root/ext/pcre/pcrelib/sljit/sljitNativeARM_T2_32.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sljit_get_platform_name
  2. push_inst16
  3. push_inst32
  4. emit_imm32_const
  5. modify_imm32_const
  6. detect_jump_type
  7. set_jump_instruction
  8. sljit_generate_code
  9. get_imm
  10. load_immediate
  11. emit_op_imm
  12. emit_set_delta
  13. getput_arg_fast
  14. can_cache
  15. getput_arg
  16. emit_op_mem
  17. emit_op_mem2
  18. sljit_emit_enter
  19. sljit_set_context
  20. sljit_emit_return
  21. sljit_emit_op0
  22. sljit_emit_op1
  23. sljit_emit_op2
  24. sljit_get_register_index
  25. sljit_get_float_register_index
  26. sljit_emit_op_custom
  27. sljit_is_fpu_available
  28. emit_fop_mem
  29. sljit_emit_fop1_convw_fromd
  30. sljit_emit_fop1_convd_fromw
  31. sljit_emit_fop1_cmp
  32. sljit_emit_fop1
  33. sljit_emit_fop2
  34. sljit_emit_fast_enter
  35. sljit_emit_fast_return
  36. get_cc
  37. sljit_emit_label
  38. sljit_emit_jump
  39. sljit_emit_ijump
  40. sljit_emit_op_flags
  41. sljit_emit_const
  42. sljit_set_jump_addr
  43. sljit_set_const

/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
        return "ARM-Thumb2" SLJIT_CPUINFO;
}

/* Length of an instruction word. */
typedef sljit_ui sljit_ins;

/* Last register + 1. */
#define TMP_REG1        (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2        (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3        (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_PC          (SLJIT_NUMBER_OF_REGISTERS + 5)

#define TMP_FREG1       (0)
#define TMP_FREG2       (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)

/* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */
static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
        0, 0, 1, 2, 12, 11, 10, 9, 8, 7, 6, 5, 13, 3, 4, 14, 15
};

#define COPY_BITS(src, from, to, bits) \
        ((from >= to ? (src >> (from - to)) : (src << (to - from))) & (((1 << bits) - 1) << to))

/* Thumb16 encodings. */
#define RD3(rd) (reg_map[rd])
#define RN3(rn) (reg_map[rn] << 3)
#define RM3(rm) (reg_map[rm] << 6)
#define RDN3(rdn) (reg_map[rdn] << 8)
#define IMM3(imm) (imm << 6)
#define IMM8(imm) (imm)

/* Thumb16 helpers. */
#define SET_REGS44(rd, rn) \
        ((reg_map[rn] << 3) | (reg_map[rd] & 0x7) | ((reg_map[rd] & 0x8) << 4))
#define IS_2_LO_REGS(reg1, reg2) \
        (reg_map[reg1] <= 7 && reg_map[reg2] <= 7)
#define IS_3_LO_REGS(reg1, reg2, reg3) \
        (reg_map[reg1] <= 7 && reg_map[reg2] <= 7 && reg_map[reg3] <= 7)

/* Thumb32 encodings. */
#define RD4(rd) (reg_map[rd] << 8)
#define RN4(rn) (reg_map[rn] << 16)
#define RM4(rm) (reg_map[rm])
#define RT4(rt) (reg_map[rt] << 12)
#define DD4(dd) ((dd) << 12)
#define DN4(dn) ((dn) << 16)
#define DM4(dm) (dm)
#define IMM5(imm) \
        (COPY_BITS(imm, 2, 12, 3) | ((imm & 0x3) << 6))
#define IMM12(imm) \
        (COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff))

/* --------------------------------------------------------------------- */
/*  Instrucion forms                                                     */
/* --------------------------------------------------------------------- */

/* dot '.' changed to _
   I immediate form (possibly followed by number of immediate bits). */
#define ADCI            0xf1400000
#define ADCS            0x4140
#define ADC_W           0xeb400000
#define ADD             0x4400
#define ADDS            0x1800
#define ADDSI3          0x1c00
#define ADDSI8          0x3000
#define ADD_W           0xeb000000
#define ADDWI           0xf2000000
#define ADD_SP          0xb000
#define ADD_W           0xeb000000
#define ADD_WI          0xf1000000
#define ANDI            0xf0000000
#define ANDS            0x4000
#define AND_W           0xea000000
#define ASRS            0x4100
#define ASRSI           0x1000
#define ASR_W           0xfa40f000
#define ASR_WI          0xea4f0020
#define BICI            0xf0200000
#define BKPT            0xbe00
#define BLX             0x4780
#define BX              0x4700
#define CLZ             0xfab0f080
#define CMPI            0x2800
#define CMP_W           0xebb00f00
#define EORI            0xf0800000
#define EORS            0x4040
#define EOR_W           0xea800000
#define IT              0xbf00
#define LSLS            0x4080
#define LSLSI           0x0000
#define LSL_W           0xfa00f000
#define LSL_WI          0xea4f0000
#define LSRS            0x40c0
#define LSRSI           0x0800
#define LSR_W           0xfa20f000
#define LSR_WI          0xea4f0010
#define MOV             0x4600
#define MOVS            0x0000
#define MOVSI           0x2000
#define MOVT            0xf2c00000
#define MOVW            0xf2400000
#define MOV_W           0xea4f0000
#define MOV_WI          0xf04f0000
#define MUL             0xfb00f000
#define MVNS            0x43c0
#define MVN_W           0xea6f0000
#define MVN_WI          0xf06f0000
#define NOP             0xbf00
#define ORNI            0xf0600000
#define ORRI            0xf0400000
#define ORRS            0x4300
#define ORR_W           0xea400000
#define POP             0xbc00
#define POP_W           0xe8bd0000
#define PUSH            0xb400
#define PUSH_W          0xe92d0000
#define RSB_WI          0xf1c00000
#define RSBSI           0x4240
#define SBCI            0xf1600000
#define SBCS            0x4180
#define SBC_W           0xeb600000
#define SMULL           0xfb800000
#define STR_SP          0x9000
#define SUBS            0x1a00
#define SUBSI3          0x1e00
#define SUBSI8          0x3800
#define SUB_W           0xeba00000
#define SUBWI           0xf2a00000
#define SUB_SP          0xb080
#define SUB_WI          0xf1a00000
#define SXTB            0xb240
#define SXTB_W          0xfa4ff080
#define SXTH            0xb200
#define SXTH_W          0xfa0ff080
#define TST             0x4200
#define UMULL           0xfba00000
#define UXTB            0xb2c0
#define UXTB_W          0xfa5ff080
#define UXTH            0xb280
#define UXTH_W          0xfa1ff080
#define VABS_F32        0xeeb00ac0
#define VADD_F32        0xee300a00
#define VCMP_F32        0xeeb40a40
#define VCVT_F32_S32    0xeeb80ac0
#define VCVT_F64_F32    0xeeb70ac0
#define VCVT_S32_F32    0xeebd0ac0
#define VDIV_F32        0xee800a00
#define VMOV_F32        0xeeb00a40
#define VMOV            0xee000a10
#define VMRS            0xeef1fa10
#define VMUL_F32        0xee200a00
#define VNEG_F32        0xeeb10a40
#define VSTR_F32        0xed000a00
#define VSUB_F32        0xee300a40

static sljit_si push_inst16(struct sljit_compiler *compiler, sljit_ins inst)
{
        sljit_uh *ptr;
        SLJIT_ASSERT(!(inst & 0xffff0000));

        ptr = (sljit_uh*)ensure_buf(compiler, sizeof(sljit_uh));
        FAIL_IF(!ptr);
        *ptr = inst;
        compiler->size++;
        return SLJIT_SUCCESS;
}

static sljit_si push_inst32(struct sljit_compiler *compiler, sljit_ins inst)
{
        sljit_uh *ptr = (sljit_uh*)ensure_buf(compiler, sizeof(sljit_ins));
        FAIL_IF(!ptr);
        *ptr++ = inst >> 16;
        *ptr = inst;
        compiler->size += 2;
        return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_si emit_imm32_const(struct sljit_compiler *compiler, sljit_si dst, sljit_uw imm)
{
        FAIL_IF(push_inst32(compiler, MOVW | RD4(dst) |
                COPY_BITS(imm, 12, 16, 4) | COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff)));
        return push_inst32(compiler, MOVT | RD4(dst) |
                COPY_BITS(imm, 12 + 16, 16, 4) | COPY_BITS(imm, 11 + 16, 26, 1) | COPY_BITS(imm, 8 + 16, 12, 3) | ((imm & 0xff0000) >> 16));
}

