root/ext/pcre/pcrelib/sljit/sljitNativeARM_64.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sljit_get_platform_name
  2. push_inst
  3. emit_imm64_const
  4. modify_imm64_const
  5. detect_jump_type
  6. sljit_generate_code
  7. logical_imm
  8. load_immediate
  9. emit_op_imm
  10. emit_set_delta
  11. getput_arg_fast
  12. can_cache
  13. getput_arg
  14. emit_op_mem
  15. emit_op_mem2
  16. sljit_emit_enter
  17. sljit_set_context
  18. sljit_emit_return
  19. sljit_emit_op0
  20. sljit_emit_op1
  21. sljit_emit_op2
  22. sljit_get_register_index
  23. sljit_get_float_register_index
  24. sljit_emit_op_custom
  25. sljit_is_fpu_available
  26. emit_fop_mem
  27. sljit_emit_fop1_convw_fromd
  28. sljit_emit_fop1_convd_fromw
  29. sljit_emit_fop1_cmp
  30. sljit_emit_fop1
  31. sljit_emit_fop2
  32. sljit_emit_fast_enter
  33. sljit_emit_fast_return
  34. get_cc
  35. sljit_emit_label
  36. sljit_emit_jump
  37. emit_cmp_to0
  38. sljit_emit_ijump
  39. sljit_emit_op_flags
  40. sljit_emit_const
  41. sljit_set_jump_addr
  42. sljit_set_const

/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
        return "ARM-64" SLJIT_CPUINFO;
}

/* Length of an instruction word */
typedef sljit_ui sljit_ins;

#define TMP_ZERO        (0)

#define TMP_REG1        (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2        (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3        (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_LR          (SLJIT_NUMBER_OF_REGISTERS + 5)
#define TMP_SP          (SLJIT_NUMBER_OF_REGISTERS + 6)

#define TMP_FREG1       (0)
#define TMP_FREG2       (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)

static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 8] = {
  31, 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 8, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 29, 9, 10, 11, 30, 31
};

#define W_OP (1 << 31)
#define RD(rd) (reg_map[rd])
#define RT(rt) (reg_map[rt])
#define RN(rn) (reg_map[rn] << 5)
#define RT2(rt2) (reg_map[rt2] << 10)
#define RM(rm) (reg_map[rm] << 16)
#define VD(vd) (vd)
#define VT(vt) (vt)
#define VN(vn) ((vn) << 5)
#define VM(vm) ((vm) << 16)

/* --------------------------------------------------------------------- */
/*  Instrucion forms                                                     */
/* --------------------------------------------------------------------- */

#define ADC 0x9a000000
#define ADD 0x8b000000
#define ADDI 0x91000000
#define AND 0x8a000000
#define ANDI 0x92000000
#define ASRV 0x9ac02800
#define B 0x14000000
#define B_CC 0x54000000
#define BL 0x94000000
#define BLR 0xd63f0000
#define BR 0xd61f0000
#define BRK 0xd4200000
#define CBZ 0xb4000000
#define CLZ 0xdac01000
#define CSINC 0x9a800400
#define EOR 0xca000000
#define EORI 0xd2000000
#define FABS 0x1e60c000
#define FADD 0x1e602800
#define FCMP 0x1e602000
#define FCVT 0x1e224000
#define FCVTZS 0x9e780000
#define FDIV 0x1e601800
#define FMOV 0x1e604000
#define FMUL 0x1e600800
#define FNEG 0x1e614000
#define FSUB 0x1e603800
#define LDRI 0xf9400000
#define LDP 0xa9400000
#define LDP_PST 0xa8c00000
#define LSLV 0x9ac02000
#define LSRV 0x9ac02400
#define MADD 0x9b000000
#define MOVK 0xf2800000
#define MOVN 0x92800000
#define MOVZ 0xd2800000
#define NOP 0xd503201f
#define ORN 0xaa200000
#define ORR 0xaa000000
#define ORRI 0xb2000000
#define RET 0xd65f0000
#define SBC 0xda000000
#define SBFM 0x93000000
#define SCVTF 0x9e620000
#define SDIV 0x9ac00c00
#define SMADDL 0x9b200000
#define SMULH 0x9b403c00
#define STP 0xa9000000
#define STP_PRE 0xa9800000
#define STRI 0xf9000000
#define STR_FI 0x3d000000
#define STR_FR 0x3c206800
#define STUR_FI 0x3c000000
#define SUB 0xcb000000
#define SUBI 0xd1000000
#define SUBS 0xeb000000
#define UBFM 0xd3000000
#define UDIV 0x9ac00800
#define UMULH 0x9bc03c00

/* dest_reg is the absolute name of the register
   Useful for reordering instructions in the delay slot. */
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
        sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
        FAIL_IF(!ptr);
        *ptr = ins;
        compiler->size++;
        return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_si emit_imm64_const(struct sljit_compiler *compiler, sljit_si dst, sljit_uw imm)
{
        FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | ((imm & 0xffff) << 5)));
        FAIL_IF(push_inst(compiler, MOVK | RD(dst) | (((imm >> 16) & 0xffff) << 5) | (1 << 21)));
        FAIL_IF(push_inst(compiler, MOVK | RD(dst) | (((imm >> 32) & 0xffff) << 5) | (2 << 21)));
        return push_inst(compiler, MOVK | RD(dst) | ((imm >> 48) << 5) | (3 << 21));
}

static SLJIT_INLINE void modify_imm64_const(sljit_ins* inst, sljit_uw new_imm)
{
        sljit_si dst = inst[0] & 0x1f;
        SLJIT_ASSERT((inst[0] & 0xffe00000) == MOVZ && (inst[1] & 0xffe00000) == (MOVK | (1 << 21)));
        inst[0] = MOVZ | dst | ((new_imm & 0xffff) << 5);
        inst[1] = MOVK | dst | (((new_imm >> 16) & 0xffff) << 5) | (1 << 21);
        inst[2] = MOVK | dst | (((new_imm >> 32) & 0xffff) << 5) | (2 << 21);
        inst[3] = MOVK | dst | ((new_imm >> 48) << 5) | (3 << 21);
}

static SLJIT_INLINE sljit_si detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
        sljit_sw diff;
        sljit_uw target_addr;

        if (jump->flags & SLJIT_REWRITABLE_JUMP) {
                jump->flags |= PATCH_ABS64;
                return 0;
        }

        if (jump->flags & JUMP_ADDR)
                target_addr = jump->u.target;
        else {
                SLJIT_ASSERT(jump->flags & JUMP_LABEL);
                target_addr = (sljit_uw)(code + jump->u.label->size);
        }
        diff = (sljit_sw)target_addr - (sljit_sw)(code_ptr + 4);

        if (jump->flags & IS_COND) {
                diff += sizeof(sljit_ins);
                if (diff <= 0xfffff && diff >= -0x100000) {
                        code_ptr[-5] ^= (jump->flags & IS_CBZ) ? (0x1 << 24) : 0x1;
                        jump->addr -= sizeof(sljit_ins);
                        jump->flags |= PATCH_COND;
                        return 5;
                }
                diff -= sizeof(sljit_ins);
        }

        if (diff <= 0x7ffffff && diff >= -0x8000000) {
                jump->flags |= PATCH_B;
                return 4;
        }

        if (target_addr <= 0xffffffffl) {
                if (jump->flags & IS_COND)
                        code_ptr[-5] -= (2 << 5);
                code_ptr[-2] = code_ptr[0];
                return 2;
        }
        if (target_addr <= 0xffffffffffffl) {
                if (jump->flags & IS_COND)
                        code_ptr[-5] -= (1 << 5);
                jump->flags |= PATCH_ABS48;
                code_ptr[-1] = code_ptr[0];
                return 1;
        }

        jump->flags |= PATCH_ABS64;
        return 0;
}

SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
        struct sljit_memory_fragment *buf;
        sljit_ins *code;
        sljit_ins *code_ptr;
        sljit_ins *buf_ptr;
        sljit_ins *buf_end;
        sljit_uw word_count;
        sljit_uw addr;
        sljit_si dst;

        struct sljit_label *label;
        struct sljit_jump *jump;
        struct sljit_const *const_;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_generate_code(compiler));
        reverse_buf(compiler);

        code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
        PTR_FAIL_WITH_EXEC_IF(code);
        buf = compiler->buf;

        code_ptr = code;
        word_count = 0;
        label = compiler->labels;
        jump = compiler->jumps;
        const_ = compiler->consts;

        do {
                buf_ptr = (sljit_ins*)buf->memory;
                buf_end = buf_ptr + (buf->used_size >> 2);
                do {
                        *code_ptr = *buf_ptr++;
                        /* These structures are ordered by their address. */
                        SLJIT_ASSERT(!label || label->size >= word_count);
                        SLJIT_ASSERT(!jump || jump->addr >= word_count);
                        SLJIT_ASSERT(!const_ || const_->addr >= word_count);
                        if (label && label->size == word_count) {
                                label->addr = (sljit_uw)code_ptr;
                                label->size = code_ptr - code;
                                label = label->next;
                        }
                        if (jump && jump->addr == word_count) {
                                        jump->addr = (sljit_uw)(code_ptr - 4);
                                        code_ptr -= detect_jump_type(jump, code_ptr, code);
                                        jump = jump->next;
                        }
                        if (const_ && const_->addr == word_count) {
                                const_->addr = (sljit_uw)code_ptr;
                                const_ = const_->next;
                        }
                        code_ptr ++;
                        word_count ++;
                } while (buf_ptr < buf_end);

                buf = buf->next;
        } while (buf);

        if (label && label->size == word_count) {
                label->addr = (sljit_uw)code_ptr;
                label->size = code_ptr - code;
                label = label->next;
        }

