root/Zend/zend_strtod.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. zend_startup_strtod
  2. zend_shutdown_strtod
  3. Balloc
  4. Bfree
  5. rv_alloc
  6. nrv_alloc
  7. multadd
  8. hi0bits
  9. lo0bits
  10. i2b
  11. mult
  12. s2b
  13. pow5mult
  14. lshift
  15. cmp
  16. diff
  17. ulp
  18. d2b
  19. ratio
  20. quorem
  21. destroy_freelist
  22. zend_freedtoa
  23. zend_dtoa
  24. zend_strtod
  25. zend_hex_strtod
  26. zend_oct_strtod

/****************************************************************
 *
 * The author of this software is David M. Gay.
 *
 * Copyright (c) 1991 by AT&T.
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose without fee is hereby granted, provided that this entire notice
 * is included in all copies of any software which is or includes a copy
 * or modification of this software and in all copies of the supporting
 * documentation for such software.
 *
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 *
 ***************************************************************/

/* Please send bug reports to
   David M. Gay
   AT&T Bell Laboratories, Room 2C-463
   600 Mountain Avenue
   Murray Hill, NJ 07974-2070
   U.S.A.
   dmg@research.att.com or research!dmg
   */

/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
 *
 * This strtod returns a nearest machine number to the input decimal
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
 * biased rounding (add half and chop).
 *
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
 *
 * Modifications:
 *
 *      1. We only require IEEE, IBM, or VAX double-precision
 *              arithmetic (not IEEE double-extended).
 *      2. We get by with floating-point arithmetic in a case that
 *              Clinger missed -- when we're computing d * 10^n
 *              for a small integer d and the integer n is not too
 *              much larger than 22 (the maximum integer k for which
 *              we can represent 10^k exactly), we may be able to
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
 *      3. Rather than a bit-at-a-time adjustment of the binary
 *              result in the hard case, we use floating-point
 *              arithmetic to determine the adjustment to within
 *              one bit; only in really hard cases do we need to
 *              compute a second residual.
 *      4. Because of 3., we don't need a large table of powers of 10
 *              for ten-to-e (just some small tables, e.g. of 10^k
 *              for 0 <= k <= 22).
 */

/*
 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
 *      significant byte has the lowest address.
 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
 *      significant byte has the lowest address.
 * #define Long int on machines with 32-bit ints and 64-bit longs.
 * #define Sudden_Underflow for IEEE-format machines without gradual
 *      underflow (i.e., that flush to zero on underflow).
 * #define IBM for IBM mainframe-style floating-point arithmetic.
 * #define VAX for VAX-style floating-point arithmetic.
 * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
 * #define No_leftright to omit left-right logic in fast floating-point
 *      computation of dtoa.
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
 *      that use extended-precision instructions to compute rounded
 *      products and quotients) with IBM.
 * #define ROUND_BIASED for IEEE-format with biased rounding.
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
 *      products but inaccurate quotients, e.g., for Intel i860.
 * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
 *      integer arithmetic.  Whether this speeds things up or slows things
 *      down depends on the machine and the number being converted.
 * #define KR_headers for old-style C function headers.
 * #define Bad_float_h if your system lacks a float.h or if it does not
 *      define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
 *      FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
 *      if memory is available and otherwise does something you deem
 *      appropriate.  If MALLOC is undefined, malloc will be invoked
 *      directly -- and assumed always to succeed.
 */

/* $Id: zend_strtod.c,v 1.17.2.2.2.13 2007/09/04 18:46:21 tony2001 Exp $ */

#include <zend_operators.h>
#include <zend_strtod.h>

#ifdef ZTS
#include <TSRM.h>
#endif

#include <stddef.h>
#include <stdio.h>
#include <ctype.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#ifdef HAVE_LOCALE_H
#include <locale.h>
#endif

#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif

#if defined(HAVE_INTTYPES_H)
#include <inttypes.h>
#elif defined(HAVE_STDINT_H)
#include <stdint.h>
#endif

#ifndef HAVE_INT32_T
# if SIZEOF_INT == 4
typedef int int32_t;
# elif SIZEOF_LONG == 4
typedef long int int32_t;
# endif
#endif

#ifndef HAVE_UINT32_T
# if SIZEOF_INT == 4
typedef unsigned int uint32_t;
# elif SIZEOF_LONG == 4
typedef unsigned long int uint32_t;
# endif
#endif

#if (defined(__APPLE__) || defined(__APPLE_CC__)) && (defined(__BIG_ENDIAN__) || defined(__LITTLE_ENDIAN__))
# if defined(__LITTLE_ENDIAN__)
#  undef WORDS_BIGENDIAN
# else 
#  if defined(__BIG_ENDIAN__)
#   define WORDS_BIGENDIAN
#  endif
# endif
#endif

#ifdef WORDS_BIGENDIAN
#define IEEE_BIG_ENDIAN
#else
#define IEEE_LITTLE_ENDIAN
#endif

#if defined(__arm__) && !defined(__VFP_FP__)
/*
 *  * Although the CPU is little endian the FP has different
 *   * byte and word endianness. The byte order is still little endian
 *    * but the word order is big endian.
 *     */
#define IEEE_BIG_ENDIAN
#undef IEEE_LITTLE_ENDIAN
#endif

#ifdef __vax__
#define VAX
#endif

#if defined(_MSC_VER)
#define int32_t __int32
#define uint32_t unsigned __int32
#define IEEE_LITTLE_ENDIAN
#endif

#define Long    int32_t
#define ULong   uint32_t

#ifdef __cplusplus
#include "malloc.h"
#include "memory.h"
#else
#ifndef KR_headers
#include "stdlib.h"
#include "string.h"
#include "locale.h"
#else
#include "malloc.h"
#include "memory.h"
#endif
#endif

#ifdef MALLOC
#ifdef KR_headers
extern char *MALLOC();
#else
extern void *MALLOC(size_t);
#endif
#else
#define MALLOC malloc
#endif

#include "ctype.h"
#include "errno.h"

#ifdef Bad_float_h
#ifdef IEEE_BIG_ENDIAN
#define IEEE_ARITHMETIC
#endif
#ifdef IEEE_LITTLE_ENDIAN
#define IEEE_ARITHMETIC
#endif

#ifdef IEEE_ARITHMETIC
#define DBL_DIG 15
#define DBL_MAX_10_EXP 308
#define DBL_MAX_EXP 1024
#define FLT_RADIX 2
#define FLT_ROUNDS 1
#define DBL_MAX 1.7976931348623157e+308
#endif

#ifdef IBM
#define DBL_DIG 16
#define DBL_MAX_10_EXP 75
#define DBL_MAX_EXP 63
#define FLT_RADIX 16
#define FLT_ROUNDS 0
#define DBL_MAX 7.2370055773322621e+75
#endif

#ifdef VAX
#define DBL_DIG 16
#define DBL_MAX_10_EXP 38
#define DBL_MAX_EXP 127
#define FLT_RADIX 2
#define FLT_ROUNDS 1
#define DBL_MAX 1.7014118346046923e+38
#endif


#ifndef LONG_MAX
#define LONG_MAX 2147483647
#endif
#else
#include "float.h"
#endif
#ifndef __MATH_H__
#include "math.h"
#endif

BEGIN_EXTERN_C()

#ifndef CONST
#ifdef KR_headers
#define CONST /* blank */
#else
#define CONST const
#endif
#endif

#ifdef Unsigned_Shifts
#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
#else
#define Sign_Extend(a,b) /*no-op*/
#endif

#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
                    defined(IBM) != 1
        Exactly one of IEEE_LITTLE_ENDIAN IEEE_BIG_ENDIAN, VAX, or
        IBM should be defined.
#endif

        typedef union {
                    double d;
                            ULong ul[2];
        } _double;
#define value(x) ((x).d)
#ifdef IEEE_LITTLE_ENDIAN
#define word0(x) ((x).ul[1])
#define word1(x) ((x).ul[0])
#else
#define word0(x) ((x).ul[0])
#define word1(x) ((x).ul[1])
#endif

/* The following definition of Storeinc is appropriate for MIPS processors.
 * An alternative that might be better on some machines is
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
 */
#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
                ((unsigned short *)a)[0] = (unsigned short)c, a++)
#else
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
                ((unsigned short *)a)[1] = (unsigned short)c, a++)
#endif

/* #define P DBL_MANT_DIG */
/* Ten_pmax = floor(P*log(2)/log(5)) */
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */

#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
#define Exp_shift  20
#define Exp_shift1 20
#define Exp_msk1    0x100000
#define Exp_msk11   0x100000
#define Exp_mask  0x7ff00000
#define P 53
#define Bias 1023
#define IEEE_Arith
#define Emin (-1022)
#define Exp_1  0x3ff00000
#define Exp_11 0x3ff00000
#define Ebits 11
#define Frac_mask  0xfffff
#define Frac_mask1 0xfffff
#define Ten_pmax 22
#define Bletch 0x10
#define Bndry_mask  0xfffff
#define Bndry_mask1 0xfffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14
#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
#else
#undef  Sudden_Underflow
#define Sudden_Underflow
#ifdef IBM
#define Exp_shift  24
#define Exp_shift1 24
#define Exp_msk1   0x1000000
#define Exp_msk11  0x1000000
#define Exp_mask  0x7f000000
#define P 14
#define Bias 65
#define Exp_1  0x41000000
#define Exp_11 0x41000000
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
#define Frac_mask  0xffffff
#define Frac_mask1 0xffffff
#define Bletch 4
#define Ten_pmax 22
#define Bndry_mask  0xefffff
#define Bndry_mask1 0xffffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 4
#define Tiny0 0x100000
#define Tiny1 0
#define Quick_max 14
#define Int_max 15
#else /* VAX */
#define Exp_shift  23
#define Exp_shift1 7
#define Exp_msk1    0x80
#define Exp_msk11   0x800000
#define Exp_mask  0x7f80
#define P 56
#define Bias 129
#define Exp_1  0x40800000
#define Exp_11 0x4080
#define Ebits 8
#define Frac_mask  0x7fffff
#define Frac_mask1 0xffff007f
#define Ten_pmax 24
#define Bletch 2
#define Bndry_mask  0xffff007f
#define Bndry_mask1 0xffff007f
#define LSB 0x10000
#define Sign_bit 0x8000
#define Log2P 1
#define Tiny0 0x80
#define Tiny1 0
#define Quick_max 15
#define Int_max 15
#endif
#endif

#ifndef IEEE_Arith
#define ROUND_BIASED
#endif

#ifdef RND_PRODQUOT
#define rounded_product(a,b) a = rnd_prod(a, b)
#define rounded_quotient(a,b) a = rnd_quot(a, b)
#ifdef KR_headers
extern double rnd_prod(), rnd_quot();
#else
extern double rnd_prod(double, double), rnd_quot(double, double);
#endif
#else
#define rounded_product(a,b) a *= b
#define rounded_quotient(a,b) a /= b
#endif

#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1 0xffffffff

#ifndef Just_16
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
 *  * This makes some inner loops simpler and sometimes saves work
 *   * during multiplications, but it often seems to make things slightly
 *    * slower.  Hence the default is now to store 32 bits per Long.
 *     */
#ifndef Pack_32
#define Pack_32
#endif
#endif

#define Kmax 15

struct Bigint {
        struct Bigint *next;
        int k, maxwds, sign, wds;
        ULong x[1];
};

typedef struct Bigint Bigint;

/* static variables, multithreading fun! */
static Bigint *freelist[Kmax+1];
static Bigint *p5s;

static void destroy_freelist(void);

#ifdef ZTS

static MUTEX_T dtoa_mutex;
static MUTEX_T pow5mult_mutex; 

#define _THREAD_PRIVATE_MUTEX_LOCK(x) tsrm_mutex_lock(x);
#define _THREAD_PRIVATE_MUTEX_UNLOCK(x) tsrm_mutex_unlock(x);

#else 

#define _THREAD_PRIVATE_MUTEX_LOCK(x)
#define _THREAD_PRIVATE_MUTEX_UNLOCK(x)

#endif /* ZTS */

ZEND_API int zend_startup_strtod(void) /* {{{ */
{
#ifdef ZTS
        dtoa_mutex = tsrm_mutex_alloc();
        pow5mult_mutex = tsrm_mutex_alloc();
#endif
        return 1;
}
/* }}} */
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
{
        destroy_freelist();
#ifdef ZTS
        tsrm_mutex_free(dtoa_mutex);
        dtoa_mutex = NULL;

        tsrm_mutex_free(pow5mult_mutex);
        pow5mult_mutex = NULL;
#endif
        return 1;
}
/* }}} */

static Bigint * Balloc(int k)
{
        int x;
        Bigint *rv;

        if (k > Kmax) {
                zend_error(E_ERROR, "Balloc() allocation exceeds list boundary");
        }

        _THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
        if ((rv = freelist[k])) {
                freelist[k] = rv->next;
        } else {
                x = 1 << k;
                rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
                if (!rv) {
                        _THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
                        zend_error(E_ERROR, "Balloc() failed to allocate memory");
                }
                rv->k = k;
                rv->maxwds = x;
        }
        _THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
        rv->sign = rv->wds = 0;
        return rv;
}

static void Bfree(Bigint *v)
{
        if (v) {
                _THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
                v->next = freelist[v->k];
                freelist[v->k] = v;
                _THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
        }
}

#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
                y->wds*sizeof(Long) + 2*sizeof(int))

/* return value is only used as a simple string, so mis-aligned parts
 * inside the Bigint are not at risk on strict align architectures
 */
static char * rv_alloc(int i) {
        int j, k, *r;

        j = sizeof(ULong);
        for(k = 0;
                        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
                        j <<= 1) {
                k++;
        }
        r = (int*)Balloc(k);
        *r = k;
        return (char *)(r+1);
}


static char * nrv_alloc(char *s, char **rve, int n)
{
        char *rv, *t;

        t = rv = rv_alloc(n);
        while((*t = *s++) !=0) {
                t++;
        }
        if (rve) {
                *rve = t;
        }
        return rv;
}

static Bigint * multadd(Bigint *b, int m, int a) /* multiply by m and add a */
{
        int i, wds;
        ULong *x, y;
#ifdef Pack_32
        ULong xi, z;
#endif
        Bigint *b1;

        wds = b->wds;
        x = b->x;
        i = 0;
        do {
#ifdef Pack_32
                xi = *x;
                y = (xi & 0xffff) * m + a;
                z = (xi >> 16) * m + (y >> 16);
                a = (int)(z >> 16);
                *x++ = (z << 16) + (y & 0xffff);
#else
                y = *x * m + a;
                a = (int)(y >> 16);
                *x++ = y & 0xffff;
#endif
        }
        while(++i < wds);
        if (a) {
                if (wds >= b->maxwds) {
                        b1 = Balloc(b->k+1);
                        Bcopy(b1, b);
                        Bfree(b);
                        b = b1;
                }
                b->x[wds++] = a;
                b->wds = wds;
        }
        return b;
}

static int hi0bits(ULong x)
{
        int k = 0;

        if (!(x & 0xffff0000)) {
                k = 16;
                x <<= 16;
        }
        if (!(x & 0xff000000)) {
                k += 8;
                x <<= 8;
        }
        if (!(x & 0xf0000000)) {
                k += 4;
                x <<= 4;
        }
        if (!(x & 0xc0000000)) {
                k += 2;
                x <<= 2;
        }
        if (!(x & 0x80000000)) {
                k++;
                if (!(x & 0x40000000)) {
                        return 32;
                }
        }
        return k;
}

static int lo0bits(ULong *y)
{
        int k;
        ULong x = *y;

        if (x & 7) {
                if (x & 1) {
                        return 0;
                }
                if (x & 2) {
                        *y = x >> 1;
                        return 1;
                }
                *y = x >> 2;
                return 2;
        }
        k = 0;
        if (!(x & 0xffff)) {
                k = 16;
                x >>= 16;
        }
        if (!(x & 0xff)) {
                k += 8;
                x >>= 8;
        }
        if (!(x & 0xf)) {
                k += 4;
                x >>= 4;
        }
        if (!(x & 0x3)) {
                k += 2;
                x >>= 2;
        }
        if (!(x & 1)) {
                k++;
                x >>= 1;
                if (!(x & 1)) {
                        return 32;
                }
        }
        *y = x;
        return k;
}

static Bigint * i2b(int i)
{
        Bigint *b;

        b = Balloc(1);
        b->x[0] = i;
        b->wds = 1;
        return b;
}

static Bigint * mult(Bigint *a, Bigint *b)
{
        Bigint *c;
        int k, wa, wb, wc;
        ULong carry, y, z;
        ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
#ifdef Pack_32
        ULong z2;
#endif