static SLJIT_INLINE void modify_imm32_const(sljit_uh *inst, sljit_uw new_imm)
{
        sljit_si dst = inst[1] & 0x0f00;
        SLJIT_ASSERT(((inst[0] & 0xfbf0) == (MOVW >> 16)) && ((inst[2] & 0xfbf0) == (MOVT >> 16)) && dst == (inst[3] & 0x0f00));
        inst[0] = (MOVW >> 16) | COPY_BITS(new_imm, 12, 0, 4) | COPY_BITS(new_imm, 11, 10, 1);
        inst[1] = dst | COPY_BITS(new_imm, 8, 12, 3) | (new_imm & 0xff);
        inst[2] = (MOVT >> 16) | COPY_BITS(new_imm, 12 + 16, 0, 4) | COPY_BITS(new_imm, 11 + 16, 10, 1);
        inst[3] = dst | COPY_BITS(new_imm, 8 + 16, 12, 3) | ((new_imm & 0xff0000) >> 16);
}

static SLJIT_INLINE sljit_si detect_jump_type(struct sljit_jump *jump, sljit_uh *code_ptr, sljit_uh *code)
{
        sljit_sw diff;

        if (jump->flags & SLJIT_REWRITABLE_JUMP)
                return 0;

        if (jump->flags & JUMP_ADDR) {
                /* Branch to ARM code is not optimized yet. */
                if (!(jump->u.target & 0x1))
                        return 0;
                diff = ((sljit_sw)jump->u.target - (sljit_sw)(code_ptr + 2)) >> 1;
        }
        else {
                SLJIT_ASSERT(jump->flags & JUMP_LABEL);
                diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)(code_ptr + 2)) >> 1;
        }

        if (jump->flags & IS_COND) {
                SLJIT_ASSERT(!(jump->flags & IS_BL));
                if (diff <= 127 && diff >= -128) {
                        jump->flags |= PATCH_TYPE1;
                        return 5;
                }
                if (diff <= 524287 && diff >= -524288) {
                        jump->flags |= PATCH_TYPE2;
                        return 4;
                }
                /* +1 comes from the prefix IT instruction. */
                diff--;
                if (diff <= 8388607 && diff >= -8388608) {
                        jump->flags |= PATCH_TYPE3;
                        return 3;
                }
        }
        else if (jump->flags & IS_BL) {
                if (diff <= 8388607 && diff >= -8388608) {
                        jump->flags |= PATCH_BL;
                        return 3;
                }
        }
        else {
                if (diff <= 1023 && diff >= -1024) {
                        jump->flags |= PATCH_TYPE4;
                        return 4;
                }
                if (diff <= 8388607 && diff >= -8388608) {
                        jump->flags |= PATCH_TYPE5;
                        return 3;
                }
        }

        return 0;
}

static SLJIT_INLINE void set_jump_instruction(struct sljit_jump *jump)
{
        sljit_si type = (jump->flags >> 4) & 0xf;
        sljit_sw diff;
        sljit_uh *jump_inst;
        sljit_si s, j1, j2;

        if (SLJIT_UNLIKELY(type == 0)) {
                modify_imm32_const((sljit_uh*)jump->addr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target);
                return;
        }

        if (jump->flags & JUMP_ADDR) {
                SLJIT_ASSERT(jump->u.target & 0x1);
                diff = ((sljit_sw)jump->u.target - (sljit_sw)(jump->addr + 4)) >> 1;
        }
        else
                diff = ((sljit_sw)(jump->u.label->addr) - (sljit_sw)(jump->addr + 4)) >> 1;
        jump_inst = (sljit_uh*)jump->addr;

        switch (type) {
        case 1:
                /* Encoding T1 of 'B' instruction */
                SLJIT_ASSERT(diff <= 127 && diff >= -128 && (jump->flags & IS_COND));
                jump_inst[0] = 0xd000 | (jump->flags & 0xf00) | (diff & 0xff);
                return;
        case 2:
                /* Encoding T3 of 'B' instruction */
                SLJIT_ASSERT(diff <= 524287 && diff >= -524288 && (jump->flags & IS_COND));
                jump_inst[0] = 0xf000 | COPY_BITS(jump->flags, 8, 6, 4) | COPY_BITS(diff, 11, 0, 6) | COPY_BITS(diff, 19, 10, 1);
                jump_inst[1] = 0x8000 | COPY_BITS(diff, 17, 13, 1) | COPY_BITS(diff, 18, 11, 1) | (diff & 0x7ff);
                return;
        case 3:
                SLJIT_ASSERT(jump->flags & IS_COND);
                *jump_inst++ = IT | ((jump->flags >> 4) & 0xf0) | 0x8;
                diff--;
                type = 5;
                break;
        case 4:
                /* Encoding T2 of 'B' instruction */
                SLJIT_ASSERT(diff <= 1023 && diff >= -1024 && !(jump->flags & IS_COND));
                jump_inst[0] = 0xe000 | (diff & 0x7ff);
                return;
        }

        SLJIT_ASSERT(diff <= 8388607 && diff >= -8388608);

        /* Really complex instruction form for branches. */
        s = (diff >> 23) & 0x1;
        j1 = (~(diff >> 21) ^ s) & 0x1;
        j2 = (~(diff >> 22) ^ s) & 0x1;
        jump_inst[0] = 0xf000 | (s << 10) | COPY_BITS(diff, 11, 0, 10);
        jump_inst[1] = (j1 << 13) | (j2 << 11) | (diff & 0x7ff);

        /* The others have a common form. */
        if (type == 5) /* Encoding T4 of 'B' instruction */
                jump_inst[1] |= 0x9000;
        else if (type == 6) /* Encoding T1 of 'BL' instruction */
                jump_inst[1] |= 0xd000;
        else
                SLJIT_ASSERT_STOP();
}

SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
        struct sljit_memory_fragment *buf;
        sljit_uh *code;
        sljit_uh *code_ptr;
        sljit_uh *buf_ptr;
        sljit_uh *buf_end;
        sljit_uw half_count;

        struct sljit_label *label;
        struct sljit_jump *jump;
        struct sljit_const *const_;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_generate_code(compiler));
        reverse_buf(compiler);

        code = (sljit_uh*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_uh));
        PTR_FAIL_WITH_EXEC_IF(code);
        buf = compiler->buf;

        code_ptr = code;
        half_count = 0;
        label = compiler->labels;
        jump = compiler->jumps;
        const_ = compiler->consts;

        do {
                buf_ptr = (sljit_uh*)buf->memory;
                buf_end = buf_ptr + (buf->used_size >> 1);
                do {
                        *code_ptr = *buf_ptr++;
                        /* These structures are ordered by their address. */
                        SLJIT_ASSERT(!label || label->size >= half_count);
                        SLJIT_ASSERT(!jump || jump->addr >= half_count);
                        SLJIT_ASSERT(!const_ || const_->addr >= half_count);
                        if (label && label->size == half_count) {
                                label->addr = ((sljit_uw)code_ptr) | 0x1;
                                label->size = code_ptr - code;
                                label = label->next;
                        }
                        if (jump && jump->addr == half_count) {
                                        jump->addr = (sljit_uw)code_ptr - ((jump->flags & IS_COND) ? 10 : 8);
                                        code_ptr -= detect_jump_type(jump, code_ptr, code);
                                        jump = jump->next;
                        }
                        if (const_ && const_->addr == half_count) {
                                const_->addr = (sljit_uw)code_ptr;
                                const_ = const_->next;
                        }
                        code_ptr ++;
                        half_count ++;
                } while (buf_ptr < buf_end);

                buf = buf->next;
        } while (buf);

        if (label && label->size == half_count) {
                label->addr = ((sljit_uw)code_ptr) | 0x1;
                label->size = code_ptr - code;
                label = label->next;
        }

        SLJIT_ASSERT(!label);
        SLJIT_ASSERT(!jump);
        SLJIT_ASSERT(!const_);
        SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);

        jump = compiler->jumps;
        while (jump) {
                set_jump_instruction(jump);
                jump = jump->next;
        }

        compiler->error = SLJIT_ERR_COMPILED;
        compiler->executable_size = (code_ptr - code) * sizeof(sljit_uh);
        SLJIT_CACHE_FLUSH(code, code_ptr);
        /* Set thumb mode flag. */
        return (void*)((sljit_uw)code | 0x1);
}

/* --------------------------------------------------------------------- */
/*  Core code generator functions.                                       */
/* --------------------------------------------------------------------- */

