root/ext/standard/crypt_freesec.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ascii_to_bin
  2. ascii_is_unsafe
  3. _crypt_extended_init
  4. des_init_local
  5. setup_salt
  6. des_setkey
  7. do_des
  8. des_cipher
  9. _crypt_extended_r
  10. _crypt_extended
  11. main

/*
  $Id$ 
*/
/*
 * This version is derived from the original implementation of FreeSec
 * (release 1.1) by David Burren.  I've reviewed the changes made in
 * OpenBSD (as of 2.7) and modified the original code in a similar way
 * where applicable.  I've also made it reentrant and made a number of
 * other changes.
 * - Solar Designer <solar at openwall.com>
 */

/*
 * FreeSec: libcrypt for NetBSD
 *
 * Copyright (c) 1994 David Burren
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the author nor the names of other contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *      $Owl: Owl/packages/glibc/crypt_freesec.c,v 1.4 2005/11/16 13:08:32 solar Exp $
 *      $Id$
 *
 * This is an original implementation of the DES and the crypt(3) interfaces
 * by David Burren <davidb at werj.com.au>.
 *
 * An excellent reference on the underlying algorithm (and related
 * algorithms) is:
 *
 *      B. Schneier, Applied Cryptography: protocols, algorithms,
 *      and source code in C, John Wiley & Sons, 1994.
 *
 * Note that in that book's description of DES the lookups for the initial,
 * pbox, and final permutations are inverted (this has been brought to the
 * attention of the author).  A list of errata for this book has been
 * posted to the sci.crypt newsgroup by the author and is available for FTP.
 *
 * ARCHITECTURE ASSUMPTIONS:
 *      This code used to have some nasty ones, but these have been removed
 *      by now.  The code requires a 32-bit integer type, though.
 */

#include <sys/types.h>
#include <string.h>

#ifdef TEST
#include <stdio.h>
#endif

#include "crypt_freesec.h"

#define _PASSWORD_EFMT1 '_'

static u_char   IP[64] = {
        58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12,  4,
        62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16,  8,
        57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11,  3,
        61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15,  7
};

static u_char   key_perm[56] = {
        57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
        10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
        63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
        14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
};

static u_char   key_shifts[16] = {
        1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};

static u_char   comp_perm[48] = {
        14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
        23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
        41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
        44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};

/*
 *      No E box is used, as it's replaced by some ANDs, shifts, and ORs.
 */

static u_char   sbox[8][64] = {
        {
                14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
                 0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
                 4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
                15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13
        },
        {
                15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
                 3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
                 0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
                13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9
        },
        {
                10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
                13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
                13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
                 1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12
        },
        {
                 7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
                13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
                10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
                 3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14
        },
        {
                 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
                14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
                 4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
                11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3
        },
        {
                12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
                10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
                 9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
                 4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13
        },
        {
                 4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
                13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
                 1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
                 6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12
        },
        {
                13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
                 1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
                 7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
                 2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11
        }
};

static u_char   pbox[32] = {
        16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,
         2,  8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25
};

static uint32_t bits32[32] =
{
        0x80000000, 0x40000000, 0x20000000, 0x10000000,
        0x08000000, 0x04000000, 0x02000000, 0x01000000,
        0x00800000, 0x00400000, 0x00200000, 0x00100000,
        0x00080000, 0x00040000, 0x00020000, 0x00010000,
        0x00008000, 0x00004000, 0x00002000, 0x00001000,
        0x00000800, 0x00000400, 0x00000200, 0x00000100,
        0x00000080, 0x00000040, 0x00000020, 0x00000010,
        0x00000008, 0x00000004, 0x00000002, 0x00000001
};

static u_char   bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };

static unsigned char    ascii64[] =
         "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/*        0000000000111111111122222222223333333333444444444455555555556666 */
/*        0123456789012345678901234567890123456789012345678901234567890123 */

static u_char m_sbox[4][4096];
static uint32_t psbox[4][256];
static uint32_t ip_maskl[8][256], ip_maskr[8][256];
static uint32_t fp_maskl[8][256], fp_maskr[8][256];
static uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
static uint32_t comp_maskl[8][128], comp_maskr[8][128];

static inline int
ascii_to_bin(char ch)
{
        signed char sch = ch;
        int retval;

