/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- add_range
- ordered_range_insert
- add_decomp
- add_title
- add_upper
- add_lower
- ordered_ccl_insert
- make_number
- add_number
- read_cdata
- find_decomp
- decomp_it
- expand_decomp
- cmpcomps
- read_compexdata
- create_comps
- write_case
- write_cdata
- usage
- main
/* Further modified for PHP */
/* $Id$ */
/* $OpenLDAP: pkg/ldap/libraries/liblunicode/ucdata/ucgendat.c,v 1.36.2.4 2007/01/02 21:43:51 kurt Exp $ */
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
*
* Copyright 1998-2007 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available at
* <http://www.OpenLDAP.org/license.html>.
*/
/* Copyright 2001 Computing Research Labs, New Mexico State University
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COMPUTING RESEARCH LAB OR NEW MEXICO STATE UNIVERSITY BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
* OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
* THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* orig Id: ucgendat.c,v 1.4 2001/01/02 18:46:20 mleisher Exp $" */
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define ac_uint2 unsigned short
#define ac_uint4 unsigned int
#define LDAP_DIRSEP "/"
#define AC_MEMCPY memcpy
#ifndef HARDCODE_DATA
#define HARDCODE_DATA 1
#endif
#undef ishdigit
#define ishdigit(cc) (((cc) >= '0' && (cc) <= '9') ||\
((cc) >= 'A' && (cc) <= 'F') ||\
((cc) >= 'a' && (cc) <= 'f'))
/*
* A header written to the output file with the byte-order-mark and the number
* of property nodes.
*/
static ac_uint2 hdr[2] = {0xfeff, 0};
#define NUMPROPS 50
#define NEEDPROPS (NUMPROPS + (4 - (NUMPROPS & 3)))
typedef struct {
char *name;
int len;
} _prop_t;
/*
* List of properties expected to be found in the Unicode Character Database
* including some implementation specific properties.
*
* The implementation specific properties are:
* Cm = Composed (can be decomposed)
* Nb = Non-breaking
* Sy = Symmetric (has left and right forms)
* Hd = Hex digit
* Qm = Quote marks
* Mr = Mirroring
* Ss = Space, other
* Cp = Defined character
*/
static _prop_t props[NUMPROPS] = {
{"Mn", 2}, {"Mc", 2}, {"Me", 2}, {"Nd", 2}, {"Nl", 2}, {"No", 2},
{"Zs", 2}, {"Zl", 2}, {"Zp", 2}, {"Cc", 2}, {"Cf", 2}, {"Cs", 2},
{"Co", 2}, {"Cn", 2}, {"Lu", 2}, {"Ll", 2}, {"Lt", 2}, {"Lm", 2},
{"Lo", 2}, {"Pc", 2}, {"Pd", 2}, {"Ps", 2}, {"Pe", 2}, {"Po", 2},
{"Sm", 2}, {"Sc", 2}, {"Sk", 2}, {"So", 2}, {"L", 1}, {"R", 1},
{"EN", 2}, {"ES", 2}, {"ET", 2}, {"AN", 2}, {"CS", 2}, {"B", 1},
{"S", 1}, {"WS", 2}, {"ON", 2},
{"Cm", 2}, {"Nb", 2}, {"Sy", 2}, {"Hd", 2}, {"Qm", 2}, {"Mr", 2},
{"Ss", 2}, {"Cp", 2}, {"Pi", 2}, {"Pf", 2}, {"AL", 2}
};
typedef struct {
ac_uint4 *ranges;
ac_uint2 used;
ac_uint2 size;
} _ranges_t;
static _ranges_t proptbl[NUMPROPS];
/*
* Make sure this array is sized to be on a 4-byte boundary at compile time.
*/
static ac_uint2 propcnt[NEEDPROPS];
/*
* Array used to collect a decomposition before adding it to the decomposition
* table.
*/
static ac_uint4 dectmp[64];
static ac_uint4 dectmp_size;
typedef struct {
ac_uint4 code;
ac_uint2 size;
ac_uint2 used;
ac_uint4 *decomp;
} _decomp_t;
/*
* List of decomposition. Created and expanded in order as the characters are
* encountered. First list contains canonical mappings, second also includes
* compatibility mappings.
*/
static _decomp_t *decomps;
static ac_uint4 decomps_used;
static ac_uint4 decomps_size;
static _decomp_t *kdecomps;
static ac_uint4 kdecomps_used;
static ac_uint4 kdecomps_size;
/*
* Composition exclusion table stuff.
*/
#define COMPEX_SET(c) (compexs[(c) >> 5] |= (1 << ((c) & 31)))
#define COMPEX_TEST(c) (compexs[(c) >> 5] & (1 << ((c) & 31)))
static ac_uint4 compexs[8192];
/*
* Struct for holding a composition pair, and array of composition pairs
*/
typedef struct {
ac_uint4 comp;
ac_uint4 count;
ac_uint4 code1;
ac_uint4 code2;
} _comp_t;
#if 0
static _comp_t *comps;
#endif
static ac_uint4 comps_used;
/*
* Types and lists for handling lists of case mappings.
*/
typedef struct {
ac_uint4 key;
ac_uint4 other1;
ac_uint4 other2;
} _case_t;
static _case_t *upper;
static _case_t *lower;
static _case_t *title;
static ac_uint4 upper_used;
static ac_uint4 upper_size;
static ac_uint4 lower_used;
static ac_uint4 lower_size;
static ac_uint4 title_used;
static ac_uint4 title_size;
/*
* Array used to collect case mappings before adding them to a list.
*/
static ac_uint4 cases[3];
/*
* An array to hold ranges for combining classes.
*/
static ac_uint4 *ccl;
static ac_uint4 ccl_used;
static ac_uint4 ccl_size;
/*
* Structures for handling numbers.
*/
typedef struct {
ac_uint4 code;
ac_uint4 idx;
} _codeidx_t;
typedef struct {
short numerator;
short denominator;
} _num_t;
/*
* Arrays to hold the mapping of codes to numbers.
*/
static _codeidx_t *ncodes;
static ac_uint4 ncodes_used;
static ac_uint4 ncodes_size;
static _num_t *nums;
static ac_uint4 nums_used;
static ac_uint4 nums_size;
/*
* Array for holding numbers.