#define INVALID_IMM     0x80000000
static sljit_uw get_imm(sljit_uw imm)
{
        /* Thumb immediate form. */
        sljit_si counter;

        if (imm <= 0xff)
                return imm;

        if ((imm & 0xffff) == (imm >> 16)) {
                /* Some special cases. */
                if (!(imm & 0xff00))
                        return (1 << 12) | (imm & 0xff);
                if (!(imm & 0xff))
                        return (2 << 12) | ((imm >> 8) & 0xff);
                if ((imm & 0xff00) == ((imm & 0xff) << 8))
                        return (3 << 12) | (imm & 0xff);
        }

        /* Assembly optimization: count leading zeroes? */
        counter = 8;
        if (!(imm & 0xffff0000)) {
                counter += 16;
                imm <<= 16;
        }
        if (!(imm & 0xff000000)) {
                counter += 8;
                imm <<= 8;
        }
        if (!(imm & 0xf0000000)) {
                counter += 4;
                imm <<= 4;
        }
        if (!(imm & 0xc0000000)) {
                counter += 2;
                imm <<= 2;
        }
        if (!(imm & 0x80000000)) {
                counter += 1;
                imm <<= 1;
        }
        /* Since imm >= 128, this must be true. */
        SLJIT_ASSERT(counter <= 31);

        if (imm & 0x00ffffff)
                return INVALID_IMM; /* Cannot be encoded. */

        return ((imm >> 24) & 0x7f) | COPY_BITS(counter, 4, 26, 1) | COPY_BITS(counter, 1, 12, 3) | COPY_BITS(counter, 0, 7, 1);
}

static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst, sljit_uw imm)
{
        sljit_uw tmp;

        if (imm >= 0x10000) {
                tmp = get_imm(imm);
                if (tmp != INVALID_IMM)
                        return push_inst32(compiler, MOV_WI | RD4(dst) | tmp);
                tmp = get_imm(~imm);
                if (tmp != INVALID_IMM)
                        return push_inst32(compiler, MVN_WI | RD4(dst) | tmp);
        }

        /* set low 16 bits, set hi 16 bits to 0. */
        FAIL_IF(push_inst32(compiler, MOVW | RD4(dst) |
                COPY_BITS(imm, 12, 16, 4) | COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff)));

        /* set hi 16 bit if needed. */
        if (imm >= 0x10000)
                return push_inst32(compiler, MOVT | RD4(dst) |
                        COPY_BITS(imm, 12 + 16, 16, 4) | COPY_BITS(imm, 11 + 16, 26, 1) | COPY_BITS(imm, 8 + 16, 12, 3) | ((imm & 0xff0000) >> 16));
        return SLJIT_SUCCESS;
}

#define ARG1_IMM        0x0010000
#define ARG2_IMM        0x0020000
#define KEEP_FLAGS      0x0040000
/* SET_FLAGS must be 0x100000 as it is also the value of S bit (can be used for optimization). */
#define SET_FLAGS       0x0100000
#define UNUSED_RETURN   0x0200000
#define SLOW_DEST       0x0400000
#define SLOW_SRC1       0x0800000
#define SLOW_SRC2       0x1000000

static sljit_si emit_op_imm(struct sljit_compiler *compiler, sljit_si flags, sljit_si dst, sljit_uw arg1, sljit_uw arg2)
{
        /* dst must be register, TMP_REG1
           arg1 must be register, TMP_REG1, imm
           arg2 must be register, TMP_REG2, imm */
        sljit_si reg;
        sljit_uw imm, nimm;

        if (SLJIT_UNLIKELY((flags & (ARG1_IMM | ARG2_IMM)) == (ARG1_IMM | ARG2_IMM))) {
                /* Both are immediates. */
                flags &= ~ARG1_IMM;
                FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
                arg1 = TMP_REG1;
        }

        if (flags & (ARG1_IMM | ARG2_IMM)) {
                reg = (flags & ARG2_IMM) ? arg1 : arg2;
                imm = (flags & ARG2_IMM) ? arg2 : arg1;

                switch (flags & 0xffff) {
                case SLJIT_CLZ:
                case SLJIT_MUL:
                        /* No form with immediate operand. */
                        break;
                case SLJIT_MOV:
                        SLJIT_ASSERT(!(flags & SET_FLAGS) && (flags & ARG2_IMM) && arg1 == TMP_REG1);
                        return load_immediate(compiler, dst, imm);
                case SLJIT_NOT:
                        if (!(flags & SET_FLAGS))
                                return load_immediate(compiler, dst, ~imm);
                        /* Since the flags should be set, we just fallback to the register mode.
                           Although some clever things could be done here, "NOT IMM" does not worth the efforts. */
                        break;
                case SLJIT_ADD:
                        nimm = -imm;
                        if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(reg, dst)) {
                                if (imm <= 0x7)
                                        return push_inst16(compiler, ADDSI3 | IMM3(imm) | RD3(dst) | RN3(reg));
                                if (nimm <= 0x7)
                                        return push_inst16(compiler, SUBSI3 | IMM3(nimm) | RD3(dst) | RN3(reg));
                                if (reg == dst) {
                                        if (imm <= 0xff)
                                                return push_inst16(compiler, ADDSI8 | IMM8(imm) | RDN3(dst));
                                        if (nimm <= 0xff)
                                                return push_inst16(compiler, SUBSI8 | IMM8(nimm) | RDN3(dst));
                                }
                        }
                        if (!(flags & SET_FLAGS)) {
                                if (imm <= 0xfff)
                                        return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(imm));
                                if (nimm <= 0xfff)
                                        return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(nimm));
                        }
                        imm = get_imm(imm);
                        if (imm != INVALID_IMM)
                                return push_inst32(compiler, ADD_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
                        break;
                case SLJIT_ADDC:
                        imm = get_imm(imm);
                        if (imm != INVALID_IMM)
                                return push_inst32(compiler, ADCI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
                        break;
                case SLJIT_SUB:
                        if (flags & ARG1_IMM) {
                                if (!(flags & KEEP_FLAGS) && imm == 0 && IS_2_LO_REGS(reg, dst))
                                        return push_inst16(compiler, RSBSI | RD3(dst) | RN3(reg));
                                imm = get_imm(imm);
                                if (imm != INVALID_IMM)
                                        return push_inst32(compiler, RSB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
                                break;
                        }
                        nimm = -imm;
                        if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(reg, dst)) {
                                if (imm <= 0x7)
                                        return push_inst16(compiler, SUBSI3 | IMM3(imm) | RD3(dst) | RN3(reg));
                                if (nimm <= 0x7)
                                        return push_inst16(compiler, ADDSI3 | IMM3(nimm) | RD3(dst) | RN3(reg));
                                if (reg == dst) {
                                        if (imm <= 0xff)
                                                return push_inst16(compiler, SUBSI8 | IMM8(imm) | RDN3(dst));
                                        if (nimm <= 0xff)
                                                return push_inst16(compiler, ADDSI8 | IMM8(nimm) | RDN3(dst));
                                }
                                if (imm <= 0xff && (flags & UNUSED_RETURN))
                                        return push_inst16(compiler, CMPI | IMM8(imm) | RDN3(reg));
                        }
                        if (!(flags & SET_FLAGS)) {
                                if (imm <= 0xfff)
                                        return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(imm));
                                if (nimm <= 0xfff)
                                        return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(nimm));
                        }
                        imm = get_imm(imm);
                        if (imm != INVALID_IMM)
                                return push_inst32(compiler, SUB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
                        break;
                case SLJIT_SUBC:
                        if (flags & ARG1_IMM)
                                break;
                        imm = get_imm(imm);
                        if (imm != INVALID_IMM)
                                return push_inst32(compiler, SBCI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
                        break;
                case SLJIT_AND:
                        nimm = get_imm(imm);
                        if (nimm != INVALID_IMM)
                                return push_inst32(compiler, ANDI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm);
                        imm = get_imm(imm);
                        if (imm != INVALID_IMM)
                                return push_inst32(compiler, BICI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
                        break;
                case SLJIT_OR:
                        nimm = get_imm(imm);
                        if (nimm != INVALID_IMM)
                                return push_inst32(compiler, ORRI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm);
                        imm = get_imm(imm);
                        if (imm != INVALID_IMM)
                                return push_inst32(compiler, ORNI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
                        break;
                case SLJIT_XOR:
                        imm = get_imm(imm);
                        if (imm != INVALID_IMM)
                                return push_inst32(compiler, EORI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
                        break;
                case SLJIT_SHL:
                case SLJIT_LSHR:
                case SLJIT_ASHR:
                        if (flags & ARG1_IMM)
                                break;
                        imm &= 0x1f;
                        if (imm == 0) {
                                if (!(flags & SET_FLAGS))
                                        return push_inst16(compiler, MOV | SET_REGS44(dst, reg));
                                if (IS_2_LO_REGS(dst, reg))
                                        return push_inst16(compiler, MOVS | RD3(dst) | RN3(reg));
                                return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(dst) | RM4(reg));
                        }
                        switch (flags & 0xffff) {
                        case SLJIT_SHL:
                                if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg))
                                        return push_inst16(compiler, LSLSI | RD3(dst) | RN3(reg) | (imm << 6));
                                return push_inst32(compiler, LSL_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm));
                        case SLJIT_LSHR:
                                if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg))
                                        return push_inst16(compiler, LSRSI | RD3(dst) | RN3(reg) | (imm << 6));
                                return push_inst32(compiler, LSR_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm));
                        default: /* SLJIT_ASHR */
                                if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg))
                                        return push_inst16(compiler, ASRSI | RD3(dst) | RN3(reg) | (imm << 6));
                                return push_inst32(compiler, ASR_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm));
                        }
                default:
                        SLJIT_ASSERT_STOP();
                        break;
                }

                if (flags & ARG2_IMM) {
                        FAIL_IF(load_immediate(compiler, TMP_REG2, arg2));
                        arg2 = TMP_REG2;
                }
                else {
                        FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
                        arg1 = TMP_REG1;
                }
        }