        if (a->wds < b->wds) {
                c = a;
                a = b;
                b = c;
        }
        k = a->k;
        wa = a->wds;
        wb = b->wds;
        wc = wa + wb;
        if (wc > a->maxwds) {
                k++;
        }
        c = Balloc(k);
        for(x = c->x, xa = x + wc; x < xa; x++) {
                *x = 0;
        }
        xa = a->x;
        xae = xa + wa;
        xb = b->x;
        xbe = xb + wb;
        xc0 = c->x;
#ifdef Pack_32
        for(; xb < xbe; xb++, xc0++) {
                if ((y = *xb & 0xffff)) {
                        x = xa;
                        xc = xc0;
                        carry = 0;
                        do {
                                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
                                carry = z >> 16;
                                z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
                                carry = z2 >> 16;
                                Storeinc(xc, z2, z);
                        }
                        while(x < xae);
                        *xc = carry;
                }
                if ((y = *xb >> 16)) {
                        x = xa;
                        xc = xc0;
                        carry = 0;
                        z2 = *xc;
                        do {
                                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
                                carry = z >> 16;
                                Storeinc(xc, z, z2);
                                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
                                carry = z2 >> 16;
                        }
                        while(x < xae);
                        *xc = z2;
                }
        }
#else
        for(; xb < xbe; xc0++) {
                if (y = *xb++) {
                        x = xa;
                        xc = xc0;
                        carry = 0;
                        do {
                                z = *x++ * y + *xc + carry;
                                carry = z >> 16;
                                *xc++ = z & 0xffff;
                        }
                        while(x < xae);
                        *xc = carry;
                }
        }
#endif
        for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
        c->wds = wc;
        return c;
}

static Bigint * s2b (CONST char *s, int nd0, int nd, ULong y9)
{
        Bigint *b;
        int i, k;
        Long x, y;

        x = (nd + 8) / 9;
        for(k = 0, y = 1; x > y; y <<= 1, k++) ;
#ifdef Pack_32
        b = Balloc(k);
        b->x[0] = y9;
        b->wds = 1;
#else
        b = Balloc(k+1);
        b->x[0] = y9 & 0xffff;
        b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
#endif

        i = 9;
        if (9 < nd0) {
                s += 9;
                do b = multadd(b, 10, *s++ - '0');
                while(++i < nd0);
                s++;
        } else {
                s += 10;
        }
        for(; i < nd; i++) {
                b = multadd(b, 10, *s++ - '0');
        }
        return b;
}

static Bigint * pow5mult(Bigint *b, int k)
{
        Bigint *b1, *p5, *p51;
        int i;
        static int p05[3] = { 5, 25, 125 };

        _THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
        if ((i = k & 3)) {
                b = multadd(b, p05[i-1], 0);
        }

        if (!(k >>= 2)) {
                _THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
                return b;
        }
        if (!(p5 = p5s)) {
                /* first time */
                p5 = p5s = i2b(625);
                p5->next = 0;
        }
        for(;;) {
                if (k & 1) {
                        b1 = mult(b, p5);
                        Bfree(b);
                        b = b1;
                }
                if (!(k >>= 1)) {
                        break;
                }
                if (!(p51 = p5->next)) {
                        if (!(p51 = p5->next)) {
                                p51 = p5->next = mult(p5,p5);
                                p51->next = 0;
                        }
                }
                p5 = p51;
        }
        _THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
        return b;
}


static Bigint *lshift(Bigint *b, int k)
{
        int i, k1, n, n1;
        Bigint *b1;
        ULong *x, *x1, *xe, z;

#ifdef Pack_32
        n = k >> 5;
#else
        n = k >> 4;
#endif
        k1 = b->k;
        n1 = n + b->wds + 1;
        for(i = b->maxwds; n1 > i; i <<= 1) {
                k1++;
        }
        b1 = Balloc(k1);
        x1 = b1->x;
        for(i = 0; i < n; i++) {
                *x1++ = 0;
        }
        x = b->x;
        xe = x + b->wds;
#ifdef Pack_32
        if (k &= 0x1f) {
                k1 = 32 - k;
                z = 0;
                do {
                        *x1++ = *x << k | z;
                        z = *x++ >> k1;
                }
                while(x < xe);
                if ((*x1 = z)) {
                        ++n1;
                }
        }
#else
        if (k &= 0xf) {
                k1 = 16 - k;
                z = 0;
                do {
                        *x1++ = *x << k  & 0xffff | z;
                        z = *x++ >> k1;
                }
                while(x < xe);
                if (*x1 = z) {
                        ++n1;
                }
        }
#endif
        else do
                *x1++ = *x++;
        while(x < xe);
        b1->wds = n1 - 1;
        Bfree(b);
        return b1;
}

static int cmp(Bigint *a, Bigint *b)
{
        ULong *xa, *xa0, *xb, *xb0;
        int i, j;

        i = a->wds;
        j = b->wds;
#ifdef DEBUG
        if (i > 1 && !a->x[i-1])
                Bug("cmp called with a->x[a->wds-1] == 0");
        if (j > 1 && !b->x[j-1])
                Bug("cmp called with b->x[b->wds-1] == 0");
#endif
        if (i -= j)
                return i;
        xa0 = a->x;
        xa = xa0 + j;
        xb0 = b->x;
        xb = xb0 + j;
        for(;;) {
                if (*--xa != *--xb)
                        return *xa < *xb ? -1 : 1;
                if (xa <= xa0)
                        break;
        }
        return 0;
}


static Bigint * diff(Bigint *a, Bigint *b)
{
        Bigint *c;
        int i, wa, wb;
        Long borrow, y; /* We need signed shifts here. */
        ULong *xa, *xae, *xb, *xbe, *xc;
#ifdef Pack_32
        Long z;
#endif

        i = cmp(a,b);
        if (!i) {
                c = Balloc(0);
                c->wds = 1;
                c->x[0] = 0;
                return c;
        }
        if (i < 0) {
                c = a;
                a = b;
                b = c;
                i = 1;
        } else {
                i = 0;
        }
        c = Balloc(a->k);
        c->sign = i;
        wa = a->wds;
        xa = a->x;
        xae = xa + wa;
        wb = b->wds;
        xb = b->x;
        xbe = xb + wb;
        xc = c->x;
        borrow = 0;
#ifdef Pack_32
        do {
                y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
                borrow = y >> 16;
                Sign_Extend(borrow, y);
                z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
                borrow = z >> 16;
                Sign_Extend(borrow, z);
                Storeinc(xc, z, y);
        } while(xb < xbe);
        while(xa < xae) {
                y = (*xa & 0xffff) + borrow;
                borrow = y >> 16;
                Sign_Extend(borrow, y);
                z = (*xa++ >> 16) + borrow;
                borrow = z >> 16;
                Sign_Extend(borrow, z);
                Storeinc(xc, z, y);
        }
#else
        do {
                y = *xa++ - *xb++ + borrow;
                borrow = y >> 16;
                Sign_Extend(borrow, y);
                *xc++ = y & 0xffff;
        } while(xb < xbe);
        while(xa < xae) {
                y = *xa++ + borrow;
                borrow = y >> 16;
                Sign_Extend(borrow, y);
                *xc++ = y & 0xffff;
        }
#endif
        while(!*--xc) {
                wa--;
        }
        c->wds = wa;
        return c;
}

static double ulp (double _x)
{
        _double x;
        register Long L;
        _double a;

        value(x) = _x;
        L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
#ifndef Sudden_Underflow
        if (L > 0) {
#endif
#ifdef IBM
                L |= Exp_msk1 >> 4;
#endif
                word0(a) = L;
                word1(a) = 0;
#ifndef Sudden_Underflow
        }
        else {
                L = -L >> Exp_shift;
                if (L < Exp_shift) {
                        word0(a) = 0x80000 >> L;
                        word1(a) = 0;
                }
                else {
                        word0(a) = 0;
                        L -= Exp_shift;
                        word1(a) = L >= 31 ? 1 : 1 << (31 - L);
                }
        }
#endif
        return value(a);
}

static double
b2d
#ifdef KR_headers
(a, e) Bigint *a; int *e;
#else
(Bigint *a, int *e)
#endif
{
        ULong *xa, *xa0, w, y, z;
        int k;
        _double d;
#ifdef VAX
        ULong d0, d1;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif

        xa0 = a->x;
        xa = xa0 + a->wds;
        y = *--xa;
#ifdef DEBUG
        if (!y) Bug("zero y in b2d");
#endif
        k = hi0bits(y);
        *e = 32 - k;
#ifdef Pack_32
        if (k < Ebits) {
                d0 = Exp_1 | y >> (Ebits - k);
                w = xa > xa0 ? *--xa : 0;
                d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
                goto ret_d;
        }
        z = xa > xa0 ? *--xa : 0;
        if (k -= Ebits) {
                d0 = Exp_1 | y << k | z >> (32 - k);
                y = xa > xa0 ? *--xa : 0;
                d1 = z << k | y >> (32 - k);
        }
        else {
                d0 = Exp_1 | y;
                d1 = z;
        }
#else
        if (k < Ebits + 16) {
                z = xa > xa0 ? *--xa : 0;
                d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
                w = xa > xa0 ? *--xa : 0;
                y = xa > xa0 ? *--xa : 0;
                d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
                goto ret_d;
        }
        z = xa > xa0 ? *--xa : 0;
        w = xa > xa0 ? *--xa : 0;
        k -= Ebits + 16;
        d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
        y = xa > xa0 ? *--xa : 0;
        d1 = w << k + 16 | y << k;
#endif
ret_d:
#ifdef VAX
        word0(d) = d0 >> 16 | d0 << 16;
        word1(d) = d1 >> 16 | d1 << 16;
#else
#undef d0
#undef d1
#endif
        return value(d);
}


static Bigint * d2b(double _d, int *e, int *bits)
{
        Bigint *b;
        int de, i, k;
        ULong *x, y, z;
        _double d;
#ifdef VAX
        ULong d0, d1;
#endif

        value(d) = _d;
#ifdef VAX
        d0 = word0(d) >> 16 | word0(d) << 16;
        d1 = word1(d) >> 16 | word1(d) << 16;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif

#ifdef Pack_32
        b = Balloc(1);
#else
        b = Balloc(2);
#endif
        x = b->x;

        z = d0 & Frac_mask;
        d0 &= 0x7fffffff;   /* clear sign bit, which we ignore */
#ifdef Sudden_Underflow
        de = (int)(d0 >> Exp_shift);
#ifndef IBM
        z |= Exp_msk11;
#endif
#else
        if ((de = (int)(d0 >> Exp_shift)))
                z |= Exp_msk1;
#endif
#ifdef Pack_32
        if ((y = d1)) {
                if ((k = lo0bits(&y))) {
                        x[0] = y | (z << (32 - k));
                        z >>= k;
                } else {
                        x[0] = y;
                }
                i = b->wds = (x[1] = z) ? 2 : 1;
        } else {
#ifdef DEBUG
                if (!z)
                        Bug("Zero passed to d2b");
#endif
                k = lo0bits(&z);
                x[0] = z;
                i = b->wds = 1;
                k += 32;
        }
#else
        if (y = d1) {
                if (k = lo0bits(&y)) {
                        if (k >= 16) {
                                x[0] = y | z << 32 - k & 0xffff;
                                x[1] = z >> k - 16 & 0xffff;
                                x[2] = z >> k;
                                i = 2;
                        } else {
                                x[0] = y & 0xffff;
                                x[1] = y >> 16 | z << 16 - k & 0xffff;
                                x[2] = z >> k & 0xffff;
                                x[3] = z >> k+16;
                                i = 3;
                        }
                } else {
                        x[0] = y & 0xffff;
                        x[1] = y >> 16;
                        x[2] = z & 0xffff;
                        x[3] = z >> 16;
                        i = 3;
                }
        } else {
#ifdef DEBUG
                if (!z)
                        Bug("Zero passed to d2b");
#endif
                k = lo0bits(&z);
                if (k >= 16) {
                        x[0] = z;
                        i = 0;
                } else {
                        x[0] = z & 0xffff;
                        x[1] = z >> 16;
                        i = 1;
                }
                k += 32;
        }
        while(!x[i])
                --i;
        b->wds = i + 1;
#endif
#ifndef Sudden_Underflow
        if (de) {
#endif
#ifdef IBM
                *e = (de - Bias - (P-1) << 2) + k;
                *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
#else
                *e = de - Bias - (P-1) + k;
                *bits = P - k;
#endif
#ifndef Sudden_Underflow
        } else {
                *e = de - Bias - (P-1) + 1 + k;
#ifdef Pack_32
                *bits = 32*i - hi0bits(x[i-1]);
#else
                *bits = (i+2)*16 - hi0bits(x[i]);
#endif
        }
#endif
        return b;
}
#undef d0
#undef d1


static double ratio (Bigint *a, Bigint *b)
{
        _double da, db;
        int k, ka, kb;

        value(da) = b2d(a, &ka);
        value(db) = b2d(b, &kb);
#ifdef Pack_32
        k = ka - kb + 32*(a->wds - b->wds);
#else
        k = ka - kb + 16*(a->wds - b->wds);
#endif
#ifdef IBM
        if (k > 0) {
                word0(da) += (k >> 2)*Exp_msk1;
                if (k &= 3) {
                        da *= 1 << k;
                }
        } else {
                k = -k;
                word0(db) += (k >> 2)*Exp_msk1;
                if (k &= 3)
                        db *= 1 << k;
        }
#else
        if (k > 0) {
                word0(da) += k*Exp_msk1;
        } else {
                k = -k;
                word0(db) += k*Exp_msk1;
        }
#endif
        return value(da) / value(db);
}

static CONST double
tens[] = {
        1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
        1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
        1e20, 1e21, 1e22
#ifdef VAX
                , 1e23, 1e24
#endif
};

#ifdef IEEE_Arith
static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
#define n_bigtens 5
#else
#ifdef IBM
static CONST double bigtens[] = { 1e16, 1e32, 1e64 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
#define n_bigtens 3
#else
static CONST double bigtens[] = { 1e16, 1e32 };
static CONST double tinytens[] = { 1e-16, 1e-32 };
#define n_bigtens 2
#endif
#endif


static int quorem(Bigint *b, Bigint *S)
{
        int n;
        Long borrow, y;
        ULong carry, q, ys;
        ULong *bx, *bxe, *sx, *sxe;
#ifdef Pack_32
        Long z;
        ULong si, zs;
#endif

        n = S->wds;
#ifdef DEBUG
        /*debug*/ if (b->wds > n)
                /*debug*/   Bug("oversize b in quorem");
#endif
        if (b->wds < n)
                return 0;
        sx = S->x;
        sxe = sx + --n;
        bx = b->x;
        bxe = bx + n;
        q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
#ifdef DEBUG
        /*debug*/ if (q > 9)
                /*debug*/   Bug("oversized quotient in quorem");
#endif
        if (q) {
                borrow = 0;
                carry = 0;
                do {
#ifdef Pack_32
                        si = *sx++;
                        ys = (si & 0xffff) * q + carry;
                        zs = (si >> 16) * q + (ys >> 16);
                        carry = zs >> 16;
                        y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
                        borrow = y >> 16;
                        Sign_Extend(borrow, y);
                        z = (*bx >> 16) - (zs & 0xffff) + borrow;
                        borrow = z >> 16;
                        Sign_Extend(borrow, z);
                        Storeinc(bx, z, y);
#else
                        ys = *sx++ * q + carry;
                        carry = ys >> 16;
                        y = *bx - (ys & 0xffff) + borrow;
                        borrow = y >> 16;
                        Sign_Extend(borrow, y);
                        *bx++ = y & 0xffff;
#endif
                }
                while(sx <= sxe);
                if (!*bxe) {
                        bx = b->x;
                        while(--bxe > bx && !*bxe)
                                --n;
                        b->wds = n;
                }
        }
        if (cmp(b, S) >= 0) {
                q++;
                borrow = 0;
                carry = 0;
                bx = b->x;
                sx = S->x;
                do {
#ifdef Pack_32
                        si = *sx++;
                        ys = (si & 0xffff) + carry;
                        zs = (si >> 16) + (ys >> 16);
                        carry = zs >> 16;
                        y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
                        borrow = y >> 16;
                        Sign_Extend(borrow, y);
                        z = (*bx >> 16) - (zs & 0xffff) + borrow;
                        borrow = z >> 16;
                        Sign_Extend(borrow, z);
                        Storeinc(bx, z, y);
#else
                        ys = *sx++ + carry;
                        carry = ys >> 16;
                        y = *bx - (ys & 0xffff) + borrow;
                        borrow = y >> 16;
                        Sign_Extend(borrow, y);
                        *bx++ = y & 0xffff;
#endif
                }
                while(sx <= sxe);
                bx = b->x;
                bxe = bx + n;
                if (!*bxe) {
                        while(--bxe > bx && !*bxe)
                                --n;
                        b->wds = n;
                }
        }
        return q;
}

static void destroy_freelist(void)
{
        int i;
        Bigint *tmp;

        _THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
        for (i = 0; i <= Kmax; i++) {
                Bigint **listp = &freelist[i];
                while ((tmp = *listp) != NULL) {
                        *listp = tmp->next;
                        free(tmp);
                }
                freelist[i] = NULL;
        }
        _THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
        