*/
static _num_t *nums;
static ac_uint4 nums_used;
static ac_uint4 nums_size;
static void
add_range(ac_uint4 start, ac_uint4 end, char *p1, char *p2)
{
int i, j, k, len;
_ranges_t *rlp;
char *name;
for (k = 0; k < 2; k++) {
if (k == 0) {
name = p1;
len = 2;
} else {
if (p2 == 0)
break;
name = p2;
len = 1;
}
for (i = 0; i < NUMPROPS; i++) {
if (props[i].len == len && memcmp(props[i].name, name, len) == 0)
break;
}
if (i == NUMPROPS)
continue;
rlp = &proptbl[i];
/*
* Resize the range list if necessary.
*/
if (rlp->used == rlp->size) {
if (rlp->size == 0)
rlp->ranges = (ac_uint4 *)
malloc(sizeof(ac_uint4) << 3);
else
rlp->ranges = (ac_uint4 *)
realloc((char *) rlp->ranges,
sizeof(ac_uint4) * (rlp->size + 8));
rlp->size += 8;
}
/*
* If this is the first code for this property list, just add it
* and return.
*/
if (rlp->used == 0) {
rlp->ranges[0] = start;
rlp->ranges[1] = end;
rlp->used += 2;
continue;
}
/*
* Optimize the case of adding the range to the end.
*/
j = rlp->used - 1;
if (start > rlp->ranges[j]) {
j = rlp->used;
rlp->ranges[j++] = start;
rlp->ranges[j++] = end;
rlp->used = j;
continue;
}
/*
* Need to locate the insertion point.
*/
for (i = 0;
i < rlp->used && start > rlp->ranges[i + 1] + 1; i += 2) ;
/*
* If the start value lies in the current range, then simply set the
* new end point of the range to the end value passed as a parameter.
*/
if (rlp->ranges[i] <= start && start <= rlp->ranges[i + 1] + 1) {
rlp->ranges[i + 1] = end;
return;
}
/*
* Shift following values up by two.
*/
for (j = rlp->used; j > i; j -= 2) {
rlp->ranges[j] = rlp->ranges[j - 2];
rlp->ranges[j + 1] = rlp->ranges[j - 1];
}
/*
* Add the new range at the insertion point.
*/
rlp->ranges[i] = start;
rlp->ranges[i + 1] = end;
rlp->used += 2;
}
}
static void
ordered_range_insert(ac_uint4 c, char *name, int len)
{
int i, j;
ac_uint4 s, e;
_ranges_t *rlp;
if (len == 0)
return;
/*
* Deal with directionality codes introduced in Unicode 3.0.
*/
if ((len == 2 && memcmp(name, "BN", 2) == 0) ||
(len == 3 &&
(memcmp(name, "NSM", 3) == 0 || memcmp(name, "PDF", 3) == 0 ||
memcmp(name, "LRE", 3) == 0 || memcmp(name, "LRO", 3) == 0 ||
memcmp(name, "RLE", 3) == 0 || memcmp(name, "RLO", 3) == 0))) {
/*
* Mark all of these as Other Neutral to preserve compatibility with
* older versions.
*/
len = 2;
name = "ON";
}
for (i = 0; i < NUMPROPS; i++) {
if (props[i].len == len && memcmp(props[i].name, name, len) == 0)
break;
}
if (i == NUMPROPS)
return;
/*
* Have a match, so insert the code in order.
*/
rlp = &proptbl[i];
/*
* Resize the range list if necessary.
*/
if (rlp->used == rlp->size) {
if (rlp->size == 0)
rlp->ranges = (ac_uint4 *)
malloc(sizeof(ac_uint4) << 3);
else
rlp->ranges = (ac_uint4 *)
realloc((char *) rlp->ranges,
sizeof(ac_uint4) * (rlp->size + 8));
rlp->size += 8;
}
/*
* If this is the first code for this property list, just add it
* and return.
*/
if (rlp->used == 0) {
rlp->ranges[0] = rlp->ranges[1] = c;
rlp->used += 2;
return;
}
/*
* Optimize the cases of extending the last range and adding new ranges to
* the end.
*/
j = rlp->used - 1;
e = rlp->ranges[j];
s = rlp->ranges[j - 1];
if (c == e + 1) {
/*
* Extend the last range.
*/
rlp->ranges[j] = c;
return;
}
if (c > e + 1) {
/*
* Start another range on the end.
*/
j = rlp->used;
rlp->ranges[j] = rlp->ranges[j + 1] = c;
rlp->used += 2;
return;
}
if (c >= s)
/*
* The code is a duplicate of a code in the last range, so just return.
*/
return;
/*
* The code should be inserted somewhere before the last range in the
* list. Locate the insertion point.
*/
for (i = 0;
i < rlp->used && c > rlp->ranges[i + 1] + 1; i += 2) ;
s = rlp->ranges[i];
e = rlp->ranges[i + 1];
if (c == e + 1)
/*
* Simply extend the current range.
*/
rlp->ranges[i + 1] = c;
else if (c < s) {
/*
* Add a new entry before the current location. Shift all entries
* before the current one up by one to make room.
*/
for (j = rlp->used; j > i; j -= 2) {
rlp->ranges[j] = rlp->ranges[j - 2];
rlp->ranges[j + 1] = rlp->ranges[j - 1];
}
rlp->ranges[i] = rlp->ranges[i + 1] = c;
rlp->used += 2;
}
}
static void
add_decomp(ac_uint4 code, short compat)
{
ac_uint4 i, j, size;
_decomp_t **pdecomps;
ac_uint4 *pdecomps_used;
ac_uint4 *pdecomps_size;
if (compat) {
pdecomps = &kdecomps;
pdecomps_used = &kdecomps_used;
pdecomps_size = &kdecomps_size;
} else {
pdecomps = &decomps;
pdecomps_used = &decomps_used;
pdecomps_size = &decomps_size;
}
/*
* Add the code to the composite property.
*/
if (!compat) {
ordered_range_insert(code, "Cm", 2);
}
/*
* Locate the insertion point for the code.
*/
for (i = 0; i < *pdecomps_used && code > (*pdecomps)[i].code; i++) ;
/*
* Allocate space for a new decomposition.
*/
if (*pdecomps_used == *pdecomps_size) {
if (*pdecomps_size == 0)
*pdecomps = (_decomp_t *) malloc(sizeof(_decomp_t) << 3);
else
*pdecomps = (_decomp_t *)
realloc((char *) *pdecomps,
sizeof(_decomp_t) * (*pdecomps_size + 8));
(void) memset((char *) (*pdecomps + *pdecomps_size), '\0',
sizeof(_decomp_t) << 3);
*pdecomps_size += 8;
}
if (i < *pdecomps_used && code != (*pdecomps)[i].code) {
/*
* Shift the decomps up by one if the codes don't match.