        SLJIT_ASSERT(!label);
        SLJIT_ASSERT(!jump);
        SLJIT_ASSERT(!const_);
        SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);

        jump = compiler->jumps;
        while (jump) {
                do {
                        addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
                        buf_ptr = (sljit_ins*)jump->addr;
                        if (jump->flags & PATCH_B) {
                                addr = (sljit_sw)(addr - jump->addr) >> 2;
                                SLJIT_ASSERT((sljit_sw)addr <= 0x1ffffff && (sljit_sw)addr >= -0x2000000);
                                buf_ptr[0] = ((jump->flags & IS_BL) ? BL : B) | (addr & 0x3ffffff);
                                if (jump->flags & IS_COND)
                                        buf_ptr[-1] -= (4 << 5);
                                break;
                        }
                        if (jump->flags & PATCH_COND) {
                                addr = (sljit_sw)(addr - jump->addr) >> 2;
                                SLJIT_ASSERT((sljit_sw)addr <= 0x3ffff && (sljit_sw)addr >= -0x40000);
                                buf_ptr[0] = (buf_ptr[0] & ~0xffffe0) | ((addr & 0x7ffff) << 5);
                                break;
                        }

                        SLJIT_ASSERT((jump->flags & (PATCH_ABS48 | PATCH_ABS64)) || addr <= 0xffffffffl);
                        SLJIT_ASSERT((jump->flags & PATCH_ABS64) || addr <= 0xffffffffffffl);

                        dst = buf_ptr[0] & 0x1f;
                        buf_ptr[0] = MOVZ | dst | ((addr & 0xffff) << 5);
                        buf_ptr[1] = MOVK | dst | (((addr >> 16) & 0xffff) << 5) | (1 << 21);
                        if (jump->flags & (PATCH_ABS48 | PATCH_ABS64))
                                buf_ptr[2] = MOVK | dst | (((addr >> 32) & 0xffff) << 5) | (2 << 21);
                        if (jump->flags & PATCH_ABS64)
                                buf_ptr[3] = MOVK | dst | (((addr >> 48) & 0xffff) << 5) | (3 << 21);
                } while (0);
                jump = jump->next;
        }

        compiler->error = SLJIT_ERR_COMPILED;
        compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
        SLJIT_CACHE_FLUSH(code, code_ptr);
        return code;
}

/* --------------------------------------------------------------------- */
/*  Core code generator functions.                                       */
/* --------------------------------------------------------------------- */

#define COUNT_TRAILING_ZERO(value, result) \
        result = 0; \
        if (!(value & 0xffffffff)) { \
                result += 32; \
                value >>= 32; \
        } \
        if (!(value & 0xffff)) { \
                result += 16; \
                value >>= 16; \
        } \
        if (!(value & 0xff)) { \
                result += 8; \
                value >>= 8; \
        } \
        if (!(value & 0xf)) { \
                result += 4; \
                value >>= 4; \
        } \
        if (!(value & 0x3)) { \
                result += 2; \
                value >>= 2; \
        } \
        if (!(value & 0x1)) { \
                result += 1; \
                value >>= 1; \
        }

#define LOGICAL_IMM_CHECK 0x100

static sljit_ins logical_imm(sljit_sw imm, sljit_si len)
{
        sljit_si negated, ones, right;
        sljit_uw mask, uimm;
        sljit_ins ins;

        if (len & LOGICAL_IMM_CHECK) {
                len &= ~LOGICAL_IMM_CHECK;
                if (len == 32 && (imm == 0 || imm == -1))
                        return 0;
                if (len == 16 && ((sljit_si)imm == 0 || (sljit_si)imm == -1))
                        return 0;
        }

        SLJIT_ASSERT((len == 32 && imm != 0 && imm != -1)
                || (len == 16 && (sljit_si)imm != 0 && (sljit_si)imm != -1));
        uimm = (sljit_uw)imm;
        while (1) {
                if (len <= 0) {
                        SLJIT_ASSERT_STOP();
                        return 0;
                }
                mask = ((sljit_uw)1 << len) - 1;
                if ((uimm & mask) != ((uimm >> len) & mask))
                        break;
                len >>= 1;
        }

        len <<= 1;

        negated = 0;
        if (uimm & 0x1) {
                negated = 1;
                uimm = ~uimm;
        }

        if (len < 64)
                uimm &= ((sljit_uw)1 << len) - 1;

        /* Unsigned right shift. */
        COUNT_TRAILING_ZERO(uimm, right);

        /* Signed shift. We also know that the highest bit is set. */
        imm = (sljit_sw)~uimm;
        SLJIT_ASSERT(imm < 0);

        COUNT_TRAILING_ZERO(imm, ones);

        if (~imm)
                return 0;

        if (len == 64)
                ins = 1 << 22;
        else
                ins = (0x3f - ((len << 1) - 1)) << 10;

        if (negated)
                return ins | ((len - ones - 1) << 10) | ((len - ones - right) << 16);

        return ins | ((ones - 1) << 10) | ((len - right) << 16);
}

#undef COUNT_TRAILING_ZERO

static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst, sljit_sw simm)
{
        sljit_uw imm = (sljit_uw)simm;
        sljit_si i, zeros, ones, first;
        sljit_ins bitmask;

        if (imm <= 0xffff)
                return push_inst(compiler, MOVZ | RD(dst) | (imm << 5));

        if (simm >= -0x10000 && simm < 0)
                return push_inst(compiler, MOVN | RD(dst) | ((~imm & 0xffff) << 5));

        if (imm <= 0xffffffffl) {
                if ((imm & 0xffff0000l) == 0xffff0000)
                        return push_inst(compiler, (MOVN ^ W_OP) | RD(dst) | ((~imm & 0xffff) << 5));
                if ((imm & 0xffff) == 0xffff)
                        return push_inst(compiler, (MOVN ^ W_OP) | RD(dst) | ((~imm & 0xffff0000l) >> (16 - 5)) | (1 << 21));
                bitmask = logical_imm(simm, 16);
                if (bitmask != 0)
                        return push_inst(compiler, (ORRI ^ W_OP) | RD(dst) | RN(TMP_ZERO) | bitmask);
        }
        else {
                bitmask = logical_imm(simm, 32);
                if (bitmask != 0)
                        return push_inst(compiler, ORRI | RD(dst) | RN(TMP_ZERO) | bitmask);
        }

        if (imm <= 0xffffffffl) {
                FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | ((imm & 0xffff) << 5)));
                return push_inst(compiler, MOVK | RD(dst) | ((imm & 0xffff0000l) >> (16 - 5)) | (1 << 21));
        }

        if (simm >= -0x100000000l && simm < 0) {
                FAIL_IF(push_inst(compiler, MOVN | RD(dst) | ((~imm & 0xffff) << 5)));
                return push_inst(compiler, MOVK | RD(dst) | ((imm & 0xffff0000l) >> (16 - 5)) | (1 << 21));
        }

        /* A large amount of number can be constructed from ORR and MOVx,
        but computing them is costly. We don't  */

        zeros = 0;
        ones = 0;
        for (i = 4; i > 0; i--) {
                if ((simm & 0xffff) == 0)
                        zeros++;
                if ((simm & 0xffff) == 0xffff)
                        ones++;
                simm >>= 16;
        }

        simm = (sljit_sw)imm;
        first = 1;
        if (ones > zeros) {
                simm = ~simm;
                for (i = 0; i < 4; i++) {
                        if (!(simm & 0xffff)) {
                                simm >>= 16;
                                continue;
                        }
                        if (first) {
                                first = 0;
                                FAIL_IF(push_inst(compiler, MOVN | RD(dst) | ((simm & 0xffff) << 5) | (i << 21)));
                        }
                        else
                                FAIL_IF(push_inst(compiler, MOVK | RD(dst) | ((~simm & 0xffff) << 5) | (i << 21)));
                        simm >>= 16;
                }
                return SLJIT_SUCCESS;
        }

        for (i = 0; i < 4; i++) {
                if (!(simm & 0xffff)) {
                        simm >>= 16;
                        continue;
                }
                if (first) {
                        first = 0;
                        FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | ((simm & 0xffff) << 5) | (i << 21)));
                }
                else
                        FAIL_IF(push_inst(compiler, MOVK | RD(dst) | ((simm & 0xffff) << 5) | (i << 21)));
                simm >>= 16;
        }
        return SLJIT_SUCCESS;
}