}


ZEND_API void zend_freedtoa(char *s)
{
        Bigint *b = (Bigint *)((int *)s - 1);
        b->maxwds = 1 << (b->k = *(int*)b);
        Bfree(b);
}

/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 *
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
 *
 * Modifications:
 *  1. Rather than iterating, we use a simple numeric overestimate
 *     to determine k = floor(log10(d)).  We scale relevant
 *     quantities using O(log2(k)) rather than O(k) multiplications.
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 *     try to generate digits strictly left to right.  Instead, we
 *     compute with fewer bits and propagate the carry if necessary
 *     when rounding the final digit up.  This is often faster.
 *  3. Under the assumption that input will be rounded nearest,
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 *     That is, we allow equality in stopping tests when the
 *     round-nearest rule will give the same floating-point value
 *     as would satisfaction of the stopping test with strict
 *     inequality.
 *  4. We remove common factors of powers of 2 from relevant
 *     quantities.
 *  5. When converting floating-point integers less than 1e16,
 *     we use floating-point arithmetic rather than resorting
 *     to multiple-precision integers.
 *  6. When asked to produce fewer than 15 digits, we first try
 *     to get by with floating-point arithmetic; we resort to
 *     multiple-precision integer arithmetic only if we cannot
 *     guarantee that the floating-point calculation has given
 *     the correctly rounded result.  For k requested digits and
 *     "uniformly" distributed input, the probability is
 *     something like 10^(k-15) that we must resort to the Long
 *     calculation.
 */

ZEND_API char * zend_dtoa(double _d, int mode, int ndigits, int *decpt, int *sign, char **rve)
{
 /* Arguments ndigits, decpt, sign are similar to those
    of ecvt and fcvt; trailing zeros are suppressed from
    the returned string.  If not null, *rve is set to point
    to the end of the return value.  If d is +-Infinity or NaN,
    then *decpt is set to 9999.

    mode:
        0 ==> shortest string that yields d when read in
            and rounded to nearest.
        1 ==> like 0, but with Steele & White stopping rule;
            e.g. with IEEE P754 arithmetic , mode 0 gives
            1e23 whereas mode 1 gives 9.999999999999999e22.
        2 ==> max(1,ndigits) significant digits.  This gives a
            return value similar to that of ecvt, except
            that trailing zeros are suppressed.
        3 ==> through ndigits past the decimal point.  This
            gives a return value similar to that from fcvt,
            except that trailing zeros are suppressed, and
            ndigits can be negative.
        4-9 should give the same return values as 2-3, i.e.,
            4 <= mode <= 9 ==> same return as mode
            2 + (mode & 1).  These modes are mainly for
            debugging; often they run slower but sometimes
            faster than modes 2-3.
        4,5,8,9 ==> left-to-right digit generation.
        6-9 ==> don't try fast floating-point estimate
            (if applicable).

        Values of mode other than 0-9 are treated as mode 0.

        Sufficient space is allocated to the return value
        to hold the suppressed trailing zeros.
    */

        int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
                j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
                spec_case = 0, try_quick;
        Long L;
#ifndef Sudden_Underflow
        int denorm;
        ULong x;
#endif
        Bigint *b, *b1, *delta, *mlo, *mhi, *S, *tmp;
        double ds;
        char *s, *s0;
        _double d, d2, eps;

        value(d) = _d;

        if (word0(d) & Sign_bit) {
                /* set sign for everything, including 0's and NaNs */
                *sign = 1;
                word0(d) &= ~Sign_bit;  /* clear sign bit */
        }
        else
                *sign = 0;

#if defined(IEEE_Arith) + defined(VAX)
#ifdef IEEE_Arith
        if ((word0(d) & Exp_mask) == Exp_mask)
#else
                if (word0(d)  == 0x8000)
#endif
                {
                        /* Infinity or NaN */
                        *decpt = 9999;
#ifdef IEEE_Arith
                        if (!word1(d) && !(word0(d) & 0xfffff))
                                return nrv_alloc("Infinity", rve, 8);
#endif
                        return nrv_alloc("NaN", rve, 3);
                }
#endif
#ifdef IBM
        value(d) += 0; /* normalize */
#endif
        if (!value(d)) {
                *decpt = 1;
                return nrv_alloc("0", rve, 1);
        }

        b = d2b(value(d), &be, &bbits);
#ifdef Sudden_Underflow
        i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
#else
        if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
#endif
                value(d2) = value(d);
                word0(d2) &= Frac_mask1;
                word0(d2) |= Exp_11;
#ifdef IBM
                if (j = 11 - hi0bits(word0(d2) & Frac_mask))
                        value(d2) /= 1 << j;
#endif

                /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
                 * log10(x)  =  log(x) / log(10)
                 *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
                 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
                 *
                 * This suggests computing an approximation k to log10(d) by
                 *
                 * k = (i - Bias)*0.301029995663981
                 *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
                 *
                 * We want k to be too large rather than too small.
                 * The error in the first-order Taylor series approximation
                 * is in our favor, so we just round up the constant enough
                 * to compensate for any error in the multiplication of
                 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
                 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
                 * adding 1e-13 to the constant term more than suffices.
                 * Hence we adjust the constant term to 0.1760912590558.
                 * (We could get a more accurate k by invoking log10,
                 *  but this is probably not worthwhile.)
                 */

                i -= Bias;
#ifdef IBM
                i <<= 2;
                i += j;
#endif
#ifndef Sudden_Underflow
                denorm = 0;
        }
        else {
                /* d is denormalized */

                i = bbits + be + (Bias + (P-1) - 1);
                x = i > 32  ? (word0(d) << (64 - i)) | (word1(d) >> (i - 32))
                        : (word1(d) << (32 - i));
                value(d2) = x;
                word0(d2) -= 31*Exp_msk1; /* adjust exponent */
                i -= (Bias + (P-1) - 1) + 1;
                denorm = 1;
        }
#endif
        ds = (value(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
        k = (int)ds;
        if (ds < 0. && ds != k)
                k--;    /* want k = floor(ds) */
        k_check = 1;
        if (k >= 0 && k <= Ten_pmax) {
                if (value(d) < tens[k])
                        k--;
                k_check = 0;
        }
        j = bbits - i - 1;
        if (j >= 0) {
                b2 = 0;
                s2 = j;
        }
        else {
                b2 = -j;
                s2 = 0;
        }
        if (k >= 0) {
                b5 = 0;
                s5 = k;
                s2 += k;
        }
        else {
                b2 -= k;
                b5 = -k;
                s5 = 0;
        }
        if (mode < 0 || mode > 9)
                mode = 0;
        try_quick = 1;
        if (mode > 5) {
                mode -= 4;
                try_quick = 0;
        }
        leftright = 1;
        switch(mode) {
                case 0:
                case 1:
                        ilim = ilim1 = -1;
                        i = 18;
                        ndigits = 0;
                        break;
                case 2:
                        leftright = 0;
                        /* no break */
                case 4:
                        if (ndigits <= 0)
                                ndigits = 1;
                        ilim = ilim1 = i = ndigits;
                        break;
                case 3:
                        leftright = 0;
                        /* no break */
                case 5:
                        i = ndigits + k + 1;
                        ilim = i;
                        ilim1 = i - 1;
                        if (i <= 0)
                                i = 1;
        }
        s = s0 = rv_alloc(i);