*/
for (j = *pdecomps_used; j > i; j--)
(void) AC_MEMCPY((char *) &(*pdecomps)[j], (char *) &(*pdecomps)[j - 1],
sizeof(_decomp_t));
}
/*
* Insert or replace a decomposition.
*/
size = dectmp_size + (4 - (dectmp_size & 3));
if ((*pdecomps)[i].size < size) {
if ((*pdecomps)[i].size == 0)
(*pdecomps)[i].decomp = (ac_uint4 *)
malloc(sizeof(ac_uint4) * size);
else
(*pdecomps)[i].decomp = (ac_uint4 *)
realloc((char *) (*pdecomps)[i].decomp,
sizeof(ac_uint4) * size);
(*pdecomps)[i].size = size;
}
if ((*pdecomps)[i].code != code)
(*pdecomps_used)++;
(*pdecomps)[i].code = code;
(*pdecomps)[i].used = dectmp_size;
(void) AC_MEMCPY((char *) (*pdecomps)[i].decomp, (char *) dectmp,
sizeof(ac_uint4) * dectmp_size);
/*
* NOTICE: This needs changing later so it is more general than simply
* pairs. This calculation is done here to simplify allocation elsewhere.
*/
if (!compat && dectmp_size == 2)
comps_used++;
}
static void
add_title(ac_uint4 code)
{
ac_uint4 i, j;
/*
* Always map the code to itself.
*/
cases[2] = code;
if (title_used == title_size) {
if (title_size == 0)
title = (_case_t *) malloc(sizeof(_case_t) << 3);
else
title = (_case_t *) realloc((char *) title,
sizeof(_case_t) * (title_size + 8));
title_size += 8;
}
/*
* Locate the insertion point.
*/
for (i = 0; i < title_used && code > title[i].key; i++) ;
if (i < title_used) {
/*
* Shift the array up by one.
*/
for (j = title_used; j > i; j--)
(void) AC_MEMCPY((char *) &title[j], (char *) &title[j - 1],
sizeof(_case_t));
}
title[i].key = cases[2]; /* Title */
title[i].other1 = cases[0]; /* Upper */
title[i].other2 = cases[1]; /* Lower */
title_used++;
}
static void
add_upper(ac_uint4 code)
{
ac_uint4 i, j;
/*
* Always map the code to itself.
*/
cases[0] = code;
/*
* If the title case character is not present, then make it the same as
* the upper case.
*/
if (cases[2] == 0)
cases[2] = code;
if (upper_used == upper_size) {
if (upper_size == 0)
upper = (_case_t *) malloc(sizeof(_case_t) << 3);
else
upper = (_case_t *) realloc((char *) upper,
sizeof(_case_t) * (upper_size + 8));
upper_size += 8;
}
/*
* Locate the insertion point.
*/
for (i = 0; i < upper_used && code > upper[i].key; i++) ;
if (i < upper_used) {
/*
* Shift the array up by one.
*/
for (j = upper_used; j > i; j--)
(void) AC_MEMCPY((char *) &upper[j], (char *) &upper[j - 1],
sizeof(_case_t));
}
upper[i].key = cases[0]; /* Upper */
upper[i].other1 = cases[1]; /* Lower */
upper[i].other2 = cases[2]; /* Title */
upper_used++;
}
static void
add_lower(ac_uint4 code)
{
ac_uint4 i, j;
/*
* Always map the code to itself.
*/
cases[1] = code;
/*
* If the title case character is empty, then make it the same as the
* upper case.
*/
if (cases[2] == 0)
cases[2] = cases[0];
if (lower_used == lower_size) {
if (lower_size == 0)
lower = (_case_t *) malloc(sizeof(_case_t) << 3);
else
lower = (_case_t *) realloc((char *) lower,
sizeof(_case_t) * (lower_size + 8));
lower_size += 8;
}
/*
* Locate the insertion point.
*/
for (i = 0; i < lower_used && code > lower[i].key; i++) ;
if (i < lower_used) {
/*
* Shift the array up by one.
*/
for (j = lower_used; j > i; j--)
(void) AC_MEMCPY((char *) &lower[j], (char *) &lower[j - 1],
sizeof(_case_t));
}
lower[i].key = cases[1]; /* Lower */
lower[i].other1 = cases[0]; /* Upper */
lower[i].other2 = cases[2]; /* Title */
lower_used++;
}
static void
ordered_ccl_insert(ac_uint4 c, ac_uint4 ccl_code)
{
ac_uint4 i, j;
if (ccl_used == ccl_size) {
if (ccl_size == 0)
ccl = (ac_uint4 *) malloc(sizeof(ac_uint4) * 24);
else
ccl = (ac_uint4 *)
realloc((char *) ccl, sizeof(ac_uint4) * (ccl_size + 24));
ccl_size += 24;
}
/*
* Optimize adding the first item.
*/
if (ccl_used == 0) {
ccl[0] = ccl[1] = c;
ccl[2] = ccl_code;
ccl_used += 3;
return;
}
/*
* Handle the special case of extending the range on the end. This
* requires that the combining class codes are the same.
*/
if (ccl_code == ccl[ccl_used - 1] && c == ccl[ccl_used - 2] + 1) {
ccl[ccl_used - 2] = c;
return;
}
/*
* Handle the special case of adding another range on the end.
*/
if (c > ccl[ccl_used - 2] + 1 ||
(c == ccl[ccl_used - 2] + 1 && ccl_code != ccl[ccl_used - 1])) {
ccl[ccl_used++] = c;
ccl[ccl_used++] = c;
ccl[ccl_used++] = ccl_code;
return;
}
/*
* Locate either the insertion point or range for the code.
*/
for (i = 0; i < ccl_used && c > ccl[i + 1] + 1; i += 3) ;
if (ccl_code == ccl[i + 2] && c == ccl[i + 1] + 1) {
/*
* Extend an existing range.
*/
ccl[i + 1] = c;
return;
} else if (c < ccl[i]) {
/*
* Start a new range before the current location.