        /* Both arguments are registers. */
        switch (flags & 0xffff) {
        case SLJIT_MOV:
        case SLJIT_MOV_UI:
        case SLJIT_MOV_SI:
        case SLJIT_MOV_P:
        case SLJIT_MOVU:
        case SLJIT_MOVU_UI:
        case SLJIT_MOVU_SI:
        case SLJIT_MOVU_P:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if (dst == arg2)
                        return SLJIT_SUCCESS;
                return push_inst16(compiler, MOV | SET_REGS44(dst, arg2));
        case SLJIT_MOV_UB:
        case SLJIT_MOVU_UB:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if (IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, UXTB | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, UXTB_W | RD4(dst) | RM4(arg2));
        case SLJIT_MOV_SB:
        case SLJIT_MOVU_SB:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if (IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, SXTB | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, SXTB_W | RD4(dst) | RM4(arg2));
        case SLJIT_MOV_UH:
        case SLJIT_MOVU_UH:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if (IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, UXTH | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, UXTH_W | RD4(dst) | RM4(arg2));
        case SLJIT_MOV_SH:
        case SLJIT_MOVU_SH:
                SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
                if (IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, SXTH | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, SXTH_W | RD4(dst) | RM4(arg2));
        case SLJIT_NOT:
                SLJIT_ASSERT(arg1 == TMP_REG1);
                if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, MVNS | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, MVN_W | (flags & SET_FLAGS) | RD4(dst) | RM4(arg2));
        case SLJIT_CLZ:
                SLJIT_ASSERT(arg1 == TMP_REG1);
                FAIL_IF(push_inst32(compiler, CLZ | RN4(arg2) | RD4(dst) | RM4(arg2)));
                if (flags & SET_FLAGS) {
                        if (reg_map[dst] <= 7)
                                return push_inst16(compiler, CMPI | RDN3(dst));
                        return push_inst32(compiler, ADD_WI | SET_FLAGS | RN4(dst) | RD4(dst));
                }
                return SLJIT_SUCCESS;
        case SLJIT_ADD:
                if (!(flags & KEEP_FLAGS) && IS_3_LO_REGS(dst, arg1, arg2))
                        return push_inst16(compiler, ADDS | RD3(dst) | RN3(arg1) | RM3(arg2));
                if (dst == arg1 && !(flags & SET_FLAGS))
                        return push_inst16(compiler, ADD | SET_REGS44(dst, arg2));
                return push_inst32(compiler, ADD_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_ADDC:
                if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, ADCS | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, ADC_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_SUB:
                if (!(flags & KEEP_FLAGS) && IS_3_LO_REGS(dst, arg1, arg2))
                        return push_inst16(compiler, SUBS | RD3(dst) | RN3(arg1) | RM3(arg2));
                return push_inst32(compiler, SUB_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_SUBC:
                if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, SBCS | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, SBC_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_MUL:
                if (!(flags & SET_FLAGS))
                        return push_inst32(compiler, MUL | RD4(dst) | RN4(arg1) | RM4(arg2));
                SLJIT_ASSERT(reg_map[TMP_REG2] <= 7 && dst != TMP_REG2);
                FAIL_IF(push_inst32(compiler, SMULL | RT4(dst) | RD4(TMP_REG2) | RN4(arg1) | RM4(arg2)));
                /* cmp TMP_REG2, dst asr #31. */
                return push_inst32(compiler, CMP_W | RN4(TMP_REG2) | 0x70e0 | RM4(dst));
        case SLJIT_AND:
                if (!(flags & KEEP_FLAGS)) {
                        if (dst == arg1 && IS_2_LO_REGS(dst, arg2))
                                return push_inst16(compiler, ANDS | RD3(dst) | RN3(arg2));
                        if ((flags & UNUSED_RETURN) && IS_2_LO_REGS(arg1, arg2))
                                return push_inst16(compiler, TST | RD3(arg1) | RN3(arg2));
                }
                return push_inst32(compiler, AND_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_OR:
                if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, ORRS | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, ORR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_XOR:
                if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, EORS | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, EOR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_SHL:
                if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, LSLS | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, LSL_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_LSHR:
                if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, LSRS | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, LSR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        case SLJIT_ASHR:
                if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
                        return push_inst16(compiler, ASRS | RD3(dst) | RN3(arg2));
                return push_inst32(compiler, ASR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
        }

        SLJIT_ASSERT_STOP();
        return SLJIT_SUCCESS;
}

#define STORE           0x01
#define SIGNED          0x02

#define WORD_SIZE       0x00
#define BYTE_SIZE       0x04
#define HALF_SIZE       0x08

#define UPDATE          0x10
#define ARG_TEST        0x20

#define IS_WORD_SIZE(flags)             (!(flags & (BYTE_SIZE | HALF_SIZE)))
#define OFFSET_CHECK(imm, shift)        (!(argw & ~(imm << shift)))

/*
  1st letter:
  w = word
  b = byte
  h = half

  2nd letter:
  s = signed
  u = unsigned

  3rd letter:
  l = load
  s = store
*/

static SLJIT_CONST sljit_ins sljit_mem16[12] = {
/* w u l */ 0x5800 /* ldr */,
/* w u s */ 0x5000 /* str */,
/* w s l */ 0x5800 /* ldr */,
/* w s s */ 0x5000 /* str */,

/* b u l */ 0x5c00 /* ldrb */,
/* b u s */ 0x5400 /* strb */,
/* b s l */ 0x5600 /* ldrsb */,
/* b s s */ 0x5400 /* strb */,

/* h u l */ 0x5a00 /* ldrh */,
/* h u s */ 0x5200 /* strh */,
/* h s l */ 0x5e00 /* ldrsh */,
/* h s s */ 0x5200 /* strh */,
};

static SLJIT_CONST sljit_ins sljit_mem16_imm5[12] = {
/* w u l */ 0x6800 /* ldr imm5 */,
/* w u s */ 0x6000 /* str imm5 */,
/* w s l */ 0x6800 /* ldr imm5 */,
/* w s s */ 0x6000 /* str imm5 */,

/* b u l */ 0x7800 /* ldrb imm5 */,
/* b u s */ 0x7000 /* strb imm5 */,
/* b s l */ 0x0000 /* not allowed */,
/* b s s */ 0x7000 /* strb imm5 */,

/* h u l */ 0x8800 /* ldrh imm5 */,
/* h u s */ 0x8000 /* strh imm5 */,
/* h s l */ 0x0000 /* not allowed */,
/* h s s */ 0x8000 /* strh imm5 */,
};

#define MEM_IMM8        0xc00
#define MEM_IMM12       0x800000
static SLJIT_CONST sljit_ins sljit_mem32[12] = {
/* w u l */ 0xf8500000 /* ldr.w */,
/* w u s */ 0xf8400000 /* str.w */,
/* w s l */ 0xf8500000 /* ldr.w */,
/* w s s */ 0xf8400000 /* str.w */,

/* b u l */ 0xf8100000 /* ldrb.w */,
/* b u s */ 0xf8000000 /* strb.w */,
/* b s l */ 0xf9100000 /* ldrsb.w */,
/* b s s */ 0xf8000000 /* strb.w */,

/* h u l */ 0xf8300000 /* ldrh.w */,
/* h u s */ 0xf8200000 /* strsh.w */,
/* h s l */ 0xf9300000 /* ldrsh.w */,
/* h s s */ 0xf8200000 /* strsh.w */,
};