        if (ilim >= 0 && ilim <= Quick_max && try_quick) {

                /* Try to get by with floating-point arithmetic. */

                i = 0;
                value(d2) = value(d);
                k0 = k;
                ilim0 = ilim;
                ieps = 2; /* conservative */
                if (k > 0) {
                        ds = tens[k&0xf];
                        j = k >> 4;
                        if (j & Bletch) {
                                /* prevent overflows */
                                j &= Bletch - 1;
                                value(d) /= bigtens[n_bigtens-1];
                                ieps++;
                        }
                        for(; j; j >>= 1, i++)
                                if (j & 1) {
                                        ieps++;
                                        ds *= bigtens[i];
                                }
                        value(d) /= ds;
                }
                else if ((j1 = -k)) {
                        value(d) *= tens[j1 & 0xf];
                        for(j = j1 >> 4; j; j >>= 1, i++)
                                if (j & 1) {
                                        ieps++;
                                        value(d) *= bigtens[i];
                                }
                }
                if (k_check && value(d) < 1. && ilim > 0) {
                        if (ilim1 <= 0)
                                goto fast_failed;
                        ilim = ilim1;
                        k--;
                        value(d) *= 10.;
                        ieps++;
                }
                value(eps) = ieps*value(d) + 7.;
                word0(eps) -= (P-1)*Exp_msk1;
                if (ilim == 0) {
                        S = mhi = 0;
                        value(d) -= 5.;
                        if (value(d) > value(eps))
                                goto one_digit;
                        if (value(d) < -value(eps))
                                goto no_digits;
                        goto fast_failed;
                }
#ifndef No_leftright
                if (leftright) {
                        /* Use Steele & White method of only
                         * generating digits needed.
                         */
                        value(eps) = 0.5/tens[ilim-1] - value(eps);
                        for(i = 0;;) {
                                L = value(d);
                                value(d) -= L;
                                *s++ = '0' + (int)L;
                                if (value(d) < value(eps))
                                        goto ret1;
                                if (1. - value(d) < value(eps))
                                        goto bump_up;
                                if (++i >= ilim)
                                        break;
                                value(eps) *= 10.;
                                value(d) *= 10.;
                        }
                }
                else {
#endif
                        /* Generate ilim digits, then fix them up. */
                        value(eps) *= tens[ilim-1];
                        for(i = 1;; i++, value(d) *= 10.) {
                                L = value(d);
                                value(d) -= L;
                                *s++ = '0' + (int)L;
                                if (i == ilim) {
                                        if (value(d) > 0.5 + value(eps))
                                                goto bump_up;
                                        else if (value(d) < 0.5 - value(eps)) {
                                                /* cut ALL traling zeros only if the number of chars is greater than precision 
                                                 * otherwise cut only extra zeros
                                                 */
                                                if (k < ndigits) {
                                                        while(*--s == '0' && (s - s0) > k);
                                                } else {
                                                        while(*--s == '0');
                                                }
                                                s++;
                                                goto ret1;
                                        }
                                        break;
                                }
                        }
#ifndef No_leftright
                }
#endif
fast_failed:
                s = s0;
                value(d) = value(d2);
                k = k0;
                ilim = ilim0;
        }

        /* Do we have a "small" integer? */

        if (be >= 0 && k <= Int_max) {
                /* Yes. */
                ds = tens[k];
                if (ndigits < 0 && ilim <= 0) {
                        S = mhi = 0;
                        if (ilim < 0 || value(d) <= 5*ds)
                                goto no_digits;
                        goto one_digit;
                }
                for(i = 1;; i++) {
                        L = value(d) / ds;
                        value(d) -= L*ds;
#ifdef Check_FLT_ROUNDS
                        /* If FLT_ROUNDS == 2, L will usually be high by 1 */
                        if (value(d) < 0) {
                                L--;
                                value(d) += ds;
                        }
#endif
                        *s++ = '0' + (int)L;
                        if (i == ilim) {
                                value(d) += value(d);
                                if (value(d) > ds || (value(d) == ds && (L & 1))) {
bump_up:
                                        while(*--s == '9')
                                                if (s == s0) {
                                                        k++;
                                                        *s = '0';
                                                        break;
                                                }
                                        ++*s++;
                                }
                                break;
                        }
                        if (!(value(d) *= 10.))
                                break;
                }
                goto ret1;
        }

        m2 = b2;
        m5 = b5;
        mhi = mlo = 0;
        if (leftright) {
                if (mode < 2) {
                        i =
#ifndef Sudden_Underflow
                                denorm ? be + (Bias + (P-1) - 1 + 1) :
#endif
#ifdef IBM
                                1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
#else
                        1 + P - bbits;
#endif
                }
                else {
                        j = ilim - 1;
                        if (m5 >= j)
                                m5 -= j;
                        else {
                                s5 += j -= m5;
                                b5 += j;
                                m5 = 0;
                        }
                        if ((i = ilim) < 0) {
                                m2 -= i;
                                i = 0;
                        }
                }
                b2 += i;
                s2 += i;
                mhi = i2b(1);
        }
        if (m2 > 0 && s2 > 0) {
                i = m2 < s2 ? m2 : s2;
                b2 -= i;
                m2 -= i;
                s2 -= i;
        }
        if (b5 > 0) {
                if (leftright) {
                        if (m5 > 0) {
                                mhi = pow5mult(mhi, m5);
                                b1 = mult(mhi, b);
                                Bfree(b);
                                b = b1;
                        }
                        if ((j = b5 - m5)) {
                                b = pow5mult(b, j);
                        }
                } else {
                        b = pow5mult(b, b5);
                }
        }
        S = i2b(1);
        if (s5 > 0)
                S = pow5mult(S, s5);
        /* Check for special case that d is a normalized power of 2. */

        if (mode < 2) {
                if (!word1(d) && !(word0(d) & Bndry_mask)
#ifndef Sudden_Underflow
                                && word0(d) & Exp_mask
#endif
                   ) {
                        /* The special case */
                        b2 += Log2P;
                        s2 += Log2P;
                        spec_case = 1;
                } else {
                        spec_case = 0;
                }
        }

        /* Arrange for convenient computation of quotients:
         * shift left if necessary so divisor has 4 leading 0 bits.
         *
         * Perhaps we should just compute leading 28 bits of S once
         * and for all and pass them and a shift to quorem, so it
         * can do shifts and ors to compute the numerator for q.
         */
#ifdef Pack_32
        if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
                i = 32 - i;
#else
        if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf))
                i = 16 - i;
#endif
        if (i > 4) {
                i -= 4;
                b2 += i;
                m2 += i;
                s2 += i;
        }
        else if (i < 4) {
                i += 28;
                b2 += i;
                m2 += i;
                s2 += i;
        }
        if (b2 > 0)
                b = lshift(b, b2);
        if (s2 > 0)
                S = lshift(S, s2);
        if (k_check) {
                if (cmp(b,S) < 0) {
                        k--;
                        b = multadd(b, 10, 0);  /* we botched the k estimate */
                        if (leftright)
                                mhi = multadd(mhi, 10, 0);
                        ilim = ilim1;
                }
        }
        if (ilim <= 0 && mode > 2) {
                if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
                        /* no digits, fcvt style */
no_digits:
                        k = -1 - ndigits;
                        goto ret;
                }
one_digit:
                *s++ = '1';
                k++;
                goto ret;
        }
        if (leftright) {
                if (m2 > 0)
                        mhi = lshift(mhi, m2);

                /* Compute mlo -- check for special case
                 * that d is a normalized power of 2.
                 */

                mlo = mhi;
                if (spec_case) {
                        mhi = Balloc(mhi->k);
                        Bcopy(mhi, mlo);
                        mhi = lshift(mhi, Log2P);
                }

                for(i = 1;;i++) {
                        dig = quorem(b,S) + '0';
                        /* Do we yet have the shortest decimal string
                         * that will round to d?
                         */
                        j = cmp(b, mlo);
                        delta = diff(S, mhi);
                        j1 = delta->sign ? 1 : cmp(b, delta);
                        Bfree(delta);
#ifndef ROUND_BIASED
                        if (j1 == 0 && !mode && !(word1(d) & 1)) {
                                if (dig == '9')
                                        goto round_9_up;
                                if (j > 0)
                                        dig++;
                                *s++ = dig;
                                goto ret;
                        }
#endif
                        if (j < 0 || (j == 0 && !mode
#ifndef ROUND_BIASED
                                                && !(word1(d) & 1)
#endif
                                                )) {
                                if (j1 > 0) {
                                        b = lshift(b, 1);
                                        j1 = cmp(b, S);
                                        if ((j1 > 0 || (j1 == 0 && (dig & 1)))
                                                        && dig++ == '9')
                                                goto round_9_up;
                                }
                                *s++ = dig;
                                goto ret;
                        }
                        if (j1 > 0) {
                                if (dig == '9') { /* possible if i == 1 */
round_9_up:
                                        *s++ = '9';
                                        goto roundoff;
                                }
                                *s++ = dig + 1;
                                goto ret;
                        }
                        *s++ = dig;
                        if (i == ilim)
                                break;
                        b = multadd(b, 10, 0);
                        if (mlo == mhi)
                                mlo = mhi = multadd(mhi, 10, 0);
                        else {
                                mlo = multadd(mlo, 10, 0);
                                mhi = multadd(mhi, 10, 0);
                        }
                }
        }
        else
                for(i = 1;; i++) {
                        *s++ = dig = quorem(b,S) + '0';
                        if (i >= ilim)
                                break;
                        b = multadd(b, 10, 0);
                }