        retval = sch - '.';
        if (sch >= 'A') {
                retval = sch - ('A' - 12);
                if (sch >= 'a')
                        retval = sch - ('a' - 38);
        }
        retval &= 0x3f;

        return(retval);
}

/*
 * When we choose to "support" invalid salts, nevertheless disallow those
 * containing characters that would violate the passwd file format.
 */
static inline int
ascii_is_unsafe(char ch)
{
        return !ch || ch == '\n' || ch == ':';
}

void
_crypt_extended_init(void)
{
        int i, j, b, k, inbit, obit;
        uint32_t *p, *il, *ir, *fl, *fr;
        uint32_t *bits28, *bits24;
        u_char inv_key_perm[64];
        u_char u_key_perm[56];
        u_char inv_comp_perm[56];
        u_char init_perm[64], final_perm[64];
        u_char u_sbox[8][64];
        u_char un_pbox[32];

        bits24 = (bits28 = bits32 + 4) + 4;

        /*
         * Invert the S-boxes, reordering the input bits.
         */
        for (i = 0; i < 8; i++)
                for (j = 0; j < 64; j++) {
                        b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
                        u_sbox[i][j] = sbox[i][b];
                }

        /*
         * Convert the inverted S-boxes into 4 arrays of 8 bits.
         * Each will handle 12 bits of the S-box input.
         */
        for (b = 0; b < 4; b++)
                for (i = 0; i < 64; i++)
                        for (j = 0; j < 64; j++)
                                m_sbox[b][(i << 6) | j] =
                                        (u_sbox[(b << 1)][i] << 4) |
                                        u_sbox[(b << 1) + 1][j];

        /*
         * Set up the initial & final permutations into a useful form, and
         * initialise the inverted key permutation.
         */
        for (i = 0; i < 64; i++) {
                init_perm[final_perm[i] = IP[i] - 1] = i;
                inv_key_perm[i] = 255;
        }

        /*
         * Invert the key permutation and initialise the inverted key
         * compression permutation.
         */
        for (i = 0; i < 56; i++) {
                u_key_perm[i] = key_perm[i] - 1;
                inv_key_perm[key_perm[i] - 1] = i;
                inv_comp_perm[i] = 255;
        }

        /*
         * Invert the key compression permutation.
         */
        for (i = 0; i < 48; i++) {
                inv_comp_perm[comp_perm[i] - 1] = i;
        }

        /*
         * Set up the OR-mask arrays for the initial and final permutations,
         * and for the key initial and compression permutations.
         */
        for (k = 0; k < 8; k++) {
                for (i = 0; i < 256; i++) {
                        *(il = &ip_maskl[k][i]) = 0;
                        *(ir = &ip_maskr[k][i]) = 0;
                        *(fl = &fp_maskl[k][i]) = 0;
                        *(fr = &fp_maskr[k][i]) = 0;
                        for (j = 0; j < 8; j++) {
                                inbit = 8 * k + j;
                                if (i & bits8[j]) {
                                        if ((obit = init_perm[inbit]) < 32)
                                                *il |= bits32[obit];
                                        else
                                                *ir |= bits32[obit-32];
                                        if ((obit = final_perm[inbit]) < 32)
                                                *fl |= bits32[obit];
                                        else
                                                *fr |= bits32[obit - 32];
                                }
                        }
                }
                for (i = 0; i < 128; i++) {
                        *(il = &key_perm_maskl[k][i]) = 0;
                        *(ir = &key_perm_maskr[k][i]) = 0;
                        for (j = 0; j < 7; j++) {
                                inbit = 8 * k + j;
                                if (i & bits8[j + 1]) {
                                        if ((obit = inv_key_perm[inbit]) == 255)
                                                continue;
                                        if (obit < 28)
                                                *il |= bits28[obit];
                                        else
                                                *ir |= bits28[obit - 28];
                                }
                        }
                        *(il = &comp_maskl[k][i]) = 0;
                        *(ir = &comp_maskr[k][i]) = 0;
                        for (j = 0; j < 7; j++) {
                                inbit = 7 * k + j;
                                if (i & bits8[j + 1]) {
                                        if ((obit=inv_comp_perm[inbit]) == 255)
                                                continue;
                                        if (obit < 24)
                                                *il |= bits24[obit];
                                        else
                                                *ir |= bits24[obit - 24];
                                }
                        }
                }
        }