/* Helper function. Dst should be reg + value, using at most 1 instruction, flags does not set. */
static sljit_si emit_set_delta(struct sljit_compiler *compiler, sljit_si dst, sljit_si reg, sljit_sw value)
{
        if (value >= 0) {
                if (value <= 0xfff)
                        return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(value));
                value = get_imm(value);
                if (value != INVALID_IMM)
                        return push_inst32(compiler, ADD_WI | RD4(dst) | RN4(reg) | value);
        }
        else {
                value = -value;
                if (value <= 0xfff)
                        return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(value));
                value = get_imm(value);
                if (value != INVALID_IMM)
                        return push_inst32(compiler, SUB_WI | RD4(dst) | RN4(reg) | value);
        }
        return SLJIT_ERR_UNSUPPORTED;
}

/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
        sljit_si other_r, shift;

        SLJIT_ASSERT(arg & SLJIT_MEM);

        if (SLJIT_UNLIKELY(flags & UPDATE)) {
                if ((arg & REG_MASK) && !(arg & OFFS_REG_MASK) && argw <= 0xff && argw >= -0xff) {
                        if (SLJIT_UNLIKELY(flags & ARG_TEST))
                                return 1;

                        flags &= ~UPDATE;
                        arg &= 0xf;
                        if (argw >= 0)
                                argw |= 0x200;
                        else {
                                argw = -argw;
                        }

                        SLJIT_ASSERT(argw >= 0 && (argw & 0xff) <= 0xff);
                        FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(arg) | 0x100 | argw));
                        return -1;
                }
                return 0;
        }

        if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
                if (SLJIT_UNLIKELY(flags & ARG_TEST))
                        return 1;

                argw &= 0x3;
                other_r = OFFS_REG(arg);
                arg &= 0xf;

                if (!argw && IS_3_LO_REGS(reg, arg, other_r))
                        FAIL_IF(push_inst16(compiler, sljit_mem16[flags] | RD3(reg) | RN3(arg) | RM3(other_r)));
                else
                        FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(other_r) | (argw << 4)));
                return -1;
        }

        if (!(arg & REG_MASK) || argw > 0xfff || argw < -0xff)
                return 0;

        if (SLJIT_UNLIKELY(flags & ARG_TEST))
                return 1;

        arg &= 0xf;
        if (IS_2_LO_REGS(reg, arg) && sljit_mem16_imm5[flags]) {
                shift = 3;
                if (IS_WORD_SIZE(flags)) {
                        if (OFFSET_CHECK(0x1f, 2))
                                shift = 2;
                }
                else if (flags & BYTE_SIZE)
                {
                        if (OFFSET_CHECK(0x1f, 0))
                                shift = 0;
                }
                else {
                        SLJIT_ASSERT(flags & HALF_SIZE);
                        if (OFFSET_CHECK(0x1f, 1))
                                shift = 1;
                }

                if (shift != 3) {
                        FAIL_IF(push_inst16(compiler, sljit_mem16_imm5[flags] | RD3(reg) | RN3(arg) | (argw << (6 - shift))));
                        return -1;
                }
        }

        /* SP based immediate. */
        if (SLJIT_UNLIKELY(arg == SLJIT_SP) && OFFSET_CHECK(0xff, 2) && IS_WORD_SIZE(flags) && reg_map[reg] <= 7) {
                FAIL_IF(push_inst16(compiler, STR_SP | ((flags & STORE) ? 0 : 0x800) | RDN3(reg) | (argw >> 2)));
                return -1;
        }

        if (argw >= 0)
                FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(arg) | argw));
        else
                FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(arg) | -argw));
        return -1;
}

/* see getput_arg below.
   Note: can_cache is called only for binary operators. Those
   operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
        sljit_sw diff;
        if ((arg & OFFS_REG_MASK) || !(next_arg & SLJIT_MEM))
                return 0;

        if (!(arg & REG_MASK)) {
                diff = argw - next_argw;
                if (diff <= 0xfff && diff >= -0xfff)
                        return 1;
                return 0;
        }

        if (argw == next_argw)
                return 1;

        diff = argw - next_argw;
        if (arg == next_arg && diff <= 0xfff && diff >= -0xfff)
                return 1;

        return 0;
}

/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg,
        sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
        sljit_si tmp_r, other_r;
        sljit_sw diff;

        SLJIT_ASSERT(arg & SLJIT_MEM);
        if (!(next_arg & SLJIT_MEM)) {
                next_arg = 0;
                next_argw = 0;
        }

        tmp_r = (flags & STORE) ? TMP_REG3 : reg;

        if (SLJIT_UNLIKELY((flags & UPDATE) && (arg & REG_MASK))) {
                /* Update only applies if a base register exists. */
                /* There is no caching here. */
                other_r = OFFS_REG(arg);
                arg &= 0xf;
                flags &= ~UPDATE;

                if (!other_r) {
                        if (!(argw & ~0xfff)) {
                                FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(arg) | argw));
                                return push_inst32(compiler, ADDWI | RD4(arg) | RN4(arg) | IMM12(argw));
                        }

                        if (compiler->cache_arg == SLJIT_MEM) {
                                if (argw == compiler->cache_argw) {
                                        other_r = TMP_REG3;
                                        argw = 0;
                                }
                                else if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
                                        FAIL_IF(compiler->error);
                                        compiler->cache_argw = argw;
                                        other_r = TMP_REG3;
                                        argw = 0;
                                }
                        }

                        if (argw) {
                                FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
                                compiler->cache_arg = SLJIT_MEM;
                                compiler->cache_argw = argw;
                                other_r = TMP_REG3;
                                argw = 0;
                        }
                }

                argw &= 0x3;
                if (!argw && IS_3_LO_REGS(reg, arg, other_r)) {
                        FAIL_IF(push_inst16(compiler, sljit_mem16[flags] | RD3(reg) | RN3(arg) | RM3(other_r)));
                        return push_inst16(compiler, ADD | SET_REGS44(arg, other_r));
                }
                FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(other_r) | (argw << 4)));
                return push_inst32(compiler, ADD_W | RD4(arg) | RN4(arg) | RM4(other_r) | (argw << 6));
        }
        flags &= ~UPDATE;

        SLJIT_ASSERT(!(arg & OFFS_REG_MASK));

        if (compiler->cache_arg == arg) {
                diff = argw - compiler->cache_argw;
                if (!(diff & ~0xfff))
                        return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | diff);
                if (!((compiler->cache_argw - argw) & ~0xff))
                        return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(TMP_REG3) | (compiler->cache_argw - argw));
                if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, diff) != SLJIT_ERR_UNSUPPORTED) {
                        FAIL_IF(compiler->error);
                        return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | 0);
                }
        }

        next_arg = (arg & REG_MASK) && (arg == next_arg) && (argw != next_argw);
        arg &= 0xf;
        if (arg && compiler->cache_arg == SLJIT_MEM) {
                if (compiler->cache_argw == argw)
                        return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3));
                if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
                        FAIL_IF(compiler->error);
                        compiler->cache_argw = argw;
                        return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3));
                }
        }

        compiler->cache_argw = argw;
        if (next_arg && emit_set_delta(compiler, TMP_REG3, arg, argw) != SLJIT_ERR_UNSUPPORTED) {
                FAIL_IF(compiler->error);
                compiler->cache_arg = SLJIT_MEM | arg;
                arg = 0;
        }
        else {
                FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
                compiler->cache_arg = SLJIT_MEM;

                diff = argw - next_argw;
                if (next_arg && diff <= 0xfff && diff >= -0xfff) {
                        FAIL_IF(push_inst16(compiler, ADD | SET_REGS44(TMP_REG3, arg)));
                        compiler->cache_arg = SLJIT_MEM | arg;
                        arg = 0;
                }
        }

        if (arg)
                return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3));
        return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | 0);
}

static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
        if (getput_arg_fast(compiler, flags, reg, arg, argw))
                return compiler->error;
        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        return getput_arg(compiler, flags, reg, arg, argw, 0, 0);
}

static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
        if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
                return compiler->error;
        return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}

/* --------------------------------------------------------------------- */
/*  Entry, exit                                                          */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
        sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
        sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
        sljit_si size, i, tmp;
        sljit_ins push;

        CHECK_ERROR();
        CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
        set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

        push = (1 << 4);

        tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
        for (i = SLJIT_S0; i >= tmp; i--)
                push |= 1 << reg_map[i];

        for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--)
                push |= 1 << reg_map[i];

        FAIL_IF((push & 0xff00)
                ? push_inst32(compiler, PUSH_W | (1 << 14) | push)
                : push_inst16(compiler, PUSH | (1 << 8) | push));