#define ARG1_IMM        0x0010000
#define ARG2_IMM        0x0020000
#define INT_OP          0x0040000
#define SET_FLAGS       0x0080000
#define UNUSED_RETURN   0x0100000
#define SLOW_DEST       0x0200000
#define SLOW_SRC1       0x0400000
#define SLOW_SRC2       0x0800000

#define CHECK_FLAGS(flag_bits) \
        if (flags & SET_FLAGS) { \
                inv_bits |= flag_bits; \
                if (flags & UNUSED_RETURN) \
                        dst = TMP_ZERO; \
        }

static sljit_si emit_op_imm(struct sljit_compiler *compiler, sljit_si flags, sljit_si dst, sljit_sw arg1, sljit_sw arg2)
{
        /* dst must be register, TMP_REG1
           arg1 must be register, TMP_REG1, imm
           arg2 must be register, TMP_REG2, imm */
        sljit_ins inv_bits = (flags & INT_OP) ? (1 << 31) : 0;
        sljit_ins inst_bits;
        sljit_si op = (flags & 0xffff);
        sljit_si reg;
        sljit_sw imm, nimm;

        if (SLJIT_UNLIKELY((flags & (ARG1_IMM | ARG2_IMM)) == (ARG1_IMM | ARG2_IMM))) {
                /* Both are immediates. */
                flags &= ~ARG1_IMM;
                if (arg1 == 0 && op != SLJIT_ADD && op != SLJIT_SUB)
                        arg1 = TMP_ZERO;
                else {
                        FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
                        arg1 = TMP_REG1;
                }
        }

        if (flags & (ARG1_IMM | ARG2_IMM)) {
                reg = (flags & ARG2_IMM) ? arg1 : arg2;
                imm = (flags & ARG2_IMM) ? arg2 : arg1;

                switch (op) {
                case SLJIT_MUL:
                case SLJIT_NEG:
                case SLJIT_CLZ:
                case SLJIT_ADDC:
                case SLJIT_SUBC:
                        /* No form with immediate operand (except imm 0, which
                        is represented by a ZERO register). */
                        break;
                case SLJIT_MOV:
                        SLJIT_ASSERT(!(flags & SET_FLAGS) && (flags & ARG2_IMM) && arg1 == TMP_REG1);
                        return load_immediate(compiler, dst, imm);
                case SLJIT_NOT:
                        SLJIT_ASSERT(flags & ARG2_IMM);
                        FAIL_IF(load_immediate(compiler, dst, (flags & INT_OP) ? (~imm & 0xffffffff) : ~imm));
                        goto set_flags;
                case SLJIT_SUB:
                        if (flags & ARG1_IMM)
                                break;
                        imm = -imm;
                        /* Fall through. */
                case SLJIT_ADD:
                        if (imm == 0) {
                                CHECK_FLAGS(1 << 29);
                                return push_inst(compiler, ((op == SLJIT_ADD ? ADDI : SUBI) ^ inv_bits) | RD(dst) | RN(reg));
                        }
                        if (imm > 0 && imm <= 0xfff) {
                                CHECK_FLAGS(1 << 29);
                                return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | (imm << 10));
                        }
                        nimm = -imm;
                        if (nimm > 0 && nimm <= 0xfff) {
                                CHECK_FLAGS(1 << 29);
                                return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | (nimm << 10));
                        }
                        if (imm > 0 && imm <= 0xffffff && !(imm & 0xfff)) {
                                CHECK_FLAGS(1 << 29);
                                return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | ((imm >> 12) << 10) | (1 << 22));
                        }
                        if (nimm > 0 && nimm <= 0xffffff && !(nimm & 0xfff)) {
                                CHECK_FLAGS(1 << 29);
                                return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | ((nimm >> 12) << 10) | (1 << 22));
                        }
                        if (imm > 0 && imm <= 0xffffff && !(flags & SET_FLAGS)) {
                                FAIL_IF(push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | ((imm >> 12) << 10) | (1 << 22)));
                                return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(dst) | ((imm & 0xfff) << 10));
                        }
                        if (nimm > 0 && nimm <= 0xffffff && !(flags & SET_FLAGS)) {
                                FAIL_IF(push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | ((nimm >> 12) << 10) | (1 << 22)));
                                return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(dst) | ((nimm & 0xfff) << 10));
                        }
                        break;
                case SLJIT_AND:
                        inst_bits = logical_imm(imm, LOGICAL_IMM_CHECK | ((flags & INT_OP) ? 16 : 32));
                        if (!inst_bits)
                                break;
                        CHECK_FLAGS(3 << 29);
                        return push_inst(compiler, (ANDI ^ inv_bits) | RD(dst) | RN(reg) | inst_bits);
                case SLJIT_OR:
                case SLJIT_XOR:
                        inst_bits = logical_imm(imm, LOGICAL_IMM_CHECK | ((flags & INT_OP) ? 16 : 32));
                        if (!inst_bits)
                                break;
                        if (op == SLJIT_OR)
                                inst_bits |= ORRI;
                        else
                                inst_bits |= EORI;
                        FAIL_IF(push_inst(compiler, (inst_bits ^ inv_bits) | RD(dst) | RN(reg)));
                        goto set_flags;
                case SLJIT_SHL:
                        if (flags & ARG1_IMM)
                                break;
                        if (flags & INT_OP) {
                                imm &= 0x1f;
                                FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | ((-imm & 0x1f) << 16) | ((31 - imm) << 10)));
                        }
                        else {
                                imm &= 0x3f;
                                FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | (1 << 22) | ((-imm & 0x3f) << 16) | ((63 - imm) << 10)));
                        }
                        goto set_flags;
                case SLJIT_LSHR:
                case SLJIT_ASHR:
                        if (flags & ARG1_IMM)
                                break;
                        if (op == SLJIT_ASHR)
                                inv_bits |= 1 << 30;
                        if (flags & INT_OP) {
                                imm &= 0x1f;
                                FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | (imm << 16) | (31 << 10)));
                        }
                        else {
                                imm &= 0x3f;
                                FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | (1 << 22) | (imm << 16) | (63 << 10)));
                        }
                        goto set_flags;
                default:
                        SLJIT_ASSERT_STOP();
                        break;
                }

                if (flags & ARG2_IMM) {
                        if (arg2 == 0)
                                arg2 = TMP_ZERO;
                        else {
                                FAIL_IF(load_immediate(compiler, TMP_REG2, arg2));
                                arg2 = TMP_REG2;
                        }
                }
                else {
                        if (arg1 == 0)
                                arg1 = TMP_ZERO;
                        else {
                                FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
                                arg1 = TMP_REG1;
                        }
                }
        }