        /*
         * Invert the P-box permutation, and convert into OR-masks for
         * handling the output of the S-box arrays setup above.
         */
        for (i = 0; i < 32; i++)
                un_pbox[pbox[i] - 1] = i;

        for (b = 0; b < 4; b++)
                for (i = 0; i < 256; i++) {
                        *(p = &psbox[b][i]) = 0;
                        for (j = 0; j < 8; j++) {
                                if (i & bits8[j])
                                        *p |= bits32[un_pbox[8 * b + j]];
                        }
                }
}

static void
des_init_local(struct php_crypt_extended_data *data)
{
        data->old_rawkey0 = data->old_rawkey1 = 0;
        data->saltbits = 0;
        data->old_salt = 0;

        data->initialized = 1;
}

static void
setup_salt(uint32_t salt, struct php_crypt_extended_data *data)
{
        uint32_t        obit, saltbit, saltbits;
        int     i;

        if (salt == data->old_salt)
                return;
        data->old_salt = salt;

        saltbits = 0;
        saltbit = 1;
        obit = 0x800000;
        for (i = 0; i < 24; i++) {
                if (salt & saltbit)
                        saltbits |= obit;
                saltbit <<= 1;
                obit >>= 1;
        }
        data->saltbits = saltbits;
}

static int
des_setkey(const char *key, struct php_crypt_extended_data *data)
{
        uint32_t        k0, k1, rawkey0, rawkey1;
        int     shifts, round;

        rawkey0 =
                (uint32_t)(u_char)key[3] |
                ((uint32_t)(u_char)key[2] << 8) |
                ((uint32_t)(u_char)key[1] << 16) |
                ((uint32_t)(u_char)key[0] << 24);
        rawkey1 =
                (uint32_t)(u_char)key[7] |
                ((uint32_t)(u_char)key[6] << 8) |
                ((uint32_t)(u_char)key[5] << 16) |
                ((uint32_t)(u_char)key[4] << 24);

        if ((rawkey0 | rawkey1)
            && rawkey0 == data->old_rawkey0
            && rawkey1 == data->old_rawkey1) {
                /*
                 * Already setup for this key.
                 * This optimisation fails on a zero key (which is weak and
                 * has bad parity anyway) in order to simplify the starting
                 * conditions.
                 */
                return(0);
        }
        data->old_rawkey0 = rawkey0;
        data->old_rawkey1 = rawkey1;

        /*
         *      Do key permutation and split into two 28-bit subkeys.
         */
        k0 = key_perm_maskl[0][rawkey0 >> 25]
           | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
           | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
           | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
           | key_perm_maskl[4][rawkey1 >> 25]
           | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
           | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
           | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
        k1 = key_perm_maskr[0][rawkey0 >> 25]
           | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
           | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
           | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
           | key_perm_maskr[4][rawkey1 >> 25]
           | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
           | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
           | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
        /*
         *      Rotate subkeys and do compression permutation.
         */
        shifts = 0;
        for (round = 0; round < 16; round++) {
                uint32_t        t0, t1;

                shifts += key_shifts[round];

                t0 = (k0 << shifts) | (k0 >> (28 - shifts));
                t1 = (k1 << shifts) | (k1 >> (28 - shifts));

                data->de_keysl[15 - round] =
                data->en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
                                | comp_maskl[1][(t0 >> 14) & 0x7f]
                                | comp_maskl[2][(t0 >> 7) & 0x7f]
                                | comp_maskl[3][t0 & 0x7f]
                                | comp_maskl[4][(t1 >> 21) & 0x7f]
                                | comp_maskl[5][(t1 >> 14) & 0x7f]
                                | comp_maskl[6][(t1 >> 7) & 0x7f]
                                | comp_maskl[7][t1 & 0x7f];

                data->de_keysr[15 - round] =
                data->en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
                                | comp_maskr[1][(t0 >> 14) & 0x7f]
                                | comp_maskr[2][(t0 >> 7) & 0x7f]
                                | comp_maskr[3][t0 & 0x7f]
                                | comp_maskr[4][(t1 >> 21) & 0x7f]
                                | comp_maskr[5][(t1 >> 14) & 0x7f]
                                | comp_maskr[6][(t1 >> 7) & 0x7f]
                                | comp_maskr[7][t1 & 0x7f];
        }
        return(0);
}

