    pPager->stmtNRec = 0;
  }
  pPager->stmtInUse = 1;
  return SQLITE_OK;
 
stmt_begin_failed:
  if( pPager->aInStmt ){
    sqliteFree(pPager->aInStmt);
    pPager->aInStmt = 0;
  }
  return rc;
}

/*
** Commit a statement.
*/
int sqlite3PagerStmtCommit(Pager *pPager){
  if( pPager->stmtInUse ){
    PgHdr *pPg, *pNext;
    PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
    if( !MEMDB ){
      sqlite3OsSeek(pPager->stfd, 0);
      /* sqlite3OsTruncate(pPager->stfd, 0); */
      sqliteFree( pPager->aInStmt );
      pPager->aInStmt = 0;
    }else{
      for(pPg=pPager->pStmt; pPg; pPg=pNext){
        PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
        pNext = pHist->pNextStmt;
        assert( pHist->inStmt );
        pHist->inStmt = 0;
        pHist->pPrevStmt = pHist->pNextStmt = 0;
        sqliteFree(pHist->pStmt);
        pHist->pStmt = 0;
      }
    }
    pPager->stmtNRec = 0;
    pPager->stmtInUse = 0;
    pPager->pStmt = 0;
  }
  pPager->stmtAutoopen = 0;
  return SQLITE_OK;
}

/*
** Rollback a statement.
*/
int sqlite3PagerStmtRollback(Pager *pPager){
  int rc;
  if( pPager->stmtInUse ){
    PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
    if( MEMDB ){
      PgHdr *pPg;
      PgHistory *pHist;
      for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
        pHist = PGHDR_TO_HIST(pPg, pPager);
        if( pHist->pStmt ){
          memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
          sqliteFree(pHist->pStmt);
          pHist->pStmt = 0;
        }
      }
      pPager->dbSize = pPager->stmtSize;
      pager_truncate_cache(pPager);
      rc = SQLITE_OK;
    }else{
      rc = pager_stmt_playback(pPager);
    }
    sqlite3PagerStmtCommit(pPager);
  }else{
    rc = SQLITE_OK;
  }
  pPager->stmtAutoopen = 0;
  return rc;
}

/*
** Return the full pathname of the database file.
*/
const char *sqlite3PagerFilename(Pager *pPager){
  return pPager->zFilename;
}

/*
** Return the directory of the database file.
*/
const char *sqlite3PagerDirname(Pager *pPager){
  return pPager->zDirectory;
}

/*
** Return the full pathname of the journal file.
*/
const char *sqlite3PagerJournalname(Pager *pPager){
  return pPager->zJournal;
}

/*
** Return true if fsync() calls are disabled for this pager.  Return FALSE
** if fsync()s are executed normally.
*/
int sqlite3PagerNosync(Pager *pPager){
  return pPager->noSync;
}

#ifdef SQLITE_HAS_CODEC
/*
** Set the codec for this pager
*/
void sqlite3PagerSetCodec(
  Pager *pPager,
  void *(*xCodec)(void*,void*,Pgno,int),
  void *pCodecArg
){
  pPager->xCodec = xCodec;
  pPager->pCodecArg = pCodecArg;
}
#endif

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Move the page identified by pData to location pgno in the file. 
**
** There must be no references to the current page pgno. If current page
** pgno is not already in the rollback journal, it is not written there by
** by this routine. The same applies to the page pData refers to on entry to
** this routine.
**
** References to the page refered to by pData remain valid. Updating any
** meta-data associated with page pData (i.e. data stored in the nExtra bytes
** allocated along with the page) is the responsibility of the caller.
**
** A transaction must be active when this routine is called. It used to be
** required that a statement transaction was not active, but this restriction
** has been removed (CREATE INDEX needs to move a page when a statement
** transaction is active).
*/
int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
  PgHdr *pPgOld; 
  int h;
  Pgno needSyncPgno = 0;

  assert( pPg->nRef>0 );

  PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", 
      PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
  IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))

  if( pPg->needSync ){
    needSyncPgno = pPg->pgno;
    assert( pPg->inJournal );
    assert( pPg->dirty );
    assert( pPager->needSync );
  }