*/
for (j = ccl_used; j > i; j -= 3) {
ccl[j] = ccl[j - 3];
ccl[j - 1] = ccl[j - 4];
ccl[j - 2] = ccl[j - 5];
}
ccl[i] = ccl[i + 1] = c;
ccl[i + 2] = ccl_code;
}
}
/*
* Adds a number if it does not already exist and returns an index value
* multiplied by 2.
*/
static ac_uint4
make_number(short num, short denom)
{
ac_uint4 n;
/*
* Determine if the number already exists.
*/
for (n = 0; n < nums_used; n++) {
if (nums[n].numerator == num && nums[n].denominator == denom)
return n << 1;
}
if (nums_used == nums_size) {
if (nums_size == 0)
nums = (_num_t *) malloc(sizeof(_num_t) << 3);
else
nums = (_num_t *) realloc((char *) nums,
sizeof(_num_t) * (nums_size + 8));
nums_size += 8;
}
n = nums_used++;
nums[n].numerator = num;
nums[n].denominator = denom;
return n << 1;
}
static void
add_number(ac_uint4 code, short num, short denom)
{
ac_uint4 i, j;
/*
* Insert the code in order.
*/
for (i = 0; i < ncodes_used && code > ncodes[i].code; i++) ;
/*
* Handle the case of the codes matching and simply replace the number
* that was there before.
*/
if (i < ncodes_used && code == ncodes[i].code) {
ncodes[i].idx = make_number(num, denom);
return;
}
/*
* Resize the array if necessary.
*/
if (ncodes_used == ncodes_size) {
if (ncodes_size == 0)
ncodes = (_codeidx_t *) malloc(sizeof(_codeidx_t) << 3);
else
ncodes = (_codeidx_t *)
realloc((char *) ncodes, sizeof(_codeidx_t) * (ncodes_size + 8));
ncodes_size += 8;
}
/*
* Shift things around to insert the code if necessary.
*/
if (i < ncodes_used) {
for (j = ncodes_used; j > i; j--) {
ncodes[j].code = ncodes[j - 1].code;
ncodes[j].idx = ncodes[j - 1].idx;
}
}
ncodes[i].code = code;
ncodes[i].idx = make_number(num, denom);
ncodes_used++;
}
/*
* This routine assumes that the line is a valid Unicode Character Database
* entry.
*/
static void
read_cdata(FILE *in)
{
ac_uint4 i, lineno, skip, code, ccl_code;
short wnum, neg, number[2], compat;
char line[512], *s, *e;
lineno = skip = 0;
while (fgets(line, sizeof(line), in)) {
if( (s=strchr(line, '\n')) ) *s = '\0';
lineno++;
/*
* Skip blank lines and lines that start with a '#'.
*/
if (line[0] == 0 || line[0] == '#')
continue;
/*
* If lines need to be skipped, do it here.
*/
if (skip) {
skip--;
continue;
}
/*
* Collect the code. The code can be up to 6 hex digits in length to
* allow surrogates to be specified.
*/
for (s = line, i = code = 0; *s != ';' && i < 6; i++, s++) {
code <<= 4;
if (*s >= '0' && *s <= '9')
code += *s - '0';
else if (*s >= 'A' && *s <= 'F')
code += (*s - 'A') + 10;
else if (*s >= 'a' && *s <= 'f')
code += (*s - 'a') + 10;
}
/*
* Handle the following special cases:
* 1. 4E00-9FA5 CJK Ideographs.
* 2. AC00-D7A3 Hangul Syllables.
* 3. D800-DFFF Surrogates.
* 4. E000-F8FF Private Use Area.
* 5. F900-FA2D Han compatibility.
* ...Plus additional ranges in newer Unicode versions...
*/
switch (code) {
case 0x3400:
/* CJK Ideograph Extension A */
add_range(0x3400, 0x4db5, "Lo", "L");
add_range(0x3400, 0x4db5, "Cp", 0);
skip = 1;
break;
case 0x4e00:
/*
* The Han ideographs.
*/
add_range(0x4e00, 0x9fff, "Lo", "L");
/*
* Add the characters to the defined category.
*/
add_range(0x4e00, 0x9fa5, "Cp", 0);
skip = 1;
break;
case 0xac00:
/*
* The Hangul syllables.
*/
add_range(0xac00, 0xd7a3, "Lo", "L");
/*
* Add the characters to the defined category.
*/
add_range(0xac00, 0xd7a3, "Cp", 0);
skip = 1;
break;
case 0xd800:
/*
* Make a range of all surrogates and assume some default
* properties.
*/
add_range(0x010000, 0x10ffff, "Cs", "L");
skip = 5;
break;
case 0xe000:
/*
* The Private Use area. Add with a default set of properties.
*/
add_range(0xe000, 0xf8ff, "Co", "L");
skip = 1;
break;
case 0xf900:
/*
* The CJK compatibility area.
*/
add_range(0xf900, 0xfaff, "Lo", "L");
/*
* Add the characters to the defined category.
*/
add_range(0xf900, 0xfaff, "Cp", 0);
skip = 1;
break;
case 0x20000:
/* CJK Ideograph Extension B */
add_range(0x20000, 0x2a6d6, "Lo", "L");
add_range(0x20000, 0x2a6d6, "Cp", 0);
skip = 1;
break;
case 0xf0000:
/* Plane 15 private use */
add_range(0xf0000, 0xffffd, "Co", "L");
skip = 1;
break;
case 0x100000:
/* Plane 16 private use */
add_range(0x100000, 0x10fffd, "Co", "L");
skip = 1;
break;
}
if (skip)
continue;
/*
* Add the code to the defined category.
*/
ordered_range_insert(code, "Cp", 2);
/*
* Locate the first character property field.
*/
for (i = 0; *s != 0 && i < 2; s++) {
if (*s == ';')
i++;
}
for (e = s; *e && *e != ';'; e++) ;
ordered_range_insert(code, s, e - s);
/*
* Locate the combining class code.
*/
for (s = e; *s != 0 && i < 3; s++) {
if (*s == ';')
i++;
}
/*
* Convert the combining class code from decimal.
*/
for (ccl_code = 0, e = s; *e && *e != ';'; e++)
ccl_code = (ccl_code * 10) + (*e - '0');
/*
* Add the code if it not 0.
*/
if (ccl_code != 0)
ordered_ccl_insert(code, ccl_code);
/*
* Locate the second character property field.
*/
for (s = e; *s != 0 && i < 4; s++) {
if (*s == ';')
i++;
}
for (e = s; *e && *e != ';'; e++) ;
ordered_range_insert(code, s, e - s);
/*
* Check for a decomposition.