        /* Both arguments are registers. */
        switch (op) {
        case SLJIT_MOV:
        case SLJIT_MOV_P:
        case SLJIT_MOVU:
        case SLJIT_MOVU_P:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if (dst == arg2)
                        return SLJIT_SUCCESS;
                return push_inst(compiler, ORR | RD(dst) | RN(TMP_ZERO) | RM(arg2));
        case SLJIT_MOV_UB:
        case SLJIT_MOVU_UB:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                return push_inst(compiler, (UBFM ^ (1 << 31)) | RD(dst) | RN(arg2) | (7 << 10));
        case SLJIT_MOV_SB:
        case SLJIT_MOVU_SB:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if (!(flags & INT_OP))
                        inv_bits |= 1 << 22;
                return push_inst(compiler, (SBFM ^ inv_bits) | RD(dst) | RN(arg2) | (7 << 10));
        case SLJIT_MOV_UH:
        case SLJIT_MOVU_UH:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                return push_inst(compiler, (UBFM ^ (1 << 31)) | RD(dst) | RN(arg2) | (15 << 10));
        case SLJIT_MOV_SH:
        case SLJIT_MOVU_SH:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if (!(flags & INT_OP))
                        inv_bits |= 1 << 22;
                return push_inst(compiler, (SBFM ^ inv_bits) | RD(dst) | RN(arg2) | (15 << 10));
        case SLJIT_MOV_UI:
        case SLJIT_MOVU_UI:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if ((flags & INT_OP) && dst == arg2)
                        return SLJIT_SUCCESS;
                return push_inst(compiler, (ORR ^ (1 << 31)) | RD(dst) | RN(TMP_ZERO) | RM(arg2));
        case SLJIT_MOV_SI:
        case SLJIT_MOVU_SI:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if ((flags & INT_OP) && dst == arg2)
                        return SLJIT_SUCCESS;
                return push_inst(compiler, SBFM | (1 << 22) | RD(dst) | RN(arg2) | (31 << 10));
        case SLJIT_NOT:
                SLJIT_ASSERT(arg1 == TMP_REG1);
                FAIL_IF(push_inst(compiler, (ORN ^ inv_bits) | RD(dst) | RN(TMP_ZERO) | RM(arg2)));
                goto set_flags;
        case SLJIT_NEG:
                SLJIT_ASSERT(arg1 == TMP_REG1);
                if (flags & SET_FLAGS)
                        inv_bits |= 1 << 29;
                return push_inst(compiler, (SUB ^ inv_bits) | RD(dst) | RN(TMP_ZERO) | RM(arg2));
        case SLJIT_CLZ:
                SLJIT_ASSERT(arg1 == TMP_REG1);
                FAIL_IF(push_inst(compiler, (CLZ ^ inv_bits) | RD(dst) | RN(arg2)));
                goto set_flags;
        case SLJIT_ADD:
                CHECK_FLAGS(1 << 29);
                return push_inst(compiler, (ADD ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
        case SLJIT_ADDC:
                CHECK_FLAGS(1 << 29);
                return push_inst(compiler, (ADC ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
        case SLJIT_SUB:
                CHECK_FLAGS(1 << 29);
                return push_inst(compiler, (SUB ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
        case SLJIT_SUBC:
                CHECK_FLAGS(1 << 29);
                return push_inst(compiler, (SBC ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
        case SLJIT_MUL:
                if (!(flags & SET_FLAGS))
                        return push_inst(compiler, (MADD ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2) | RT2(TMP_ZERO));
                if (flags & INT_OP) {
                        FAIL_IF(push_inst(compiler, SMADDL | RD(dst) | RN(arg1) | RM(arg2) | (31 << 10)));
                        FAIL_IF(push_inst(compiler, ADD | RD(TMP_LR) | RN(TMP_ZERO) | RM(dst) | (2 << 22) | (31 << 10)));
                        return push_inst(compiler, SUBS | RD(TMP_ZERO) | RN(TMP_LR) | RM(dst) | (2 << 22) | (63 << 10));
                }
                FAIL_IF(push_inst(compiler, SMULH | RD(TMP_LR) | RN(arg1) | RM(arg2)));
                FAIL_IF(push_inst(compiler, MADD | RD(dst) | RN(arg1) | RM(arg2) | RT2(TMP_ZERO)));
                return push_inst(compiler, SUBS | RD(TMP_ZERO) | RN(TMP_LR) | RM(dst) | (2 << 22) | (63 << 10));
        case SLJIT_AND:
                CHECK_FLAGS(3 << 29);
                return push_inst(compiler, (AND ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
        case SLJIT_OR:
                FAIL_IF(push_inst(compiler, (ORR ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
                goto set_flags;
        case SLJIT_XOR:
                FAIL_IF(push_inst(compiler, (EOR ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
                goto set_flags;
        case SLJIT_SHL:
                FAIL_IF(push_inst(compiler, (LSLV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
                goto set_flags;
        case SLJIT_LSHR:
                FAIL_IF(push_inst(compiler, (LSRV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
                goto set_flags;
        case SLJIT_ASHR:
                FAIL_IF(push_inst(compiler, (ASRV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
                goto set_flags;
        }

        SLJIT_ASSERT_STOP();
        return SLJIT_SUCCESS;

set_flags:
        if (flags & SET_FLAGS)
                return push_inst(compiler, (SUBS ^ inv_bits) | RD(TMP_ZERO) | RN(dst) | RM(TMP_ZERO));
        return SLJIT_SUCCESS;
}

#define STORE           0x01
#define SIGNED          0x02

#define UPDATE          0x04
#define ARG_TEST        0x08

#define BYTE_SIZE       0x000
#define HALF_SIZE       0x100
#define INT_SIZE        0x200
#define WORD_SIZE       0x300

#define MEM_SIZE_SHIFT(flags) ((flags) >> 8)

static SLJIT_CONST sljit_ins sljit_mem_imm[4] = {
/* u l */ 0x39400000 /* ldrb [reg,imm] */,
/* u s */ 0x39000000 /* strb [reg,imm] */,
/* s l */ 0x39800000 /* ldrsb [reg,imm] */,
/* s s */ 0x39000000 /* strb [reg,imm] */,
};

static SLJIT_CONST sljit_ins sljit_mem_simm[4] = {
/* u l */ 0x38400000 /* ldurb [reg,imm] */,
/* u s */ 0x38000000 /* sturb [reg,imm] */,
/* s l */ 0x38800000 /* ldursb [reg,imm] */,
/* s s */ 0x38000000 /* sturb [reg,imm] */,
};

static SLJIT_CONST sljit_ins sljit_mem_pre_simm[4] = {
/* u l */ 0x38400c00 /* ldrb [reg,imm]! */,
/* u s */ 0x38000c00 /* strb [reg,imm]! */,
/* s l */ 0x38800c00 /* ldrsb [reg,imm]! */,
/* s s */ 0x38000c00 /* strb [reg,imm]! */,
};

static SLJIT_CONST sljit_ins sljit_mem_reg[4] = {
/* u l */ 0x38606800 /* ldrb [reg,reg] */,
/* u s */ 0x38206800 /* strb [reg,reg] */,
/* s l */ 0x38a06800 /* ldrsb [reg,reg] */,
/* s s */ 0x38206800 /* strb [reg,reg] */,
};

/* Helper function. Dst should be reg + value, using at most 1 instruction, flags does not set. */
static sljit_si emit_set_delta(struct sljit_compiler *compiler, sljit_si dst, sljit_si reg, sljit_sw value)
{
        if (value >= 0) {
                if (value <= 0xfff)
                        return push_inst(compiler, ADDI | RD(dst) | RN(reg) | (value << 10));
                if (value <= 0xffffff && !(value & 0xfff))
                        return push_inst(compiler, ADDI | (1 << 22) | RD(dst) | RN(reg) | (value >> 2));
        }
        else {
                value = -value;
                if (value <= 0xfff)
                        return push_inst(compiler, SUBI | RD(dst) | RN(reg) | (value << 10));
                if (value <= 0xffffff && !(value & 0xfff))
                        return push_inst(compiler, SUBI | (1 << 22) | RD(dst) | RN(reg) | (value >> 2));
        }
        return SLJIT_ERR_UNSUPPORTED;
}

/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
        sljit_ui shift = MEM_SIZE_SHIFT(flags);

        SLJIT_ASSERT(arg & SLJIT_MEM);

        if (SLJIT_UNLIKELY(flags & UPDATE)) {
                if ((arg & REG_MASK) && !(arg & OFFS_REG_MASK) && argw <= 255 && argw >= -256) {
                        if (SLJIT_UNLIKELY(flags & ARG_TEST))
                                return 1;

                        arg &= REG_MASK;
                        argw &= 0x1ff;
                        FAIL_IF(push_inst(compiler, sljit_mem_pre_simm[flags & 0x3]
                                | (shift << 30) | RT(reg) | RN(arg) | (argw << 12)));
                        return -1;
                }
                return 0;
        }

        if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
                argw &= 0x3;
                if (argw && argw != shift)
                        return 0;

                if (SLJIT_UNLIKELY(flags & ARG_TEST))
                        return 1;

                FAIL_IF(push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg)
                        | RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | (argw ? (1 << 12) : 0)));
                return -1;
        }

        arg &= REG_MASK;
        if (argw >= 0 && (argw >> shift) <= 0xfff && (argw & ((1 << shift) - 1)) == 0) {
                if (SLJIT_UNLIKELY(flags & ARG_TEST))
                        return 1;

                FAIL_IF(push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30)
                        | RT(reg) | RN(arg) | (argw << (10 - shift))));
                return -1;
        }

        if (argw > 255 || argw < -256)
                return 0;

        if (SLJIT_UNLIKELY(flags & ARG_TEST))
                return 1;

        FAIL_IF(push_inst(compiler, sljit_mem_simm[flags & 0x3] | (shift << 30)
                | RT(reg) | RN(arg) | ((argw & 0x1ff) << 12)));
        return -1;
}

/* see getput_arg below.
   Note: can_cache is called only for binary operators. Those
   operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
        sljit_sw diff;
        if ((arg & OFFS_REG_MASK) || !(next_arg & SLJIT_MEM))
                return 0;

        if (!(arg & REG_MASK)) {
                diff = argw - next_argw;
                if (diff <= 0xfff && diff >= -0xfff)
                        return 1;
                return 0;
        }

        if (argw == next_argw)
                return 1;

        diff = argw - next_argw;
        if (arg == next_arg && diff <= 0xfff && diff >= -0xfff)
                return 1;

        return 0;
}

/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg,
        sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
        sljit_ui shift = MEM_SIZE_SHIFT(flags);
        sljit_si tmp_r, other_r;
        sljit_sw diff;