        /* Stack must be aligned to 8 bytes: (LR, R4) */
        size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 2);
        local_size = ((size + local_size + 7) & ~7) - size;
        compiler->local_size = local_size;
        if (local_size > 0) {
                if (local_size <= (127 << 2))
                        FAIL_IF(push_inst16(compiler, SUB_SP | (local_size >> 2)));
                else
                        FAIL_IF(emit_op_imm(compiler, SLJIT_SUB | ARG2_IMM, SLJIT_SP, SLJIT_SP, local_size));
        }

        if (args >= 1)
                FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S0, SLJIT_R0)));
        if (args >= 2)
                FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S1, SLJIT_R1)));
        if (args >= 3)
                FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S2, SLJIT_R2)));

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
        sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
        sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
        sljit_si size;

        CHECK_ERROR();
        CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
        set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

        size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 2);
        compiler->local_size = ((size + local_size + 7) & ~7) - size;
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
        sljit_si i, tmp;
        sljit_ins pop;

        CHECK_ERROR();
        CHECK(check_sljit_emit_return(compiler, op, src, srcw));

        FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));

        if (compiler->local_size > 0) {
                if (compiler->local_size <= (127 << 2))
                        FAIL_IF(push_inst16(compiler, ADD_SP | (compiler->local_size >> 2)));
                else
                        FAIL_IF(emit_op_imm(compiler, SLJIT_ADD | ARG2_IMM, SLJIT_SP, SLJIT_SP, compiler->local_size));
        }

        pop = (1 << 4);

        tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG;
        for (i = SLJIT_S0; i >= tmp; i--)
                pop |= 1 << reg_map[i];

        for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--)
                pop |= 1 << reg_map[i];

        return (pop & 0xff00)
                ? push_inst32(compiler, POP_W | (1 << 15) | pop)
                : push_inst16(compiler, POP | (1 << 8) | pop);
}

/* --------------------------------------------------------------------- */
/*  Operators                                                            */
/* --------------------------------------------------------------------- */

#ifdef __cplusplus
extern "C" {
#endif

#if defined(__GNUC__)
extern unsigned int __aeabi_uidivmod(unsigned int numerator, int unsigned denominator);
extern int __aeabi_idivmod(int numerator, int denominator);
#else
#error "Software divmod functions are needed"
#endif

#ifdef __cplusplus
}
#endif

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_op0(compiler, op));

        op = GET_OPCODE(op);
        switch (op) {
        case SLJIT_BREAKPOINT:
                return push_inst16(compiler, BKPT);
        case SLJIT_NOP:
                return push_inst16(compiler, NOP);
        case SLJIT_LUMUL:
        case SLJIT_LSMUL:
                return push_inst32(compiler, (op == SLJIT_LUMUL ? UMULL : SMULL)
                        | (reg_map[SLJIT_R1] << 8)
                        | (reg_map[SLJIT_R0] << 12)
                        | (reg_map[SLJIT_R0] << 16)
                        | reg_map[SLJIT_R1]);
        case SLJIT_LUDIV:
        case SLJIT_LSDIV:
                if (compiler->scratches >= 4) {
                        FAIL_IF(push_inst32(compiler, 0xf84d2d04 /* str r2, [sp, #-4]! */));
                        FAIL_IF(push_inst32(compiler, 0xf84dcd04 /* str ip, [sp, #-4]! */));
                } else if (compiler->scratches >= 3)
                        FAIL_IF(push_inst32(compiler, 0xf84d2d08 /* str r2, [sp, #-8]! */));
#if defined(__GNUC__)
                FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM,
                        (op == SLJIT_LUDIV ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod))));
#else
#error "Software divmod functions are needed"
#endif
                if (compiler->scratches >= 4) {
                        FAIL_IF(push_inst32(compiler, 0xf85dcb04 /* ldr ip, [sp], #4 */));
                        return push_inst32(compiler, 0xf85d2b04 /* ldr r2, [sp], #4 */);
                } else if (compiler->scratches >= 3)
                        return push_inst32(compiler, 0xf85d2b08 /* ldr r2, [sp], #8 */);
                return SLJIT_SUCCESS;
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r, flags;
        sljit_si op_flags = GET_ALL_FLAGS(op);

        CHECK_ERROR();
        CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src, srcw);

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;

        dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;

        op = GET_OPCODE(op);
        if (op >= SLJIT_MOV && op <= SLJIT_MOVU_P) {
                switch (op) {
                case SLJIT_MOV:
                case SLJIT_MOV_UI:
                case SLJIT_MOV_SI:
                case SLJIT_MOV_P:
                        flags = WORD_SIZE;
                        break;
                case SLJIT_MOV_UB:
                        flags = BYTE_SIZE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_ub)srcw;
                        break;
                case SLJIT_MOV_SB:
                        flags = BYTE_SIZE | SIGNED;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_sb)srcw;
                        break;
                case SLJIT_MOV_UH:
                        flags = HALF_SIZE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_uh)srcw;
                        break;
                case SLJIT_MOV_SH:
                        flags = HALF_SIZE | SIGNED;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_sh)srcw;
                        break;
                case SLJIT_MOVU:
                case SLJIT_MOVU_UI:
                case SLJIT_MOVU_SI:
                case SLJIT_MOVU_P:
                        flags = WORD_SIZE | UPDATE;
                        break;
                case SLJIT_MOVU_UB:
                        flags = BYTE_SIZE | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_ub)srcw;
                        break;
                case SLJIT_MOVU_SB:
                        flags = BYTE_SIZE | SIGNED | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_sb)srcw;
                        break;
                case SLJIT_MOVU_UH:
                        flags = HALF_SIZE | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_uh)srcw;
                        break;
                case SLJIT_MOVU_SH:
                        flags = HALF_SIZE | SIGNED | UPDATE;
                        if (src & SLJIT_IMM)
                                srcw = (sljit_sh)srcw;
                        break;
                default:
                        SLJIT_ASSERT_STOP();
                        flags = 0;
                        break;
                }

                if (src & SLJIT_IMM)
                        FAIL_IF(emit_op_imm(compiler, SLJIT_MOV | ARG2_IMM, dst_r, TMP_REG1, srcw));
                else if (src & SLJIT_MEM) {
                        if (getput_arg_fast(compiler, flags, dst_r, src, srcw))
                                FAIL_IF(compiler->error);
                        else
                                FAIL_IF(getput_arg(compiler, flags, dst_r, src, srcw, dst, dstw));
                } else {
                        if (dst_r != TMP_REG1)
                                return emit_op_imm(compiler, op, dst_r, TMP_REG1, src);
                        dst_r = src;
                }

                if (dst & SLJIT_MEM) {
                        if (getput_arg_fast(compiler, flags | STORE, dst_r, dst, dstw))
                                return compiler->error;
                        else
                                return getput_arg(compiler, flags | STORE, dst_r, dst, dstw, 0, 0);
                }
                return SLJIT_SUCCESS;
        }

        if (op == SLJIT_NEG) {
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
                        || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
                compiler->skip_checks = 1;
#endif
                return sljit_emit_op2(compiler, SLJIT_SUB | op_flags, dst, dstw, SLJIT_IMM, 0, src, srcw);
        }

        flags = (GET_FLAGS(op_flags) ? SET_FLAGS : 0) | ((op_flags & SLJIT_KEEP_FLAGS) ? KEEP_FLAGS : 0);
        if (src & SLJIT_MEM) {
                if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG2, src, srcw))
                        FAIL_IF(compiler->error);
                else
                        FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src, srcw, dst, dstw));
                src = TMP_REG2;
        }

        if (src & SLJIT_IMM)
                flags |= ARG2_IMM;
        else
                srcw = src;

        emit_op_imm(compiler, flags | op, dst_r, TMP_REG1, srcw);

        if (dst & SLJIT_MEM) {
                if (getput_arg_fast(compiler, flags | STORE, dst_r, dst, dstw))
                        return compiler->error;
                else
                        return getput_arg(compiler, flags | STORE, dst_r, dst, dstw, 0, 0);
        }
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        sljit_si dst_r, flags;

        CHECK_ERROR();
        CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src1, src1w);
        ADJUST_LOCAL_OFFSET(src2, src2w);