*/
s = ++e;
if (*s != ';') {
compat = *s == '<';
if (compat) {
/*
* Skip compatibility formatting tag.
*/
while (*s++ != '>');
}
/*
* Collect the codes of the decomposition.
*/
for (dectmp_size = 0; *s != ';'; ) {
/*
* Skip all leading non-hex digits.
*/
while (!ishdigit(*s))
s++;
for (dectmp[dectmp_size] = 0; ishdigit(*s); s++) {
dectmp[dectmp_size] <<= 4;
if (*s >= '0' && *s <= '9')
dectmp[dectmp_size] += *s - '0';
else if (*s >= 'A' && *s <= 'F')
dectmp[dectmp_size] += (*s - 'A') + 10;
else if (*s >= 'a' && *s <= 'f')
dectmp[dectmp_size] += (*s - 'a') + 10;
}
dectmp_size++;
}
/*
* If there are any codes in the temporary decomposition array,
* then add the character with its decomposition.
*/
if (dectmp_size > 0) {
if (!compat) {
add_decomp(code, 0);
}
add_decomp(code, 1);
}
}
/*
* Skip to the number field.
*/
for (i = 0; i < 3 && *s; s++) {
if (*s == ';')
i++;
}
/*
* Scan the number in.
*/
number[0] = number[1] = 0;
for (e = s, neg = wnum = 0; *e && *e != ';'; e++) {
if (*e == '-') {
neg = 1;
continue;
}
if (*e == '/') {
/*
* Move the the denominator of the fraction.
*/
if (neg)
number[wnum] *= -1;
neg = 0;
e++;
wnum++;
}
number[wnum] = (number[wnum] * 10) + (*e - '0');
}
if (e > s) {
/*
* Adjust the denominator in case of integers and add the number.
*/
if (wnum == 0)
number[1] = 1;
add_number(code, number[0], number[1]);
}
/*
* Skip to the start of the possible case mappings.
*/
for (s = e, i = 0; i < 4 && *s; s++) {
if (*s == ';')
i++;
}
/*
* Collect the case mappings.
*/
cases[0] = cases[1] = cases[2] = 0;
for (i = 0; i < 3; i++) {
while (ishdigit(*s)) {
cases[i] <<= 4;
if (*s >= '0' && *s <= '9')
cases[i] += *s - '0';
else if (*s >= 'A' && *s <= 'F')
cases[i] += (*s - 'A') + 10;
else if (*s >= 'a' && *s <= 'f')
cases[i] += (*s - 'a') + 10;
s++;
}
if (*s == ';')
s++;
}
if (cases[0] && cases[1])
/*
* Add the upper and lower mappings for a title case character.
*/
add_title(code);
else if (cases[1])
/*
* Add the lower and title case mappings for the upper case
* character.
*/
add_upper(code);
else if (cases[0])
/*
* Add the upper and title case mappings for the lower case
* character.
*/
add_lower(code);
}
}
#if 0
static _decomp_t *
find_decomp(ac_uint4 code, short compat)
{
long l, r, m;
_decomp_t *decs;
l = 0;
r = (compat ? kdecomps_used : decomps_used) - 1;
decs = compat ? kdecomps : decomps;
while (l <= r) {
m = (l + r) >> 1;
if (code > decs[m].code)
l = m + 1;
else if (code < decs[m].code)
r = m - 1;
else
return &decs[m];
}
return 0;
}
static void
decomp_it(_decomp_t *d, short compat)
{
ac_uint4 i;
_decomp_t *dp;
for (i = 0; i < d->used; i++) {
if ((dp = find_decomp(d->decomp[i], compat)) != 0)
decomp_it(dp, compat);
else
dectmp[dectmp_size++] = d->decomp[i];
}
}
/*
* Expand all decompositions by recursively decomposing each character
* in the decomposition.
*/
static void
expand_decomp(void)
{
ac_uint4 i;
for (i = 0; i < decomps_used; i++) {
dectmp_size = 0;
decomp_it(&decomps[i], 0);
if (dectmp_size > 0)
add_decomp(decomps[i].code, 0);
}
for (i = 0; i < kdecomps_used; i++) {
dectmp_size = 0;
decomp_it(&kdecomps[i], 1);
if (dectmp_size > 0)
add_decomp(kdecomps[i].code, 1);
}
}
static int
cmpcomps(const void *v_comp1, const void *v_comp2)
{
const _comp_t *comp1 = v_comp1, *comp2 = v_comp2;
long diff = comp1->code1 - comp2->code1;
if (!diff)
diff = comp1->code2 - comp2->code2;
return (int) diff;
}
#endif
/*
* Load composition exclusion data
*/
static void
read_compexdata(FILE *in)
{
ac_uint2 i;
ac_uint4 code;
char line[512], *s;
(void) memset((char *) compexs, 0, sizeof(compexs));
while (fgets(line, sizeof(line), in)) {
if( (s=strchr(line, '\n')) ) *s = '\0';
/*
* Skip blank lines and lines that start with a '#'.
*/
if (line[0] == 0 || line[0] == '#')
continue;
/*
* Collect the code. Assume max 6 digits
*/
for (s = line, i = code = 0; *s != '#' && i < 6; i++, s++) {
if (isspace((unsigned char)*s)) break;
code <<= 4;
if (*s >= '0' && *s <= '9')
code += *s - '0';
else if (*s >= 'A' && *s <= 'F')
code += (*s - 'A') + 10;
else if (*s >= 'a' && *s <= 'f')
code += (*s - 'a') + 10;
}
COMPEX_SET(code);
}
}
#if 0
/*
* Creates array of compositions from decomposition array
*/
static void
create_comps(void)
{
ac_uint4 i, cu;
comps = (_comp_t *) malloc(comps_used * sizeof(_comp_t));
for (i = cu = 0; i < decomps_used; i++) {
if (decomps[i].used != 2 || COMPEX_TEST(decomps[i].code))
continue;
comps[cu].comp = decomps[i].code;
comps[cu].count = 2;
comps[cu].code1 = decomps[i].decomp[0];
comps[cu].code2 = decomps[i].decomp[1];
cu++;
}
comps_used = cu;
qsort(comps, comps_used, sizeof(_comp_t), cmpcomps);
}
#endif
#if HARDCODE_DATA
static void
write_case(FILE *out, _case_t *tab, int num, int first)
{
int i;
for (i=0; i<num; i++) {
if (first) first = 0;
else fprintf(out, ",");
fprintf(out, "\n\t0x%08lx, 0x%08lx, 0x%08lx",
(unsigned long) tab[i].key, (unsigned long) tab[i].other1,
(unsigned long) tab[i].other2);
}
}
#define PREF "static const "
#endif
static void
write_cdata(char *opath)
{
FILE *out;
ac_uint4 bytes;
ac_uint4 i, idx, nprops;
#if !(HARDCODE_DATA)
ac_uint2 casecnt[2];
#endif
char path[BUFSIZ];
#if HARDCODE_DATA
int j, k;
/*****************************************************************
*
* Generate the ctype data.