        SLJIT_ASSERT(arg & SLJIT_MEM);
        if (!(next_arg & SLJIT_MEM)) {
                next_arg = 0;
                next_argw = 0;
        }

        tmp_r = (flags & STORE) ? TMP_REG3 : reg;

        if (SLJIT_UNLIKELY((flags & UPDATE) && (arg & REG_MASK))) {
                /* Update only applies if a base register exists. */
                other_r = OFFS_REG(arg);
                if (!other_r) {
                        other_r = arg & REG_MASK;
                        if (other_r != reg && argw >= 0 && argw <= 0xffffff) {
                                if ((argw & 0xfff) != 0)
                                        FAIL_IF(push_inst(compiler, ADDI | RD(other_r) | RN(other_r) | ((argw & 0xfff) << 10)));
                                if (argw >> 12)
                                        FAIL_IF(push_inst(compiler, ADDI | (1 << 22) | RD(other_r) | RN(other_r) | ((argw >> 12) << 10)));
                                return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(other_r));
                        }
                        else if (other_r != reg && argw < 0 && argw >= -0xffffff) {
                                argw = -argw;
                                if ((argw & 0xfff) != 0)
                                        FAIL_IF(push_inst(compiler, SUBI | RD(other_r) | RN(other_r) | ((argw & 0xfff) << 10)));
                                if (argw >> 12)
                                        FAIL_IF(push_inst(compiler, SUBI | (1 << 22) | RD(other_r) | RN(other_r) | ((argw >> 12) << 10)));
                                return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(other_r));
                        }

                        if (compiler->cache_arg == SLJIT_MEM) {
                                if (argw == compiler->cache_argw) {
                                        other_r = TMP_REG3;
                                        argw = 0;
                                }
                                else if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
                                        FAIL_IF(compiler->error);
                                        compiler->cache_argw = argw;
                                        other_r = TMP_REG3;
                                        argw = 0;
                                }
                        }

                        if (argw) {
                                FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
                                compiler->cache_arg = SLJIT_MEM;
                                compiler->cache_argw = argw;
                                other_r = TMP_REG3;
                                argw = 0;
                        }
                }

                /* No caching here. */
                arg &= REG_MASK;
                argw &= 0x3;
                if (!argw || argw == shift) {
                        FAIL_IF(push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg) | RM(other_r) | (argw ? (1 << 12) : 0)));
                        return push_inst(compiler, ADD | RD(arg) | RN(arg) | RM(other_r) | (argw << 10));
                }
                if (arg != reg) {
                        FAIL_IF(push_inst(compiler, ADD | RD(arg) | RN(arg) | RM(other_r) | (argw << 10)));
                        return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg));
                }
                FAIL_IF(push_inst(compiler, ADD | RD(TMP_LR) | RN(arg) | RM(other_r) | (argw << 10)));
                FAIL_IF(push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(TMP_LR)));
                return push_inst(compiler, ORR | RD(arg) | RN(TMP_ZERO) | RM(TMP_LR));
        }

        if (arg & OFFS_REG_MASK) {
                other_r = OFFS_REG(arg);
                arg &= REG_MASK;
                FAIL_IF(push_inst(compiler, ADD | RD(tmp_r) | RN(arg) | RM(other_r) | ((argw & 0x3) << 10)));
                return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(tmp_r));
        }

        if (compiler->cache_arg == arg) {
                diff = argw - compiler->cache_argw;
                if (diff <= 255 && diff >= -256)
                        return push_inst(compiler, sljit_mem_simm[flags & 0x3] | (shift << 30)
                                | RT(reg) | RN(TMP_REG3) | ((diff & 0x1ff) << 12));
                if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, diff) != SLJIT_ERR_UNSUPPORTED) {
                        FAIL_IF(compiler->error);
                        return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg));
                }
        }

        if (argw >= 0 && argw <= 0xffffff && (argw & ((1 << shift) - 1)) == 0) {
                FAIL_IF(push_inst(compiler, ADDI | (1 << 22) | RD(tmp_r) | RN(arg & REG_MASK) | ((argw >> 12) << 10)));
                return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30)
                        | RT(reg) | RN(tmp_r) | ((argw & 0xfff) << (10 - shift)));
        }

        diff = argw - next_argw;
        next_arg = (arg & REG_MASK) && (arg == next_arg) && diff <= 0xfff && diff >= -0xfff && diff != 0;
        arg &= REG_MASK;

        if (arg && compiler->cache_arg == SLJIT_MEM) {
                if (compiler->cache_argw == argw)
                        return push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg) | RM(TMP_REG3));
                if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
                        FAIL_IF(compiler->error);
                        compiler->cache_argw = argw;
                        return push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg) | RM(TMP_REG3));
                }
        }

        compiler->cache_argw = argw;
        if (next_arg && emit_set_delta(compiler, TMP_REG3, arg, argw) != SLJIT_ERR_UNSUPPORTED) {
                FAIL_IF(compiler->error);
                compiler->cache_arg = SLJIT_MEM | arg;
                arg = 0;
        }
        else {
                FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
                compiler->cache_arg = SLJIT_MEM;

                if (next_arg) {
                        FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG3) | RN(TMP_REG3) | RM(arg)));
                        compiler->cache_arg = SLJIT_MEM | arg;
                        arg = 0;
                }
        }

        if (arg)
                return push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg) | RM(TMP_REG3));
        return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(TMP_REG3));
}

static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
        if (getput_arg_fast(compiler, flags, reg, arg, argw))
                return compiler->error;
        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        return getput_arg(compiler, flags, reg, arg, argw, 0, 0);
}

static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
        if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
                return compiler->error;
        return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}

/* --------------------------------------------------------------------- */
/*  Entry, exit                                                          */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
        sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
        sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
        sljit_si i, tmp, offs, prev, saved_regs_size;

        CHECK_ERROR();
        CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
        set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

        saved_regs_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 0);
        local_size += saved_regs_size + SLJIT_LOCALS_OFFSET;
        local_size = (local_size + 15) & ~0xf;
        compiler->local_size = local_size;

        if (local_size <= (63 * sizeof(sljit_sw))) {
                FAIL_IF(push_inst(compiler, STP_PRE | 29 | RT2(TMP_LR)
                        | RN(TMP_SP) | ((-(local_size >> 3) & 0x7f) << 15)));
                FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_SP) | RN(TMP_SP) | (0 << 10)));
                offs = (local_size - saved_regs_size) << (15 - 3);
        } else {
                offs = 0 << 15;
                if (saved_regs_size & 0x8) {
                        offs = 1 << 15;
                        saved_regs_size += sizeof(sljit_sw);
                }
                local_size -= saved_regs_size + SLJIT_LOCALS_OFFSET;
                FAIL_IF(push_inst(compiler, SUBI | RD(TMP_SP) | RN(TMP_SP) | (saved_regs_size << 10)));
        }

        tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
        prev = -1;
        for (i = SLJIT_S0; i >= tmp; i--) {
                if (prev == -1) {
                        prev = i;
                        continue;
                }
                FAIL_IF(push_inst(compiler, STP | RT(prev) | RT2(i) | RN(TMP_SP) | offs));
                offs += 2 << 15;
                prev = -1;
        }

        for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
                if (prev == -1) {
                        prev = i;
                        continue;
                }
                FAIL_IF(push_inst(compiler, STP | RT(prev) | RT2(i) | RN(TMP_SP) | offs));
                offs += 2 << 15;
                prev = -1;
        }

        if (prev != -1)
                FAIL_IF(push_inst(compiler, STRI | RT(prev) | RN(TMP_SP) | (offs >> 5)));

        if (compiler->local_size > (63 * sizeof(sljit_sw))) {
                /* The local_size is already adjusted by the saved registers. */
                if (local_size > 0xfff) {
                        FAIL_IF(push_inst(compiler, SUBI | RD(TMP_SP) | RN(TMP_SP) | ((local_size >> 12) << 10) | (1 << 22)));
                        local_size &= 0xfff;
                }
                if (local_size)
                        FAIL_IF(push_inst(compiler, SUBI | RD(TMP_SP) | RN(TMP_SP) | (local_size << 10)));
                FAIL_IF(push_inst(compiler, STP_PRE | 29 | RT2(TMP_LR)
                        | RN(TMP_SP) | ((-(16 >> 3) & 0x7f) << 15)));
                FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_SP) | RN(TMP_SP) | (0 << 10)));
        }

        if (args >= 1)
                FAIL_IF(push_inst(compiler, ORR | RD(SLJIT_S0) | RN(TMP_ZERO) | RM(SLJIT_R0)));
        if (args >= 2)
                FAIL_IF(push_inst(compiler, ORR | RD(SLJIT_S1) | RN(TMP_ZERO) | RM(SLJIT_R1)));
        if (args >= 3)
                FAIL_IF(push_inst(compiler, ORR | RD(SLJIT_S2) | RN(TMP_ZERO) | RM(SLJIT_R2)));

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
        sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
        sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
        CHECK_ERROR();
        CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
        set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

        local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 0) + SLJIT_LOCALS_OFFSET;
        local_size = (local_size + 15) & ~0xf;
        compiler->local_size = local_size;
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
        sljit_si local_size;
        sljit_si i, tmp, offs, prev, saved_regs_size;

        CHECK_ERROR();
        CHECK(check_sljit_emit_return(compiler, op, src, srcw));

        FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));

        local_size = compiler->local_size;

        saved_regs_size = GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 0);
        if (local_size <= (63 * sizeof(sljit_sw)))
                offs = (local_size - saved_regs_size) << (15 - 3);
        else {
                FAIL_IF(push_inst(compiler, LDP_PST | 29 | RT2(TMP_LR)
                        | RN(TMP_SP) | (((16 >> 3) & 0x7f) << 15)));
                offs = 0 << 15;
                if (saved_regs_size & 0x8) {
                        offs = 1 << 15;
                        saved_regs_size += sizeof(sljit_sw);
                }
                local_size -= saved_regs_size + SLJIT_LOCALS_OFFSET;
                if (local_size > 0xfff) {
                        FAIL_IF(push_inst(compiler, ADDI | RD(TMP_SP) | RN(TMP_SP) | ((local_size >> 12) << 10) | (1 << 22)));
                        local_size &= 0xfff;
                }
                if (local_size)
                        FAIL_IF(push_inst(compiler, ADDI | RD(TMP_SP) | RN(TMP_SP) | (local_size << 10)));
        }

        tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG;
        prev = -1;
        for (i = SLJIT_S0; i >= tmp; i--) {
                if (prev == -1) {
                        prev = i;
                        continue;
                }
                FAIL_IF(push_inst(compiler, LDP | RT(prev) | RT2(i) | RN(TMP_SP) | offs));
                offs += 2 << 15;
                prev = -1;
        }

        for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
                if (prev == -1) {
                        prev = i;
                        continue;
                }
                FAIL_IF(push_inst(compiler, LDP | RT(prev) | RT2(i) | RN(TMP_SP) | offs));
                offs += 2 << 15;
                prev = -1;
        }

        if (prev != -1)
                FAIL_IF(push_inst(compiler, LDRI | RT(prev) | RN(TMP_SP) | (offs >> 5)));

        if (compiler->local_size <= (63 * sizeof(sljit_sw))) {
                FAIL_IF(push_inst(compiler, LDP_PST | 29 | RT2(TMP_LR)
                        | RN(TMP_SP) | (((local_size >> 3) & 0x7f) << 15)));
        } else {
                FAIL_IF(push_inst(compiler, ADDI | RD(TMP_SP) | RN(TMP_SP) | (saved_regs_size << 10)));
        }

        FAIL_IF(push_inst(compiler, RET | RN(TMP_LR)));
        return SLJIT_SUCCESS;
}

/* --------------------------------------------------------------------- */
/*  Operators                                                            */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
        sljit_ins inv_bits = (op & SLJIT_INT_OP) ? (1 << 31) : 0;

        CHECK_ERROR();
        CHECK(check_sljit_emit_op0(compiler, op));

        op = GET_OPCODE(op);
        switch (op) {
        case SLJIT_BREAKPOINT:
                return push_inst(compiler, BRK);
        case SLJIT_NOP:
                return push_inst(compiler, NOP);
        case SLJIT_LUMUL:
        case SLJIT_LSMUL:
                FAIL_IF(push_inst(compiler, ORR | RD(TMP_REG1) | RN(TMP_ZERO) | RM(SLJIT_R0)));
                FAIL_IF(push_inst(compiler, MADD | RD(SLJIT_R0) | RN(SLJIT_R0) | RM(SLJIT_R1) | RT2(TMP_ZERO)));
                return push_inst(compiler, (op == SLJIT_LUMUL ? UMULH : SMULH) | RD(SLJIT_R1) | RN(TMP_REG1) | RM(SLJIT_R1));
        case SLJIT_LUDIV:
        case SLJIT_LSDIV:
                FAIL_IF(push_inst(compiler, (ORR ^ inv_bits) | RD(TMP_REG1) | RN(TMP_ZERO) | RM(SLJIT_R0)));
                FAIL_IF(push_inst(compiler, ((op == SLJIT_LUDIV ? UDIV : SDIV) ^ inv_bits) | RD(SLJIT_R0) | RN(SLJIT_R0) | RM(SLJIT_R1)));
                FAIL_IF(push_inst(compiler, (MADD ^ inv_bits) | RD(SLJIT_R1) | RN(SLJIT_R0) | RM(SLJIT_R1) | RT2(TMP_ZERO)));
                return push_inst(compiler, (SUB ^ inv_bits) | RD(SLJIT_R1) | RN(TMP_REG1) | RM(SLJIT_R1));
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r, flags, mem_flags;
        sljit_si op_flags = GET_ALL_FLAGS(op);

        CHECK_ERROR();
        CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src, srcw);

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;

        dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;

        op = GET_OPCODE(op);
        if (op >= SLJIT_MOV && op <= SLJIT_MOVU_P) {
                switch (op) {
                case SLJIT_MOV:
                case SLJIT_MOV_P:
                        flags = WORD_SIZE;
                        break;
                case SLJIT_MOV_UB:
                        flags = BYTE_SIZE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_ub)srcw;
                        break;
                case SLJIT_MOV_SB:
                        flags = BYTE_SIZE | SIGNED;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_sb)srcw;
                        break;
                case SLJIT_MOV_UH:
                        flags = HALF_SIZE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_uh)srcw;
                        break;
                case SLJIT_MOV_SH:
                        flags = HALF_SIZE | SIGNED;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_sh)srcw;
                        break;
                case SLJIT_MOV_UI:
                        flags = INT_SIZE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_ui)srcw;
                        break;
                case SLJIT_MOV_SI:
                        flags = INT_SIZE | SIGNED;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_si)srcw;
                        break;
                case SLJIT_MOVU:
                case SLJIT_MOVU_P:
                        flags = WORD_SIZE | UPDATE;
                        break;
                case SLJIT_MOVU_UB:
                        flags = BYTE_SIZE | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_ub)srcw;
                        break;
                case SLJIT_MOVU_SB:
                        flags = BYTE_SIZE | SIGNED | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_sb)srcw;
                        break;
                case SLJIT_MOVU_UH:
                        flags = HALF_SIZE | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_uh)srcw;
                        break;
                case SLJIT_MOVU_SH:
                        flags = HALF_SIZE | SIGNED | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_sh)srcw;
                        break;
                case SLJIT_MOVU_UI:
                        flags = INT_SIZE | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_ui)srcw;
                        break;
                case SLJIT_MOVU_SI:
                        flags = INT_SIZE | SIGNED | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_si)srcw;
                        break;
                default:
                        SLJIT_ASSERT_STOP();
                        flags = 0;
                        break;
                }

                if (src & SLJIT_IMM)
                        FAIL_IF(emit_op_imm(compiler, SLJIT_MOV | ARG2_IMM, dst_r, TMP_REG1, srcw));
                else if (src & SLJIT_MEM) {
                        if (getput_arg_fast(compiler, flags, dst_r, src, srcw))
                                FAIL_IF(compiler->error);
                        else
                                FAIL_IF(getput_arg(compiler, flags, dst_r, src, srcw, dst, dstw));
                } else {
                        if (dst_r != TMP_REG1)
                                return emit_op_imm(compiler, op | ((op_flags & SLJIT_INT_OP) ? INT_OP : 0), dst_r, TMP_REG1, src);
                        dst_r = src;
                }

                if (dst & SLJIT_MEM) {
                        if (getput_arg_fast(compiler, flags | STORE, dst_r, dst, dstw))
                                return compiler->error;
                        else
                                return getput_arg(compiler, flags | STORE, dst_r, dst, dstw, 0, 0);
                }
                return SLJIT_SUCCESS;
        }

        flags = GET_FLAGS(op_flags) ? SET_FLAGS : 0;
        mem_flags = WORD_SIZE;
        if (op_flags & SLJIT_INT_OP) {
                flags |= INT_OP;
                mem_flags = INT_SIZE;
        }

        if (dst == SLJIT_UNUSED)
                flags |= UNUSED_RETURN;

        if (src & SLJIT_MEM) {
                if (getput_arg_fast(compiler, mem_flags, TMP_REG2, src, srcw))
                        FAIL_IF(compiler->error);
                else
                        FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG2, src, srcw, dst, dstw));
                src = TMP_REG2;
        }

        if (src & SLJIT_IMM) {
                flags |= ARG2_IMM;
                if (op_flags & SLJIT_INT_OP)
                        srcw = (sljit_si)srcw;
        } else
                srcw = src;

        emit_op_imm(compiler, flags | op, dst_r, TMP_REG1, srcw);

        if (dst & SLJIT_MEM) {
                if (getput_arg_fast(compiler, mem_flags | STORE, dst_r, dst, dstw))
                        return compiler->error;
                else
                        return getput_arg(compiler, mem_flags | STORE, dst_r, dst, dstw, 0, 0);
        }
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        sljit_si dst_r, flags, mem_flags;

        CHECK_ERROR();
        CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src1, src1w);
        ADJUST_LOCAL_OFFSET(src2, src2w);