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;

        dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
        flags = (GET_FLAGS(op) ? SET_FLAGS : 0) | ((op & SLJIT_KEEP_FLAGS) ? KEEP_FLAGS : 0);

        if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, WORD_SIZE | STORE | ARG_TEST, TMP_REG1, dst, dstw))
                flags |= SLOW_DEST;

        if (src1 & SLJIT_MEM) {
                if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG1, src1, src1w))
                        FAIL_IF(compiler->error);
                else
                        flags |= SLOW_SRC1;
        }
        if (src2 & SLJIT_MEM) {
                if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG2, src2, src2w))
                        FAIL_IF(compiler->error);
                else
                        flags |= SLOW_SRC2;
        }

        if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
                if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
                        FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, src1, src1w));
                        FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, dst, dstw));
                }
                else {
                        FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, src2, src2w));
                        FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, dst, dstw));
                }
        }
        else if (flags & SLOW_SRC1)
                FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, dst, dstw));
        else if (flags & SLOW_SRC2)
                FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, dst, dstw));

        if (src1 & SLJIT_MEM)
                src1 = TMP_REG1;
        if (src2 & SLJIT_MEM)
                src2 = TMP_REG2;

        if (src1 & SLJIT_IMM)
                flags |= ARG1_IMM;
        else
                src1w = src1;
        if (src2 & SLJIT_IMM)
                flags |= ARG2_IMM;
        else
                src2w = src2;

        if (dst == SLJIT_UNUSED)
                flags |= UNUSED_RETURN;

        emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src1w, src2w);

        if (dst & SLJIT_MEM) {
                if (!(flags & SLOW_DEST)) {
                        getput_arg_fast(compiler, WORD_SIZE | STORE, dst_r, dst, dstw);
                        return compiler->error;
                }
                return getput_arg(compiler, WORD_SIZE | STORE, TMP_REG1, dst, dstw, 0, 0);
        }
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
        CHECK_REG_INDEX(check_sljit_get_register_index(reg));
        return reg_map[reg];
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
        CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
        return reg << 1;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
        void *instruction, sljit_si size)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_op_custom(compiler, instruction, size));

        if (size == 2)
                return push_inst16(compiler, *(sljit_uh*)instruction);
        return push_inst32(compiler, *(sljit_ins*)instruction);
}

/* --------------------------------------------------------------------- */
/*  Floating point operators                                             */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
        return SLJIT_IS_FPU_AVAILABLE;
#else
        /* Available by default. */
        return 1;
#endif
}

#define FPU_LOAD (1 << 20)

static sljit_si emit_fop_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
        sljit_sw tmp;
        sljit_uw imm;
        sljit_sw inst = VSTR_F32 | (flags & (SLJIT_SINGLE_OP | FPU_LOAD));

        SLJIT_ASSERT(arg & SLJIT_MEM);

        /* Fast loads and stores. */
        if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
                FAIL_IF(push_inst32(compiler, ADD_W | RD4(TMP_REG2) | RN4(arg & REG_MASK) | RM4(OFFS_REG(arg)) | ((argw & 0x3) << 6)));
                arg = SLJIT_MEM | TMP_REG2;
                argw = 0;
        }

        if ((arg & REG_MASK) && (argw & 0x3) == 0) {
                if (!(argw & ~0x3fc))
                        return push_inst32(compiler, inst | 0x800000 | RN4(arg & REG_MASK) | DD4(reg) | (argw >> 2));
                if (!(-argw & ~0x3fc))
                        return push_inst32(compiler, inst | RN4(arg & REG_MASK) | DD4(reg) | (-argw >> 2));
        }

        /* Slow cases */
        SLJIT_ASSERT(!(arg & OFFS_REG_MASK));
        if (compiler->cache_arg == arg) {
                tmp = argw - compiler->cache_argw;
                if (!(tmp & ~0x3fc))
                        return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg) | (tmp >> 2));
                if (!(-tmp & ~0x3fc))
                        return push_inst32(compiler, inst | RN4(TMP_REG3) | DD4(reg) | (-tmp >> 2));
                if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, tmp) != SLJIT_ERR_UNSUPPORTED) {
                        FAIL_IF(compiler->error);
                        compiler->cache_argw = argw;
                        return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg));
                }
        }

        if (arg & REG_MASK) {
                if (emit_set_delta(compiler, TMP_REG1, arg & REG_MASK, argw) != SLJIT_ERR_UNSUPPORTED) {
                        FAIL_IF(compiler->error);
                        return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg));
                }
                imm = get_imm(argw & ~0x3fc);
                if (imm != INVALID_IMM) {
                        FAIL_IF(push_inst32(compiler, ADD_WI | RD4(TMP_REG1) | RN4(arg & REG_MASK) | imm));
                        return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg) | ((argw & 0x3fc) >> 2));
                }
                imm = get_imm(-argw & ~0x3fc);
                if (imm != INVALID_IMM) {
                        argw = -argw;
                        FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(arg & REG_MASK) | imm));
                        return push_inst32(compiler, inst | RN4(TMP_REG1) | DD4(reg) | ((argw & 0x3fc) >> 2));
                }
        }

        compiler->cache_arg = arg;
        compiler->cache_argw = argw;

        FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
        if (arg & REG_MASK)
                FAIL_IF(push_inst16(compiler, ADD | SET_REGS44(TMP_REG3, (arg & REG_MASK))));
        return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg));
}

static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        if (src & SLJIT_MEM) {
                FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG1, src, srcw));
                src = TMP_FREG1;
        }

        FAIL_IF(push_inst32(compiler, VCVT_S32_F32 | (op & SLJIT_SINGLE_OP) | DD4(TMP_FREG1) | DM4(src)));

        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        if (FAST_IS_REG(dst))
                return push_inst32(compiler, VMOV | (1 << 20) | RT4(dst) | DN4(TMP_FREG1));

        /* Store the integer value from a VFP register. */
        return emit_fop_mem(compiler, 0, TMP_FREG1, dst, dstw);
}

static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;

        if (FAST_IS_REG(src))
                FAIL_IF(push_inst32(compiler, VMOV | RT4(src) | DN4(TMP_FREG1)));
        else if (src & SLJIT_MEM) {
                /* Load the integer value into a VFP register. */
                FAIL_IF(emit_fop_mem(compiler, FPU_LOAD, TMP_FREG1, src, srcw));
        }
        else {
                FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
                FAIL_IF(push_inst32(compiler, VMOV | RT4(TMP_REG1) | DN4(TMP_FREG1)));
        }

        FAIL_IF(push_inst32(compiler, VCVT_F32_S32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(TMP_FREG1)));

        if (dst & SLJIT_MEM)
                return emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP), TMP_FREG1, dst, dstw);
        return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        if (src1 & SLJIT_MEM) {
                emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG1, src1, src1w);
                src1 = TMP_FREG1;
        }

        if (src2 & SLJIT_MEM) {
                emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG2, src2, src2w);
                src2 = TMP_FREG2;
        }

        FAIL_IF(push_inst32(compiler, VCMP_F32 | (op & SLJIT_SINGLE_OP) | DD4(src1) | DM4(src2)));
        return push_inst32(compiler, VMRS);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r;

        CHECK_ERROR();
        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        if (GET_OPCODE(op) != SLJIT_CONVD_FROMS)
                op ^= SLJIT_SINGLE_OP;

        SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100), float_transfer_bit_error);
        SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);

        dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;

        if (src & SLJIT_MEM) {
                emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, dst_r, src, srcw);
                src = dst_r;
        }

        switch (GET_OPCODE(op)) {
        case SLJIT_DMOV:
                if (src != dst_r) {
                        if (dst_r != TMP_FREG1)
                                FAIL_IF(push_inst32(compiler, VMOV_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(src)));
                        else
                                dst_r = src;
                }
                break;
        case SLJIT_DNEG:
                FAIL_IF(push_inst32(compiler, VNEG_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(src)));
                break;
        case SLJIT_DABS:
                FAIL_IF(push_inst32(compiler, VABS_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(src)));
                break;
        case SLJIT_CONVD_FROMS:
                FAIL_IF(push_inst32(compiler, VCVT_F64_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(src)));
                op ^= SLJIT_SINGLE_OP;
                break;
        }

        if (dst & SLJIT_MEM)
                return emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP), dst_r, dst, dstw);
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        sljit_si dst_r;

        CHECK_ERROR();
        CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src1, src1w);
        ADJUST_LOCAL_OFFSET(src2, src2w);

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        op ^= SLJIT_SINGLE_OP;

        dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
        if (src1 & SLJIT_MEM) {
                emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG1, src1, src1w);
                src1 = TMP_FREG1;
        }
        if (src2 & SLJIT_MEM) {
                emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG2, src2, src2w);
                src2 = TMP_FREG2;
        }

        switch (GET_OPCODE(op)) {
        case SLJIT_DADD:
                FAIL_IF(push_inst32(compiler, VADD_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DN4(src1) | DM4(src2)));
                break;
        case SLJIT_DSUB:
                FAIL_IF(push_inst32(compiler, VSUB_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DN4(src1) | DM4(src2)));
                break;
        case SLJIT_DMUL:
                FAIL_IF(push_inst32(compiler, VMUL_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DN4(src1) | DM4(src2)));
                break;
        case SLJIT_DDIV:
                FAIL_IF(push_inst32(compiler, VDIV_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DN4(src1) | DM4(src2)));
                break;
        }

        if (!(dst & SLJIT_MEM))
                return SLJIT_SUCCESS;
        return emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP), TMP_FREG1, dst, dstw);
}