*
*****************************************************************/
/*
* Open the output file.
*/
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "uctable.h", opath);
if ((out = fopen(path, "w")) == 0)
return;
#else
/*
* Open the ctype.dat file.
*/
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "ctype.dat", opath);
if ((out = fopen(path, "wb")) == 0)
return;
#endif
/*
* Collect the offsets for the properties. The offsets array is
* on a 4-byte boundary to keep things efficient for architectures
* that need such a thing.
*/
for (i = idx = 0; i < NUMPROPS; i++) {
propcnt[i] = (proptbl[i].used != 0) ? idx : 0xffff;
idx += proptbl[i].used;
}
/*
* Add the sentinel index which is used by the binary search as the upper
* bound for a search.
*/
propcnt[i] = idx;
/*
* Record the actual number of property lists. This may be different than
* the number of offsets actually written because of aligning on a 4-byte
* boundary.
*/
hdr[1] = NUMPROPS;
/*
* Calculate the byte count needed and pad the property counts array to a
* 4-byte boundary.
*/
if ((bytes = sizeof(ac_uint2) * (NUMPROPS + 1)) & 3)
bytes += 4 - (bytes & 3);
nprops = bytes / sizeof(ac_uint2);
bytes += sizeof(ac_uint4) * idx;
#if HARDCODE_DATA
fprintf(out,
"/* This file was generated from a modified version UCData's ucgendat.\n"
" *\n"
" * DO NOT EDIT THIS FILE!\n"
" * \n"
" * Instead, compile ucgendat.c (bundled with PHP in ext/mbstring), download\n"
" * the appropriate UnicodeData-x.x.x.txt and CompositionExclusions-x.x.x.txt\n"
" * files from http://www.unicode.org/Public/ and run this program.\n"
" *\n"
" * More information can be found in the UCData package. Unfortunately,\n"
" * the project's page doesn't seem to be live anymore, so you can use\n"
" * OpenLDAPs modified copy (look in libraries/liblunicode/ucdata) */\n\n");
fprintf(out, PREF "unsigned short _ucprop_size = %d;\n\n", NUMPROPS);
fprintf(out, PREF "unsigned short _ucprop_offsets[] = {");
for (i = 0; i<nprops; i++) {
if (i) fprintf(out, ",");
if (!(i&7)) fprintf(out, "\n\t");
else fprintf(out, " ");
fprintf(out, "0x%04x", propcnt[i]);
}
fprintf(out, "\n};\n\n");
fprintf(out, PREF "unsigned int _ucprop_ranges[] = {");
k = 0;
for (i = 0; i < NUMPROPS; i++) {
if (proptbl[i].used > 0) {
for (j=0; j<proptbl[i].used; j++) {
if (k) fprintf(out, ",");
if (!(k&3)) fprintf(out,"\n\t");
else fprintf(out, " ");
k++;
fprintf(out, "0x%08lx", (unsigned long) proptbl[i].ranges[j]);
}
}
}
fprintf(out, "\n};\n\n");
#else
/*
* Write the header.
*/
fwrite((char *) hdr, sizeof(ac_uint2), 2, out);
/*
* Write the byte count.
*/
fwrite((char *) &bytes, sizeof(ac_uint4), 1, out);
/*
* Write the property list counts.
*/
fwrite((char *) propcnt, sizeof(ac_uint2), nprops, out);
/*
* Write the property lists.
*/
for (i = 0; i < NUMPROPS; i++) {
if (proptbl[i].used > 0)
fwrite((char *) proptbl[i].ranges, sizeof(ac_uint4),
proptbl[i].used, out);
}
fclose(out);
#endif
/*****************************************************************
*
* Generate the case mapping data.
*
*****************************************************************/
#if HARDCODE_DATA
fprintf(out, PREF "unsigned int _uccase_size = %ld;\n\n",
(long) (upper_used + lower_used + title_used));
fprintf(out,
"/* Starting indexes of the case tables\n"
" * UpperIndex = 0\n"
" * LowerIndex = _uccase_len[0]\n"
" * TitleIndex = LowerIndex + _uccase_len[1] */\n\n");
fprintf(out, PREF "unsigned short _uccase_len[2] = {%ld, %ld};\n\n",
(long) upper_used * 3, (long) lower_used * 3);
fprintf(out, PREF "unsigned int _uccase_map[] = {");
if (upper_used > 0)
/*
* Write the upper case table.
*/
write_case(out, upper, upper_used, 1);
if (lower_used > 0)
/*
* Write the lower case table.
*/
write_case(out, lower, lower_used, !upper_used);
if (title_used > 0)
/*
* Write the title case table.
*/
write_case(out, title, title_used, !(upper_used||lower_used));
if (!(upper_used || lower_used || title_used))
fprintf(out, "\t0");
fprintf(out, "\n};\n\n");
#else
/*
* Open the case.dat file.
*/
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "case.dat", opath);
if ((out = fopen(path, "wb")) == 0)
return;
/*
* Write the case mapping tables.
*/
hdr[1] = upper_used + lower_used + title_used;
casecnt[0] = upper_used;
casecnt[1] = lower_used;
/*
* Write the header.
*/
fwrite((char *) hdr, sizeof(ac_uint2), 2, out);
/*
* Write the upper and lower case table sizes.
*/
fwrite((char *) casecnt, sizeof(ac_uint2), 2, out);
if (upper_used > 0)
/*
* Write the upper case table.
*/
fwrite((char *) upper, sizeof(_case_t), upper_used, out);
if (lower_used > 0)
/*
* Write the lower case table.
*/
fwrite((char *) lower, sizeof(_case_t), lower_used, out);
if (title_used > 0)
/*
* Write the title case table.