  /* Unlink pPg from it's hash-chain */
  unlinkHashChain(pPager, pPg);

  /* If the cache contains a page with page-number pgno, remove it
  ** from it's hash chain. Also, if the PgHdr.needSync was set for 
  ** page pgno before the 'move' operation, it needs to be retained 
  ** for the page moved there.
  */
  pPgOld = pager_lookup(pPager, pgno);
  if( pPgOld ){
    assert( pPgOld->nRef==0 );
    unlinkHashChain(pPager, pPgOld);
    makeClean(pPgOld);
    if( pPgOld->needSync ){
      assert( pPgOld->inJournal );
      pPg->inJournal = 1;
      pPg->needSync = 1;
      assert( pPager->needSync );
    }
  }

  /* Change the page number for pPg and insert it into the new hash-chain. */
  assert( pgno!=0 );
  pPg->pgno = pgno;
  h = pgno & (pPager->nHash-1);
  if( pPager->aHash[h] ){
    assert( pPager->aHash[h]->pPrevHash==0 );
    pPager->aHash[h]->pPrevHash = pPg;
  }
  pPg->pNextHash = pPager->aHash[h];
  pPager->aHash[h] = pPg;
  pPg->pPrevHash = 0;

  makeDirty(pPg);
  pPager->dirtyCache = 1;

  if( needSyncPgno ){
    /* If needSyncPgno is non-zero, then the journal file needs to be 
    ** sync()ed before any data is written to database file page needSyncPgno.
    ** Currently, no such page exists in the page-cache and the 
    ** Pager.aInJournal bit has been set. This needs to be remedied by loading
    ** the page into the pager-cache and setting the PgHdr.needSync flag.
    **
    ** The sqlite3PagerGet() call may cause the journal to sync. So make
    ** sure the Pager.needSync flag is set too.
    */
    int rc;
    PgHdr *pPgHdr;
    assert( pPager->needSync );
    rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
    if( rc!=SQLITE_OK ) return rc;
    pPager->needSync = 1;
    pPgHdr->needSync = 1;
    pPgHdr->inJournal = 1;
    makeDirty(pPgHdr);
    sqlite3PagerUnref(pPgHdr);
  }

  return SQLITE_OK;
}
#endif

/*
** Return a pointer to the data for the specified page.
*/
void *sqlite3PagerGetData(DbPage *pPg){
  return PGHDR_TO_DATA(pPg);
}

/*
** Return a pointer to the Pager.nExtra bytes of "extra" space 
** allocated along with the specified page.
*/
void *sqlite3PagerGetExtra(DbPage *pPg){
  Pager *pPager = pPg->pPager;
  return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
}

/*
** Get/set the locking-mode for this pager. Parameter eMode must be one
** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 
** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
** the locking-mode is set to the value specified.
**
** The returned value is either PAGER_LOCKINGMODE_NORMAL or
** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
** locking-mode.
*/
int sqlite3PagerLockingMode(Pager *pPager, int eMode){
  assert( eMode==PAGER_LOCKINGMODE_QUERY
            || eMode==PAGER_LOCKINGMODE_NORMAL
            || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
  assert( PAGER_LOCKINGMODE_QUERY<0 );
  assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
  if( eMode>=0 && !pPager->tempFile ){
    pPager->exclusiveMode = eMode;
  }
  return (int)pPager->exclusiveMode;
}

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
/*
** Return the current state of the file lock for the given pager.
** The return value is one of NO_LOCK, SHARED_LOCK, RESERVED_LOCK,
** PENDING_LOCK, or EXCLUSIVE_LOCK.
*/
int sqlite3PagerLockstate(Pager *pPager){
  return sqlite3OsLockState(pPager->fd);
}
#endif

#ifdef SQLITE_DEBUG
/*
** Print a listing of all referenced pages and their ref count.
*/
void sqlite3PagerRefdump(Pager *pPager){
  PgHdr *pPg;
  for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
    if( pPg->nRef<=0 ) continue;
    sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", 
       pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
  }
}
#endif

#endif /* SQLITE_OMIT_DISKIO */

/* [<][>][^][v][top][bottom][index][help] */