#undef FPU_LOAD

/* --------------------------------------------------------------------- */
/*  Other instructions                                                   */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
        ADJUST_LOCAL_OFFSET(dst, dstw);

        /* For UNUSED dst. Uncommon, but possible. */
        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        if (FAST_IS_REG(dst))
                return push_inst16(compiler, MOV | SET_REGS44(dst, TMP_REG3));

        /* Memory. */
        if (getput_arg_fast(compiler, WORD_SIZE | STORE, TMP_REG3, dst, dstw))
                return compiler->error;
        /* TMP_REG3 is used for caching. */
        FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG2, TMP_REG3)));
        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        return getput_arg(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw, 0, 0);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
        ADJUST_LOCAL_OFFSET(src, srcw);

        if (FAST_IS_REG(src))
                FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG3, src)));
        else if (src & SLJIT_MEM) {
                if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG3, src, srcw))
                        FAIL_IF(compiler->error);
                else {
                        compiler->cache_arg = 0;
                        compiler->cache_argw = 0;
                        FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src, srcw, 0, 0));
                        FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG3, TMP_REG2)));
                }
        }
        else if (src & SLJIT_IMM)
                FAIL_IF(load_immediate(compiler, TMP_REG3, srcw));
        return push_inst16(compiler, BLX | RN3(TMP_REG3));
}

/* --------------------------------------------------------------------- */
/*  Conditional instructions                                             */
/* --------------------------------------------------------------------- */

static sljit_uw get_cc(sljit_si type)
{
        switch (type) {
        case SLJIT_EQUAL:
        case SLJIT_MUL_NOT_OVERFLOW:
        case SLJIT_D_EQUAL:
                return 0x0;

        case SLJIT_NOT_EQUAL:
        case SLJIT_MUL_OVERFLOW:
        case SLJIT_D_NOT_EQUAL:
                return 0x1;

        case SLJIT_LESS:
        case SLJIT_D_LESS:
                return 0x3;

        case SLJIT_GREATER_EQUAL:
        case SLJIT_D_GREATER_EQUAL:
                return 0x2;

        case SLJIT_GREATER:
        case SLJIT_D_GREATER:
                return 0x8;

        case SLJIT_LESS_EQUAL:
        case SLJIT_D_LESS_EQUAL:
                return 0x9;

        case SLJIT_SIG_LESS:
                return 0xb;

        case SLJIT_SIG_GREATER_EQUAL:
                return 0xa;

        case SLJIT_SIG_GREATER:
                return 0xc;

        case SLJIT_SIG_LESS_EQUAL:
                return 0xd;

        case SLJIT_OVERFLOW:
        case SLJIT_D_UNORDERED:
                return 0x6;

        case SLJIT_NOT_OVERFLOW:
        case SLJIT_D_ORDERED:
                return 0x7;

        default: /* SLJIT_JUMP */
                SLJIT_ASSERT_STOP();
                return 0xe;
        }
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
        struct sljit_label *label;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_label(compiler));

        if (compiler->last_label && compiler->last_label->size == compiler->size)
                return compiler->last_label;

        label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
        PTR_FAIL_IF(!label);
        set_label(label, compiler);
        return label;
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
        struct sljit_jump *jump;
        sljit_ins cc;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_jump(compiler, type));

        jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
        PTR_FAIL_IF(!jump);
        set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
        type &= 0xff;

        /* In ARM, we don't need to touch the arguments. */
        PTR_FAIL_IF(emit_imm32_const(compiler, TMP_REG1, 0));
        if (type < SLJIT_JUMP) {
                jump->flags |= IS_COND;
                cc = get_cc(type);
                jump->flags |= cc << 8;
                PTR_FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8));
        }

        jump->addr = compiler->size;
        if (type <= SLJIT_JUMP)
                PTR_FAIL_IF(push_inst16(compiler, BX | RN3(TMP_REG1)));
        else {
                jump->flags |= IS_BL;
                PTR_FAIL_IF(push_inst16(compiler, BLX | RN3(TMP_REG1)));
        }

        return jump;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
        struct sljit_jump *jump;

        CHECK_ERROR();
        CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
        ADJUST_LOCAL_OFFSET(src, srcw);

        /* In ARM, we don't need to touch the arguments. */
        if (!(src & SLJIT_IMM)) {
                if (FAST_IS_REG(src))
                        return push_inst16(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RN3(src));

                FAIL_IF(emit_op_mem(compiler, WORD_SIZE, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, src, srcw));
                if (type >= SLJIT_FAST_CALL)
                        return push_inst16(compiler, BLX | RN3(TMP_REG1));
        }

        jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
        FAIL_IF(!jump);
        set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
        jump->u.target = srcw;

        FAIL_IF(emit_imm32_const(compiler, TMP_REG1, 0));
        jump->addr = compiler->size;
        return push_inst16(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RN3(TMP_REG1));
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw,
        sljit_si type)
{
        sljit_si dst_r, flags = GET_ALL_FLAGS(op);
        sljit_ins cc, ins;

        CHECK_ERROR();
        CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src, srcw);

        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        op = GET_OPCODE(op);
        cc = get_cc(type & 0xff);
        dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;

        if (op < SLJIT_ADD) {
                FAIL_IF(push_inst16(compiler, IT | (cc << 4) | (((cc & 0x1) ^ 0x1) << 3) | 0x4));
                if (reg_map[dst_r] > 7) {
                        FAIL_IF(push_inst32(compiler, MOV_WI | RD4(dst_r) | 1));
                        FAIL_IF(push_inst32(compiler, MOV_WI | RD4(dst_r) | 0));
                } else {
                        FAIL_IF(push_inst16(compiler, MOVSI | RDN3(dst_r) | 1));
                        FAIL_IF(push_inst16(compiler, MOVSI | RDN3(dst_r) | 0));
                }
                if (dst_r != TMP_REG2)
                        return SLJIT_SUCCESS;
                return emit_op_mem(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw);
        }

        ins = (op == SLJIT_AND ? ANDI : (op == SLJIT_OR ? ORRI : EORI));
        if ((op == SLJIT_OR || op == SLJIT_XOR) && FAST_IS_REG(dst) && dst == src) {
                /* Does not change the other bits. */
                FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8));
                FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst) | 1));
                if (flags & SLJIT_SET_E) {
                        /* The condition must always be set, even if the ORRI/EORI is not executed above. */
                        if (reg_map[dst] <= 7)
                                return push_inst16(compiler, MOVS | RD3(TMP_REG1) | RN3(dst));
                        return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(TMP_REG1) | RM4(dst));
                }
                return SLJIT_SUCCESS;
        }

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        if (src & SLJIT_MEM) {
                FAIL_IF(emit_op_mem2(compiler, WORD_SIZE, TMP_REG2, src, srcw, dst, dstw));
                src = TMP_REG2;
                srcw = 0;
        } else if (src & SLJIT_IMM) {
                FAIL_IF(load_immediate(compiler, TMP_REG2, srcw));
                src = TMP_REG2;
                srcw = 0;
        }

        if (op == SLJIT_AND || src != dst_r) {
                FAIL_IF(push_inst16(compiler, IT | (cc << 4) | (((cc & 0x1) ^ 0x1) << 3) | 0x4));
                FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 1));
                FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 0));
        }
        else {
                FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8));
                FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 1));
        }

        if (dst_r == TMP_REG2)
                FAIL_IF(emit_op_mem2(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw, 0, 0));

        if (flags & SLJIT_SET_E) {
                /* The condition must always be set, even if the ORR/EORI is not executed above. */
                if (reg_map[dst_r] <= 7)
                        return push_inst16(compiler, MOVS | RD3(TMP_REG1) | RN3(dst_r));
                return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(TMP_REG1) | RM4(dst_r));
        }
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
        struct sljit_const *const_;
        sljit_si dst_r;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
        ADJUST_LOCAL_OFFSET(dst, dstw);

        const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
        PTR_FAIL_IF(!const_);
        set_const(const_, compiler);

        dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
        PTR_FAIL_IF(emit_imm32_const(compiler, dst_r, init_value));

        if (dst & SLJIT_MEM)
                PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw));
        return const_;
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
        sljit_uh *inst = (sljit_uh*)addr;
        modify_imm32_const(inst, new_addr);
        SLJIT_CACHE_FLUSH(inst, inst + 4);
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
        sljit_uh *inst = (sljit_uh*)addr;
        modify_imm32_const(inst, new_constant);
        SLJIT_CACHE_FLUSH(inst, inst + 4);
}

/* [<][>][^][v][top][bottom][index][help] */