        /* Round off last digit */

        b = lshift(b, 1);
        j = cmp(b, S);
        if (j > 0 || (j == 0 && (dig & 1))) {
roundoff:
                while(*--s == '9')
                        if (s == s0) {
                                k++;
                                *s++ = '1';
                                goto ret;
                        }
                ++*s++;
        }
        else {
                while(*--s == '0');
                s++;
        }
ret:
        Bfree(S);
        if (mhi) {
                if (mlo && mlo != mhi)
                        Bfree(mlo);
                Bfree(mhi);
        }
ret1:

        _THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
        while (p5s) {
                tmp = p5s;
                p5s = p5s->next;
                free(tmp);
        }
        _THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);

        Bfree(b);

        if (s == s0) {              /* don't return empty string */
                *s++ = '0';
                k = 0;
        }
        *s = 0;
        *decpt = k + 1;
        if (rve)
                *rve = s;
        return s0;
}

ZEND_API double zend_strtod (CONST char *s00, char **se)
{
        int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
                e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
        CONST char *s, *s0, *s1;
        double aadj, aadj1, adj;
        _double rv, rv0;
        Long L;
        ULong y, z;
        Bigint *bb, *bb1, *bd, *bd0, *bs, *delta, *tmp;
        double result;

        CONST char decimal_point = '.';

        sign = nz0 = nz = 0;
        value(rv) = 0.;


        for(s = s00; isspace((unsigned char) *s); s++)
                ;

        if (*s == '-') {
                sign = 1;
                s++;
        } else if (*s == '+') {
                s++;
        }

        if (*s == '\0') {
                s = s00;
                goto ret;
        }

        if (*s == '0') {
                nz0 = 1;
                while(*++s == '0') ;
                if (!*s)
                        goto ret;
        }
        s0 = s;
        y = z = 0;
        for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
                if (nd < 9)
                        y = 10*y + c - '0';
                else if (nd < 16)
                        z = 10*z + c - '0';
        nd0 = nd;
        if (c == decimal_point) {
                c = *++s;
                if (!nd) {
                        for(; c == '0'; c = *++s)
                                nz++;
                        if (c > '0' && c <= '9') {
                                s0 = s;
                                nf += nz;
                                nz = 0;
                                goto have_dig;
                        }
                        goto dig_done;
                }
                for(; c >= '0' && c <= '9'; c = *++s) {
have_dig:
                        nz++;
                        if (c -= '0') {
                                nf += nz;
                                for(i = 1; i < nz; i++)
                                        if (nd++ < 9)
                                                y *= 10;
                                        else if (nd <= DBL_DIG + 1)
                                                z *= 10;
                                if (nd++ < 9)
                                        y = 10*y + c;
                                else if (nd <= DBL_DIG + 1)
                                        z = 10*z + c;
                                nz = 0;
                        }
                }
        }
dig_done:
        e = 0;
        if (c == 'e' || c == 'E') {
                if (!nd && !nz && !nz0) {
                        s = s00;
                        goto ret;
                }
                s00 = s;
                esign = 0;
                switch(c = *++s) {
                        case '-':
                                esign = 1;
                        case '+':
                                c = *++s;
                }
                if (c >= '0' && c <= '9') {
                        while(c == '0')
                                c = *++s;
                        if (c > '0' && c <= '9') {
                                L = c - '0';
                                s1 = s;
                                while((c = *++s) >= '0' && c <= '9')
                                        L = 10*L + c - '0';
                                if (s - s1 > 8 || L > 19999)
                                        /* Avoid confusion from exponents
                                         * so large that e might overflow.
                                         */
                                        e = 19999; /* safe for 16 bit ints */
                                else
                                        e = (int)L;
                                if (esign)
                                        e = -e;
                        }
                        else
                                e = 0;
                }
                else
                        s = s00;
        }
        if (!nd) {
                if (!nz && !nz0)
                        s = s00;
                goto ret;
        }
        e1 = e -= nf;

        /* Now we have nd0 digits, starting at s0, followed by a
         * decimal point, followed by nd-nd0 digits.  The number we're
         * after is the integer represented by those digits times
         * 10**e */

        if (!nd0)
                nd0 = nd;
        k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
        value(rv) = y;
        if (k > 9)
                value(rv) = tens[k - 9] * value(rv) + z;
        bd0 = 0;
        if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
                        && FLT_ROUNDS == 1
#endif
           ) {
                if (!e)
                        goto ret;
                if (e > 0) {
                        if (e <= Ten_pmax) {
#ifdef VAX
                                goto vax_ovfl_check;
#else
                                /* value(rv) = */ rounded_product(value(rv),
                                                tens[e]);
                                goto ret;
#endif
                        }
                        i = DBL_DIG - nd;
                        if (e <= Ten_pmax + i) {
                                /* A fancier test would sometimes let us do
                                 * this for larger i values.
                                 */
                                e -= i;
                                value(rv) *= tens[i];
#ifdef VAX
                                /* VAX exponent range is so narrow we must
                                 * worry about overflow here...
                                 */
vax_ovfl_check:
                                word0(rv) -= P*Exp_msk1;
                                /* value(rv) = */ rounded_product(value(rv),
                                                tens[e]);
                                if ((word0(rv) & Exp_mask)
                                                > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
                                        goto ovfl;
                                word0(rv) += P*Exp_msk1;
#else
                                /* value(rv) = */ rounded_product(value(rv),
                                                tens[e]);
#endif
                                goto ret;
                        }
                }
#ifndef Inaccurate_Divide
                else if (e >= -Ten_pmax) {
                        /* value(rv) = */ rounded_quotient(value(rv),
                                        tens[-e]);
                        goto ret;
                }
#endif
        }
        e1 += nd - k;

        /* Get starting approximation = rv * 10**e1 */

        if (e1 > 0) {
                if ((i = e1 & 15))
                        value(rv) *= tens[i];
                if (e1 &= ~15) {
                        if (e1 > DBL_MAX_10_EXP) {
ovfl:
                                errno = ERANGE;
#ifndef Bad_float_h
                                value(rv) = HUGE_VAL;
#else
                                /* Can't trust HUGE_VAL */
#ifdef IEEE_Arith
                                word0(rv) = Exp_mask;
                                word1(rv) = 0;
#else
                                word0(rv) = Big0;
                                word1(rv) = Big1;
#endif
#endif
                                if (bd0)
                                        goto retfree;
                                goto ret;
                        }
                        if (e1 >>= 4) {
                                for(j = 0; e1 > 1; j++, e1 >>= 1)
                                        if (e1 & 1)
                                                value(rv) *= bigtens[j];
                                /* The last multiplication could overflow. */
                                word0(rv) -= P*Exp_msk1;
                                value(rv) *= bigtens[j];
                                if ((z = word0(rv) & Exp_mask)
                                                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
                                        goto ovfl;
                                if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
                                        /* set to largest number */
                                        /* (Can't trust DBL_MAX) */
                                        word0(rv) = Big0;
                                        word1(rv) = Big1;
                                }
                                else
                                        word0(rv) += P*Exp_msk1;
                        }

                }
        }
        else if (e1 < 0) {
                e1 = -e1;
                if ((i = e1 & 15))
                        value(rv) /= tens[i];
                if (e1 &= ~15) {
                        e1 >>= 4;
                        if (e1 >= 1 << n_bigtens)
                                goto undfl;
                        for(j = 0; e1 > 1; j++, e1 >>= 1)
                                if (e1 & 1)
                                        value(rv) *= tinytens[j];
                        /* The last multiplication could underflow. */
                        value(rv0) = value(rv);
                        value(rv) *= tinytens[j];
                        if (!value(rv)) {
                                value(rv) = 2.*value(rv0);
                                value(rv) *= tinytens[j];
                                if (!value(rv)) {
undfl:
                                        value(rv) = 0.;
                                        errno = ERANGE;
                                        if (bd0)
                                                goto retfree;
                                        goto ret;
                                }
                                word0(rv) = Tiny0;
                                word1(rv) = Tiny1;
                                /* The refinement below will clean
                                 * this approximation up.
                                 */
                        }
                }
        }