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;

        dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
        flags = GET_FLAGS(op) ? SET_FLAGS : 0;
        mem_flags = WORD_SIZE;
        if (op & SLJIT_INT_OP) {
                flags |= INT_OP;
                mem_flags = INT_SIZE;
        }

        if (dst == SLJIT_UNUSED)
                flags |= UNUSED_RETURN;

        if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, mem_flags | STORE | ARG_TEST, TMP_REG1, dst, dstw))
                flags |= SLOW_DEST;

        if (src1 & SLJIT_MEM) {
                if (getput_arg_fast(compiler, mem_flags, TMP_REG1, src1, src1w))
                        FAIL_IF(compiler->error);
                else
                        flags |= SLOW_SRC1;
        }
        if (src2 & SLJIT_MEM) {
                if (getput_arg_fast(compiler, mem_flags, TMP_REG2, src2, src2w))
                        FAIL_IF(compiler->error);
                else
                        flags |= SLOW_SRC2;
        }

        if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
                if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
                        FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG2, src2, src2w, src1, src1w));
                        FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG1, src1, src1w, dst, dstw));
                }
                else {
                        FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG1, src1, src1w, src2, src2w));
                        FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG2, src2, src2w, dst, dstw));
                }
        }
        else if (flags & SLOW_SRC1)
                FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG1, src1, src1w, dst, dstw));
        else if (flags & SLOW_SRC2)
                FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG2, src2, src2w, dst, dstw));

        if (src1 & SLJIT_MEM)
                src1 = TMP_REG1;
        if (src2 & SLJIT_MEM)
                src2 = TMP_REG2;

        if (src1 & SLJIT_IMM)
                flags |= ARG1_IMM;
        else
                src1w = src1;
        if (src2 & SLJIT_IMM)
                flags |= ARG2_IMM;
        else
                src2w = src2;

        emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src1w, src2w);

        if (dst & SLJIT_MEM) {
                if (!(flags & SLOW_DEST)) {
                        getput_arg_fast(compiler, mem_flags | STORE, dst_r, dst, dstw);
                        return compiler->error;
                }
                return getput_arg(compiler, mem_flags | STORE, TMP_REG1, dst, dstw, 0, 0);
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
        CHECK_REG_INDEX(check_sljit_get_register_index(reg));
        return reg_map[reg];
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
        CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
        return reg;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
        void *instruction, sljit_si size)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_op_custom(compiler, instruction, size));

        return push_inst(compiler, *(sljit_ins*)instruction);
}

/* --------------------------------------------------------------------- */
/*  Floating point operators                                             */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
        return SLJIT_IS_FPU_AVAILABLE;
#else
        /* Available by default. */
        return 1;
#endif
}

static sljit_si emit_fop_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
        sljit_ui shift = MEM_SIZE_SHIFT(flags);
        sljit_ins ins_bits = (shift << 30);
        sljit_si other_r;
        sljit_sw diff;

        SLJIT_ASSERT(arg & SLJIT_MEM);

        if (!(flags & STORE))
                ins_bits |= 1 << 22;

        if (arg & OFFS_REG_MASK) {
                argw &= 3;
                if (!argw || argw == shift)
                        return push_inst(compiler, STR_FR | ins_bits | VT(reg)
                                | RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | (argw ? (1 << 12) : 0));
                other_r = OFFS_REG(arg);
                arg &= REG_MASK;
                FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG1) | RN(arg) | RM(other_r) | (argw << 10)));
                arg = TMP_REG1;
                argw = 0;
        }

        arg &= REG_MASK;
        if (arg && argw >= 0 && ((argw >> shift) <= 0xfff) && (argw & ((1 << shift) - 1)) == 0)
                return push_inst(compiler, STR_FI | ins_bits | VT(reg) | RN(arg) | (argw << (10 - shift)));

        if (arg && argw <= 255 && argw >= -256)
                return push_inst(compiler, STUR_FI | ins_bits | VT(reg) | RN(arg) | ((argw & 0x1ff) << 12));

        /* Slow cases */
        if (compiler->cache_arg == SLJIT_MEM && argw != compiler->cache_argw) {
                diff = argw - compiler->cache_argw;
                if (!arg && diff <= 255 && diff >= -256)
                        return push_inst(compiler, STUR_FI | ins_bits | VT(reg) | RN(TMP_REG3) | ((diff & 0x1ff) << 12));
                if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
                        FAIL_IF(compiler->error);
                        compiler->cache_argw = argw;
                }
        }

        if (compiler->cache_arg != SLJIT_MEM || argw != compiler->cache_argw) {
                compiler->cache_arg = SLJIT_MEM;
                compiler->cache_argw = argw;
                FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
        }

        if (arg & REG_MASK)
                return push_inst(compiler, STR_FR | ins_bits | VT(reg) | RN(arg) | RM(TMP_REG3));
        return push_inst(compiler, STR_FI | ins_bits | VT(reg) | RN(TMP_REG3));
}

static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
        sljit_ins inv_bits = (op & SLJIT_SINGLE_OP) ? (1 << 22) : 0;

        if (GET_OPCODE(op) == SLJIT_CONVI_FROMD)
                inv_bits |= (1 << 31);

        if (src & SLJIT_MEM) {
                emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) ? INT_SIZE : WORD_SIZE, TMP_FREG1, src, srcw);
                src = TMP_FREG1;
        }

        FAIL_IF(push_inst(compiler, (FCVTZS ^ inv_bits) | RD(dst_r) | VN(src)));

        if (dst_r == TMP_REG1 && dst != SLJIT_UNUSED)
                return emit_op_mem(compiler, ((GET_OPCODE(op) == SLJIT_CONVI_FROMD) ? INT_SIZE : WORD_SIZE) | STORE, TMP_REG1, dst, dstw);
        return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
        sljit_ins inv_bits = (op & SLJIT_SINGLE_OP) ? (1 << 22) : 0;

        if (GET_OPCODE(op) == SLJIT_CONVD_FROMI)
                inv_bits |= (1 << 31);

        if (src & SLJIT_MEM) {
                emit_op_mem(compiler, ((GET_OPCODE(op) == SLJIT_CONVD_FROMI) ? INT_SIZE : WORD_SIZE), TMP_REG1, src, srcw);
                src = TMP_REG1;
        } else if (src & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
                if (GET_OPCODE(op) == SLJIT_CONVD_FROMI)
                        srcw = (sljit_si)srcw;
#endif
                FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
                src = TMP_REG1;
        }

        FAIL_IF(push_inst(compiler, (SCVTF ^ inv_bits) | VD(dst_r) | RN(src)));

        if (dst & SLJIT_MEM)
                return emit_fop_mem(compiler, ((op & SLJIT_SINGLE_OP) ? INT_SIZE : WORD_SIZE) | STORE, TMP_FREG1, dst, dstw);
        return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        sljit_si mem_flags = (op & SLJIT_SINGLE_OP) ? INT_SIZE : WORD_SIZE;
        sljit_ins inv_bits = (op & SLJIT_SINGLE_OP) ? (1 << 22) : 0;

        if (src1 & SLJIT_MEM) {
                emit_fop_mem(compiler, mem_flags, TMP_FREG1, src1, src1w);
                src1 = TMP_FREG1;
        }

        if (src2 & SLJIT_MEM) {
                emit_fop_mem(compiler, mem_flags, TMP_FREG2, src2, src2w);
                src2 = TMP_FREG2;
        }

        return push_inst(compiler, (FCMP ^ inv_bits) | VN(src1) | VM(src2));
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r, mem_flags = (op & SLJIT_SINGLE_OP) ? INT_SIZE : WORD_SIZE;
        sljit_ins inv_bits;

        CHECK_ERROR();
        compiler->cache_arg = 0;
        compiler->cache_argw = 0;

        SLJIT_COMPILE_ASSERT((INT_SIZE ^ 0x100) == WORD_SIZE, must_be_one_bit_difference);
        SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);

        inv_bits = (op & SLJIT_SINGLE_OP) ? (1 << 22) : 0;
        dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;

        if (src & SLJIT_MEM) {
                emit_fop_mem(compiler, (GET_OPCODE(op) == SLJIT_CONVD_FROMS) ? (mem_flags ^ 0x100) : mem_flags, dst_r, src, srcw);
                src = dst_r;
        }

        switch (GET_OPCODE(op)) {
        case SLJIT_DMOV:
                if (src != dst_r) {
                        if (dst_r != TMP_FREG1)
                                FAIL_IF(push_inst(compiler, (FMOV ^ inv_bits) | VD(dst_r) | VN(src)));
                        else
                                dst_r = src;
                }
                break;
        case SLJIT_DNEG:
                FAIL_IF(push_inst(compiler, (FNEG ^ inv_bits) | VD(dst_r) | VN(src)));
                break;
        case SLJIT_DABS:
                FAIL_IF(push_inst(compiler, (FABS ^ inv_bits) | VD(dst_r) | VN(src)));
                break;
        case SLJIT_CONVD_FROMS:
                FAIL_IF(push_inst(compiler, FCVT | ((op & SLJIT_SINGLE_OP) ? (1 << 22) : (1 << 15)) | VD(dst_r) | VN(src)));
                break;
        }

        if (dst & SLJIT_MEM)
                return emit_fop_mem(compiler, mem_flags | STORE, dst_r, dst, dstw);
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        sljit_si dst_r, mem_flags = (op & SLJIT_SINGLE_OP) ? INT_SIZE : WORD_SIZE;
        sljit_ins inv_bits = (op & SLJIT_SINGLE_OP) ? (1 << 22) : 0;