*/
fwrite((char *) title, sizeof(_case_t), title_used, out);
fclose(out);
#endif
#if 0
/*****************************************************************
*
* Generate the composition data.
*
*****************************************************************/
/*
* Create compositions from decomposition data
*/
create_comps();
#if HARDCODE_DATA
fprintf(out, PREF "ac_uint4 _uccomp_size = %ld;\n\n",
comps_used * 4L);
fprintf(out, PREF "ac_uint4 _uccomp_data[] = {");
/*
* Now, if comps exist, write them out.
*/
if (comps_used > 0) {
for (i=0; i<comps_used; i++) {
if (i) fprintf(out, ",");
fprintf(out, "\n\t0x%08lx, 0x%08lx, 0x%08lx, 0x%08lx",
(unsigned long) comps[i].comp, (unsigned long) comps[i].count,
(unsigned long) comps[i].code1, (unsigned long) comps[i].code2);
}
} else {
fprintf(out, "\t0");
}
fprintf(out, "\n};\n\n");
#else
/*
* Open the comp.dat file.
*/
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "comp.dat", opath);
if ((out = fopen(path, "wb")) == 0)
return;
/*
* Write the header.
*/
hdr[1] = (ac_uint2) comps_used * 4;
fwrite((char *) hdr, sizeof(ac_uint2), 2, out);
/*
* Write out the byte count to maintain header size.
*/
bytes = comps_used * sizeof(_comp_t);
fwrite((char *) &bytes, sizeof(ac_uint4), 1, out);
/*
* Now, if comps exist, write them out.
*/
if (comps_used > 0)
fwrite((char *) comps, sizeof(_comp_t), comps_used, out);
fclose(out);
#endif
/*****************************************************************
*
* Generate the decomposition data.
*
*****************************************************************/
/*
* Fully expand all decompositions before generating the output file.
*/
expand_decomp();
#if HARDCODE_DATA
fprintf(out, PREF "ac_uint4 _ucdcmp_size = %ld;\n\n",
decomps_used * 2L);
fprintf(out, PREF "ac_uint4 _ucdcmp_nodes[] = {");
if (decomps_used) {
/*
* Write the list of decomp nodes.
*/
for (i = idx = 0; i < decomps_used; i++) {
fprintf(out, "\n\t0x%08lx, 0x%08lx,",
(unsigned long) decomps[i].code, (unsigned long) idx);
idx += decomps[i].used;
}
/*
* Write the sentinel index as the last decomp node.
*/
fprintf(out, "\n\t0x%08lx\n};\n\n", (unsigned long) idx);
fprintf(out, PREF "ac_uint4 _ucdcmp_decomp[] = {");
/*
* Write the decompositions themselves.
*/
k = 0;
for (i = 0; i < decomps_used; i++)
for (j=0; j<decomps[i].used; j++) {
if (k) fprintf(out, ",");
if (!(k&3)) fprintf(out,"\n\t");
else fprintf(out, " ");
k++;
fprintf(out, "0x%08lx", (unsigned long) decomps[i].decomp[j]);
}
fprintf(out, "\n};\n\n");
}
#else
/*
* Open the decomp.dat file.
*/
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "decomp.dat", opath);
if ((out = fopen(path, "wb")) == 0)
return;
hdr[1] = decomps_used;
/*
* Write the header.
*/
fwrite((char *) hdr, sizeof(ac_uint2), 2, out);
/*
* Write a temporary byte count which will be calculated as the
* decompositions are written out.
*/
bytes = 0;
fwrite((char *) &bytes, sizeof(ac_uint4), 1, out);
if (decomps_used) {
/*
* Write the list of decomp nodes.
*/
for (i = idx = 0; i < decomps_used; i++) {
fwrite((char *) &decomps[i].code, sizeof(ac_uint4), 1, out);
fwrite((char *) &idx, sizeof(ac_uint4), 1, out);
idx += decomps[i].used;
}
/*
* Write the sentinel index as the last decomp node.
*/
fwrite((char *) &idx, sizeof(ac_uint4), 1, out);
/*
* Write the decompositions themselves.
*/
for (i = 0; i < decomps_used; i++)
fwrite((char *) decomps[i].decomp, sizeof(ac_uint4),
decomps[i].used, out);
/*
* Seek back to the beginning and write the byte count.
*/
bytes = (sizeof(ac_uint4) * idx) +
(sizeof(ac_uint4) * ((hdr[1] << 1) + 1));
fseek(out, sizeof(ac_uint2) << 1, 0L);
fwrite((char *) &bytes, sizeof(ac_uint4), 1, out);
fclose(out);
}
#endif
#ifdef HARDCODE_DATA
fprintf(out, PREF "ac_uint4 _uckdcmp_size = %ld;\n\n",
kdecomps_used * 2L);
fprintf(out, PREF "ac_uint4 _uckdcmp_nodes[] = {");
if (kdecomps_used) {
/*
* Write the list of kdecomp nodes.
*/
for (i = idx = 0; i < kdecomps_used; i++) {
fprintf(out, "\n\t0x%08lx, 0x%08lx,",
(unsigned long) kdecomps[i].code, (unsigned long) idx);
idx += kdecomps[i].used;
}
/*
* Write the sentinel index as the last decomp node.
*/
fprintf(out, "\n\t0x%08lx\n};\n\n", (unsigned long) idx);
fprintf(out, PREF "ac_uint4 _uckdcmp_decomp[] = {");
/*
* Write the decompositions themselves.
*/
k = 0;
for (i = 0; i < kdecomps_used; i++)
for (j=0; j<kdecomps[i].used; j++) {
if (k) fprintf(out, ",");
if (!(k&3)) fprintf(out,"\n\t");
else fprintf(out, " ");
k++;
fprintf(out, "0x%08lx", (unsigned long) kdecomps[i].decomp[j]);
}
fprintf(out, "\n};\n\n");
}
#else
/*
* Open the kdecomp.dat file.
*/
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "kdecomp.dat", opath);
if ((out = fopen(path, "wb")) == 0)
return;
hdr[1] = kdecomps_used;
/*
* Write the header.
*/
fwrite((char *) hdr, sizeof(ac_uint2), 2, out);
/*
* Write a temporary byte count which will be calculated as the
* decompositions are written out.
*/
bytes = 0;
fwrite((char *) &bytes, sizeof(ac_uint4), 1, out);
if (kdecomps_used) {
/*
* Write the list of kdecomp nodes.