        /* Now the hard part -- adjusting rv to the correct value.*/

        /* Put digits into bd: true value = bd * 10^e */

        bd0 = s2b(s0, nd0, nd, y);

        for(;;) {
                bd = Balloc(bd0->k);
                Bcopy(bd, bd0);
                bb = d2b(value(rv), &bbe, &bbbits);     /* rv = bb * 2^bbe */
                bs = i2b(1);

                if (e >= 0) {
                        bb2 = bb5 = 0;
                        bd2 = bd5 = e;
                }
                else {
                        bb2 = bb5 = -e;
                        bd2 = bd5 = 0;
                }
                if (bbe >= 0)
                        bb2 += bbe;
                else
                        bd2 -= bbe;
                bs2 = bb2;
#ifdef Sudden_Underflow
#ifdef IBM
                j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
#else
                j = P + 1 - bbbits;
#endif
#else
                i = bbe + bbbits - 1;   /* logb(rv) */
                if (i < Emin)   /* denormal */
                        j = bbe + (P-Emin);
                else
                        j = P + 1 - bbbits;
#endif
                bb2 += j;
                bd2 += j;
                i = bb2 < bd2 ? bb2 : bd2;
                if (i > bs2)
                        i = bs2;
                if (i > 0) {
                        bb2 -= i;
                        bd2 -= i;
                        bs2 -= i;
                }
                if (bb5 > 0) {
                        bs = pow5mult(bs, bb5);
                        bb1 = mult(bs, bb);
                        Bfree(bb);
                        bb = bb1;
                }
                if (bb2 > 0)
                        bb = lshift(bb, bb2);
                if (bd5 > 0)
                        bd = pow5mult(bd, bd5);
                if (bd2 > 0)
                        bd = lshift(bd, bd2);
                if (bs2 > 0)
                        bs = lshift(bs, bs2);
                delta = diff(bb, bd);
                dsign = delta->sign;
                delta->sign = 0;
                i = cmp(delta, bs);
                if (i < 0) {
                        /* Error is less than half an ulp -- check for
                         * special case of mantissa a power of two.
                         */
                        if (dsign || word1(rv) || word0(rv) & Bndry_mask)
                                break;
                        delta = lshift(delta,Log2P);
                        if (cmp(delta, bs) > 0)
                                goto drop_down;
                        break;
                }
                if (i == 0) {
                        /* exactly half-way between */
                        if (dsign) {
                                if ((word0(rv) & Bndry_mask1) == Bndry_mask1
                                                &&  word1(rv) == 0xffffffff) {
                                        /*boundary case -- increment exponent*/
                                        word0(rv) = (word0(rv) & Exp_mask)
                                                + Exp_msk1
#ifdef IBM
                                                | Exp_msk1 >> 4
#endif
                                                ;
                                        word1(rv) = 0;
                                        break;
                                }
                        }
                        else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
drop_down:
                                /* boundary case -- decrement exponent */
#ifdef Sudden_Underflow
                                L = word0(rv) & Exp_mask;
#ifdef IBM
                                if (L <  Exp_msk1)
#else
                                        if (L <= Exp_msk1)
#endif
                                                goto undfl;
                                L -= Exp_msk1;
#else
                                L = (word0(rv) & Exp_mask) - Exp_msk1;
#endif
                                word0(rv) = L | Bndry_mask1;
                                word1(rv) = 0xffffffff;
#ifdef IBM
                                goto cont;
#else
                                break;
#endif
                        }
#ifndef ROUND_BIASED
                        if (!(word1(rv) & LSB))
                                break;
#endif
                        if (dsign)
                                value(rv) += ulp(value(rv));
#ifndef ROUND_BIASED
                        else {
                                value(rv) -= ulp(value(rv));
#ifndef Sudden_Underflow
                                if (!value(rv))
                                        goto undfl;
#endif
                        }
#endif
                        break;
                }
                if ((aadj = ratio(delta, bs)) <= 2.) {
                        if (dsign)
                                aadj = aadj1 = 1.;
                        else if (word1(rv) || word0(rv) & Bndry_mask) {
#ifndef Sudden_Underflow
                                if (word1(rv) == Tiny1 && !word0(rv))
                                        goto undfl;
#endif
                                aadj = 1.;
                                aadj1 = -1.;
                        }
                        else {
                                /* special case -- power of FLT_RADIX to be */
                                /* rounded down... */

                                if (aadj < 2./FLT_RADIX)
                                        aadj = 1./FLT_RADIX;
                                else
                                        aadj *= 0.5;
                                aadj1 = -aadj;
                        }
                }
                else {
                        aadj *= 0.5;
                        aadj1 = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
                        switch(FLT_ROUNDS) {
                                case 2: /* towards +infinity */
                                        aadj1 -= 0.5;
                                        break;
                                case 0: /* towards 0 */
                                case 3: /* towards -infinity */
                                        aadj1 += 0.5;
                        }
#else
                        if (FLT_ROUNDS == 0)
                                aadj1 += 0.5;
#endif
                }
                y = word0(rv) & Exp_mask;

                /* Check for overflow */

                if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
                        value(rv0) = value(rv);
                        word0(rv) -= P*Exp_msk1;
                        adj = aadj1 * ulp(value(rv));
                        value(rv) += adj;
                        if ((word0(rv) & Exp_mask) >=
                                        Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
                                if (word0(rv0) == Big0 && word1(rv0) == Big1)
                                        goto ovfl;
                                word0(rv) = Big0;
                                word1(rv) = Big1;
                                goto cont;
                        }
                        else
                                word0(rv) += P*Exp_msk1;
                }
                else {
#ifdef Sudden_Underflow
                        if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
                                value(rv0) = value(rv);
                                word0(rv) += P*Exp_msk1;
                                adj = aadj1 * ulp(value(rv));
                                value(rv) += adj;
#ifdef IBM
                                if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
#else
                                        if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
#endif
                                        {
                                                if (word0(rv0) == Tiny0
                                                                && word1(rv0) == Tiny1)
                                                        goto undfl;
                                                word0(rv) = Tiny0;
                                                word1(rv) = Tiny1;
                                                goto cont;
                                        }
                                        else
                                                word0(rv) -= P*Exp_msk1;
                        }
                        else {
                                adj = aadj1 * ulp(value(rv));
                                value(rv) += adj;
                        }
#else
                        /* Compute adj so that the IEEE rounding rules will
                         * correctly round rv + adj in some half-way cases.
                         * If rv * ulp(rv) is denormalized (i.e.,
                         * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
                         * trouble from bits lost to denormalization;
                         * example: 1.2e-307 .
                         */
                        if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
                                aadj1 = (double)(int)(aadj + 0.5);
                                if (!dsign)
                                        aadj1 = -aadj1;
                        }
                        adj = aadj1 * ulp(value(rv));
                        value(rv) += adj;
#endif
                }
                z = word0(rv) & Exp_mask;
                if (y == z) {
                        /* Can we stop now? */
                        L = aadj;
                        aadj -= L;
                        /* The tolerances below are conservative. */
                        if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
                                if (aadj < .4999999 || aadj > .5000001)
                                        break;
                        }
                        else if (aadj < .4999999/FLT_RADIX)
                                break;
                }
cont:
                Bfree(bb);
                Bfree(bd);
                Bfree(bs);
                Bfree(delta);
        }
retfree:
        Bfree(bb);
        Bfree(bd);
        Bfree(bs);
        Bfree(bd0);
        Bfree(delta);
ret:
        if (se)
                *se = (char *)s;
        result = sign ? -value(rv) : value(rv);

        _THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
        while (p5s) {
                tmp = p5s;
                p5s = p5s->next;
                free(tmp);
        }
        _THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);

        return result;
}

ZEND_API double zend_hex_strtod(const char *str, char **endptr)
{
        const char *s = str;
        char c;
        int any = 0;
        double value = 0;

        if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
                s += 2;
        }

        while ((c = *s++)) {
                if (c >= '0' && c <= '9') {
                        c -= '0';
                } else if (c >= 'A' && c <= 'F') {
                        c -= 'A' - 10;
                } else if (c >= 'a' && c <= 'f') {
                        c -= 'a' - 10;
                } else {
                        break;
                }

                any = 1;
                value = value * 16 + c;
        }

        if (endptr != NULL) {
                *endptr = (char *)(any ? s - 1 : str);
        }

        return value;
}

ZEND_API double zend_oct_strtod(const char *str, char **endptr)
{
        const char *s = str;
        char c;
        double value = 0;
        int any = 0;

        /* skip leading zero */
        s++;

        while ((c = *s++)) {
                if (c > '7') {
                        /* break and return the current value if the number is not well-formed
                         * that's what Linux strtol() does 
                         */
                        break;
                }
                value = value * 8 + c - '0';
                any = 1;
        }

        if (endptr != NULL) {
                *endptr = (char *)(any ? s - 1 : str);
        }

        return value;
}

/*
 * Local variables:
 * tab-width: 4
 * c-basic-offset: 4
 * End:
 * vim600: sw=4 ts=4 fdm=marker
 * vim<600: sw=4 ts=4
 */

/* [<][>][^][v][top][bottom][index][help] */