        CHECK_ERROR();
        CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src1, src1w);
        ADJUST_LOCAL_OFFSET(src2, src2w);

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;

        dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
        if (src1 & SLJIT_MEM) {
                emit_fop_mem(compiler, mem_flags, TMP_FREG1, src1, src1w);
                src1 = TMP_FREG1;
        }
        if (src2 & SLJIT_MEM) {
                emit_fop_mem(compiler, mem_flags, TMP_FREG2, src2, src2w);
                src2 = TMP_FREG2;
        }

        switch (GET_OPCODE(op)) {
        case SLJIT_DADD:
                FAIL_IF(push_inst(compiler, (FADD ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
                break;
        case SLJIT_DSUB:
                FAIL_IF(push_inst(compiler, (FSUB ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
                break;
        case SLJIT_DMUL:
                FAIL_IF(push_inst(compiler, (FMUL ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
                break;
        case SLJIT_DDIV:
                FAIL_IF(push_inst(compiler, (FDIV ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
                break;
        }

        if (!(dst & SLJIT_MEM))
                return SLJIT_SUCCESS;
        return emit_fop_mem(compiler, mem_flags | STORE, TMP_FREG1, dst, dstw);
}

/* --------------------------------------------------------------------- */
/*  Other instructions                                                   */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
        ADJUST_LOCAL_OFFSET(dst, dstw);

        /* For UNUSED dst. Uncommon, but possible. */
        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        if (FAST_IS_REG(dst))
                return push_inst(compiler, ORR | RD(dst) | RN(TMP_ZERO) | RM(TMP_LR));

        /* Memory. */
        return emit_op_mem(compiler, WORD_SIZE | STORE, TMP_LR, dst, dstw);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
        ADJUST_LOCAL_OFFSET(src, srcw);

        if (FAST_IS_REG(src))
                FAIL_IF(push_inst(compiler, ORR | RD(TMP_LR) | RN(TMP_ZERO) | RM(src)));
        else if (src & SLJIT_MEM)
                FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_LR, src, srcw));
        else if (src & SLJIT_IMM)
                FAIL_IF(load_immediate(compiler, TMP_LR, srcw));

        return push_inst(compiler, RET | RN(TMP_LR));
}

/* --------------------------------------------------------------------- */
/*  Conditional instructions                                             */
/* --------------------------------------------------------------------- */

static sljit_uw get_cc(sljit_si type)
{
        switch (type) {
        case SLJIT_EQUAL:
        case SLJIT_MUL_NOT_OVERFLOW:
        case SLJIT_D_EQUAL:
                return 0x1;

        case SLJIT_NOT_EQUAL:
        case SLJIT_MUL_OVERFLOW:
        case SLJIT_D_NOT_EQUAL:
                return 0x0;

        case SLJIT_LESS:
        case SLJIT_D_LESS:
                return 0x2;

        case SLJIT_GREATER_EQUAL:
        case SLJIT_D_GREATER_EQUAL:
                return 0x3;

        case SLJIT_GREATER:
        case SLJIT_D_GREATER:
                return 0x9;

        case SLJIT_LESS_EQUAL:
        case SLJIT_D_LESS_EQUAL:
                return 0x8;

        case SLJIT_SIG_LESS:
                return 0xa;

        case SLJIT_SIG_GREATER_EQUAL:
                return 0xb;

        case SLJIT_SIG_GREATER:
                return 0xd;

        case SLJIT_SIG_LESS_EQUAL:
                return 0xc;

        case SLJIT_OVERFLOW:
        case SLJIT_D_UNORDERED:
                return 0x7;

        case SLJIT_NOT_OVERFLOW:
        case SLJIT_D_ORDERED:
                return 0x6;

        default:
                SLJIT_ASSERT_STOP();
                return 0xe;
        }
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
        struct sljit_label *label;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_label(compiler));

        if (compiler->last_label && compiler->last_label->size == compiler->size)
                return compiler->last_label;

        label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
        PTR_FAIL_IF(!label);
        set_label(label, compiler);
        return label;
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
        struct sljit_jump *jump;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_jump(compiler, type));

        jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
        PTR_FAIL_IF(!jump);
        set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
        type &= 0xff;

        if (type < SLJIT_JUMP) {
                jump->flags |= IS_COND;
                PTR_FAIL_IF(push_inst(compiler, B_CC | (6 << 5) | get_cc(type)));
        }
        else if (type >= SLJIT_FAST_CALL)
                jump->flags |= IS_BL;

        PTR_FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
        jump->addr = compiler->size;
        PTR_FAIL_IF(push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(TMP_REG1)));

        return jump;
}

static SLJIT_INLINE struct sljit_jump* emit_cmp_to0(struct sljit_compiler *compiler, sljit_si type,
        sljit_si src, sljit_sw srcw)
{
        struct sljit_jump *jump;
        sljit_ins inv_bits = (type & SLJIT_INT_OP) ? (1 << 31) : 0;

        SLJIT_ASSERT((type & 0xff) == SLJIT_EQUAL || (type & 0xff) == SLJIT_NOT_EQUAL);
        ADJUST_LOCAL_OFFSET(src, srcw);

        jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
        PTR_FAIL_IF(!jump);
        set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
        jump->flags |= IS_CBZ | IS_COND;

        if (src & SLJIT_MEM) {
                PTR_FAIL_IF(emit_op_mem(compiler, inv_bits ? INT_SIZE : WORD_SIZE, TMP_REG1, src, srcw));
                src = TMP_REG1;
        }
        else if (src & SLJIT_IMM) {
                PTR_FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
                src = TMP_REG1;
        }
        SLJIT_ASSERT(FAST_IS_REG(src));

        if ((type & 0xff) == SLJIT_EQUAL)
                inv_bits |= 1 << 24;

        PTR_FAIL_IF(push_inst(compiler, (CBZ ^ inv_bits) | (6 << 5) | RT(src)));
        PTR_FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
        jump->addr = compiler->size;
        PTR_FAIL_IF(push_inst(compiler, BR | RN(TMP_REG1)));
        return jump;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
        struct sljit_jump *jump;

        CHECK_ERROR();
        CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
        ADJUST_LOCAL_OFFSET(src, srcw);

        /* In ARM, we don't need to touch the arguments. */
        if (!(src & SLJIT_IMM)) {
                if (src & SLJIT_MEM) {
                        FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src, srcw));
                        src = TMP_REG1;
                }
                return push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(src));
        }

        jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
        FAIL_IF(!jump);
        set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
        jump->u.target = srcw;

        FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
        jump->addr = compiler->size;
        return push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(TMP_REG1));
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw,
        sljit_si type)
{
        sljit_si dst_r, flags, mem_flags;
        sljit_ins cc;

        CHECK_ERROR();
        CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src, srcw);

        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        cc = get_cc(type & 0xff);
        dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;

        if (GET_OPCODE(op) < SLJIT_ADD) {
                FAIL_IF(push_inst(compiler, CSINC | (cc << 12) | RD(dst_r) | RN(TMP_ZERO) | RM(TMP_ZERO)));
                if (dst_r != TMP_REG1)
                        return SLJIT_SUCCESS;
                return emit_op_mem(compiler, (GET_OPCODE(op) == SLJIT_MOV ? WORD_SIZE : INT_SIZE) | STORE, TMP_REG1, dst, dstw);
        }

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        flags = GET_FLAGS(op) ? SET_FLAGS : 0;
        mem_flags = WORD_SIZE;
        if (op & SLJIT_INT_OP) {
                flags |= INT_OP;
                mem_flags = INT_SIZE;
        }

        if (src & SLJIT_MEM) {
                FAIL_IF(emit_op_mem2(compiler, mem_flags, TMP_REG1, src, srcw, dst, dstw));
                src = TMP_REG1;
                srcw = 0;
        } else if (src & SLJIT_IMM)
                flags |= ARG1_IMM;

        FAIL_IF(push_inst(compiler, CSINC | (cc << 12) | RD(TMP_REG2) | RN(TMP_ZERO) | RM(TMP_ZERO)));
        emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src, TMP_REG2);

        if (dst_r != TMP_REG1)
                return SLJIT_SUCCESS;
        return emit_op_mem2(compiler, mem_flags | STORE, TMP_REG1, dst, dstw, 0, 0);
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
        struct sljit_const *const_;
        sljit_si dst_r;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
        ADJUST_LOCAL_OFFSET(dst, dstw);

        const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
        PTR_FAIL_IF(!const_);
        set_const(const_, compiler);

        dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
        PTR_FAIL_IF(emit_imm64_const(compiler, dst_r, init_value));

        if (dst & SLJIT_MEM)
                PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw));
        return const_;
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
        sljit_ins* inst = (sljit_ins*)addr;
        modify_imm64_const(inst, new_addr);
        SLJIT_CACHE_FLUSH(inst, inst + 4);
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
        sljit_ins* inst = (sljit_ins*)addr;
        modify_imm64_const(inst, new_constant);
        SLJIT_CACHE_FLUSH(inst, inst + 4);
}

/* [<][>][^][v][top][bottom][index][help] */