*/
for (i = idx = 0; i < kdecomps_used; i++) {
fwrite((char *) &kdecomps[i].code, sizeof(ac_uint4), 1, out);
fwrite((char *) &idx, sizeof(ac_uint4), 1, out);
idx += kdecomps[i].used;
}
/*
* Write the sentinel index as the last decomp node.
*/
fwrite((char *) &idx, sizeof(ac_uint4), 1, out);
/*
* Write the decompositions themselves.
*/
for (i = 0; i < kdecomps_used; i++)
fwrite((char *) kdecomps[i].decomp, sizeof(ac_uint4),
kdecomps[i].used, out);
/*
* Seek back to the beginning and write the byte count.
*/
bytes = (sizeof(ac_uint4) * idx) +
(sizeof(ac_uint4) * ((hdr[1] << 1) + 1));
fseek(out, sizeof(ac_uint2) << 1, 0L);
fwrite((char *) &bytes, sizeof(ac_uint4), 1, out);
fclose(out);
}
#endif
/*****************************************************************
*
* Generate the combining class data.
*
*****************************************************************/
#ifdef HARDCODE_DATA
fprintf(out, PREF "ac_uint4 _uccmcl_size = %ld;\n\n", (long) ccl_used);
fprintf(out, PREF "ac_uint4 _uccmcl_nodes[] = {");
if (ccl_used > 0) {
/*
* Write the combining class ranges out.
*/
for (i = 0; i<ccl_used; i++) {
if (i) fprintf(out, ",");
if (!(i&3)) fprintf(out, "\n\t");
else fprintf(out, " ");
fprintf(out, "0x%08lx", (unsigned long) ccl[i]);
}
} else {
fprintf(out, "\t0");
}
fprintf(out, "\n};\n\n");
#else
/*
* Open the cmbcl.dat file.
*/
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "cmbcl.dat", opath);
if ((out = fopen(path, "wb")) == 0)
return;
/*
* Set the number of ranges used. Each range has a combining class which
* means each entry is a 3-tuple.
*/
hdr[1] = ccl_used / 3;
/*
* Write the header.
*/
fwrite((char *) hdr, sizeof(ac_uint2), 2, out);
/*
* Write out the byte count to maintain header size.
*/
bytes = ccl_used * sizeof(ac_uint4);
fwrite((char *) &bytes, sizeof(ac_uint4), 1, out);
if (ccl_used > 0)
/*
* Write the combining class ranges out.
*/
fwrite((char *) ccl, sizeof(ac_uint4), ccl_used, out);
fclose(out);
#endif
/*****************************************************************
*
* Generate the number data.
*
*****************************************************************/
#if HARDCODE_DATA
fprintf(out, PREF "ac_uint4 _ucnum_size = %lu;\n\n",
(unsigned long)ncodes_used<<1);
fprintf(out, PREF "ac_uint4 _ucnum_nodes[] = {");
/*
* Now, if number mappings exist, write them out.
*/
if (ncodes_used > 0) {
for (i = 0; i<ncodes_used; i++) {
if (i) fprintf(out, ",");
if (!(i&1)) fprintf(out, "\n\t");
else fprintf(out, " ");
fprintf(out, "0x%08lx, 0x%08lx",
(unsigned long) ncodes[i].code, (unsigned long) ncodes[i].idx);
}
fprintf(out, "\n};\n\n");
fprintf(out, PREF "short _ucnum_vals[] = {");
for (i = 0; i<nums_used; i++) {
if (i) fprintf(out, ",");
if (!(i&3)) fprintf(out, "\n\t");
else fprintf(out, " ");
if (nums[i].numerator < 0) {
fprintf(out, "%6d, 0x%04x",
nums[i].numerator, nums[i].denominator);
} else {
fprintf(out, "0x%04x, 0x%04x",
nums[i].numerator, nums[i].denominator);
}
}
fprintf(out, "\n};\n\n");
}
#else
/*
* Open the num.dat file.
*/
snprintf(path, sizeof path, "%s" LDAP_DIRSEP "num.dat", opath);
if ((out = fopen(path, "wb")) == 0)
return;
/*
* The count part of the header will be the total number of codes that
* have numbers.
*/
hdr[1] = (ac_uint2) (ncodes_used << 1);
bytes = (ncodes_used * sizeof(_codeidx_t)) + (nums_used * sizeof(_num_t));
/*
* Write the header.
*/
fwrite((char *) hdr, sizeof(ac_uint2), 2, out);
/*
* Write out the byte count to maintain header size.
*/
fwrite((char *) &bytes, sizeof(ac_uint4), 1, out);
/*
* Now, if number mappings exist, write them out.
*/
if (ncodes_used > 0) {
fwrite((char *) ncodes, sizeof(_codeidx_t), ncodes_used, out);
fwrite((char *) nums, sizeof(_num_t), nums_used, out);
}
#endif
#endif
fclose(out);
}
static void
usage(char *prog)
{
fprintf(stderr,
"Usage: %s [-o output-directory|-x composition-exclusions]", prog);
fprintf(stderr, " datafile1 datafile2 ...\n\n");
fprintf(stderr,
"-o output-directory\n\t\tWrite the output files to a different");
fprintf(stderr, " directory (default: .).\n");
fprintf(stderr,
"-x composition-exclusion\n\t\tFile of composition codes");
fprintf(stderr, " that should be excluded.\n");
exit(1);
}
int
main(int argc, char *argv[])
{
FILE *in;
char *prog, *opath;
prog = argv[1];
opath = 0;
in = stdin;
argc--;
argv++;
while (argc > 0) {
if (argv[0][0] == '-') {
switch (argv[0][1]) {
case 'o':
argc--;
argv++;
opath = argv[0];
break;
case 'x':
argc--;
argv++;
if ((in = fopen(argv[0], "r")) == 0)
fprintf(stderr,
"%s: unable to open composition exclusion file %s\n",
prog, argv[0]);
else {
read_compexdata(in);
fclose(in);
in = 0;
}
break;
default:
usage(prog);
}
} else {
if (in != stdin && in != NULL)
fclose(in);
if ((in = fopen(argv[0], "r")) == 0)
fprintf(stderr, "%s: unable to open ctype file %s\n",
prog, argv[0]);
else {
read_cdata(in);
fclose(in);
in = 0;
}
}
argc--;
argv++;
}
if (opath == 0)
opath = ".";
write_cdata(opath);
return 0;
}