static int
do_des(uint32_t l_in, uint32_t r_in, uint32_t *l_out, uint32_t *r_out,
        int count, struct php_crypt_extended_data *data)
{
        /*
         *      l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
         */
        uint32_t        l, r, *kl, *kr, *kl1, *kr1;
        uint32_t        f, r48l, r48r, saltbits;
        int     round;

        if (count == 0) {
                return(1);
        } else if (count > 0) {
                /*
                 * Encrypting
                 */
                kl1 = data->en_keysl;
                kr1 = data->en_keysr;
        } else {
                /*
                 * Decrypting
                 */
                count = -count;
                kl1 = data->de_keysl;
                kr1 = data->de_keysr;
        }

        /*
         *      Do initial permutation (IP).
         */
        l = ip_maskl[0][l_in >> 24]
          | ip_maskl[1][(l_in >> 16) & 0xff]
          | ip_maskl[2][(l_in >> 8) & 0xff]
          | ip_maskl[3][l_in & 0xff]
          | ip_maskl[4][r_in >> 24]
          | ip_maskl[5][(r_in >> 16) & 0xff]
          | ip_maskl[6][(r_in >> 8) & 0xff]
          | ip_maskl[7][r_in & 0xff];
        r = ip_maskr[0][l_in >> 24]
          | ip_maskr[1][(l_in >> 16) & 0xff]
          | ip_maskr[2][(l_in >> 8) & 0xff]
          | ip_maskr[3][l_in & 0xff]
          | ip_maskr[4][r_in >> 24]
          | ip_maskr[5][(r_in >> 16) & 0xff]
          | ip_maskr[6][(r_in >> 8) & 0xff]
          | ip_maskr[7][r_in & 0xff];

        saltbits = data->saltbits;
        while (count--) {
                /*
                 * Do each round.
                 */
                kl = kl1;
                kr = kr1;
                round = 16;
                while (round--) {
                        /*
                         * Expand R to 48 bits (simulate the E-box).
                         */
                        r48l    = ((r & 0x00000001) << 23)
                                | ((r & 0xf8000000) >> 9)
                                | ((r & 0x1f800000) >> 11)
                                | ((r & 0x01f80000) >> 13)
                                | ((r & 0x001f8000) >> 15);

                        r48r    = ((r & 0x0001f800) << 7)
                                | ((r & 0x00001f80) << 5)
                                | ((r & 0x000001f8) << 3)
                                | ((r & 0x0000001f) << 1)
                                | ((r & 0x80000000) >> 31);
                        /*
                         * Do salting for crypt() and friends, and
                         * XOR with the permuted key.
                         */
                        f = (r48l ^ r48r) & saltbits;
                        r48l ^= f ^ *kl++;
                        r48r ^= f ^ *kr++;
                        /*
                         * Do sbox lookups (which shrink it back to 32 bits)
                         * and do the pbox permutation at the same time.
                         */
                        f = psbox[0][m_sbox[0][r48l >> 12]]
                          | psbox[1][m_sbox[1][r48l & 0xfff]]
                          | psbox[2][m_sbox[2][r48r >> 12]]
                          | psbox[3][m_sbox[3][r48r & 0xfff]];
                        /*
                         * Now that we've permuted things, complete f().
                         */
                        f ^= l;
                        l = r;
                        r = f;
                }
                r = l;
                l = f;
        }
        /*
         * Do final permutation (inverse of IP).
         */
        *l_out  = fp_maskl[0][l >> 24]
                | fp_maskl[1][(l >> 16) & 0xff]
                | fp_maskl[2][(l >> 8) & 0xff]
                | fp_maskl[3][l & 0xff]
                | fp_maskl[4][r >> 24]
                | fp_maskl[5][(r >> 16) & 0xff]
                | fp_maskl[6][(r >> 8) & 0xff]
                | fp_maskl[7][r & 0xff];
        *r_out  = fp_maskr[0][l >> 24]
                | fp_maskr[1][(l >> 16) & 0xff]
                | fp_maskr[2][(l >> 8) & 0xff]
                | fp_maskr[3][l & 0xff]
                | fp_maskr[4][r >> 24]
                | fp_maskr[5][(r >> 16) & 0xff]
                | fp_maskr[6][(r >> 8) & 0xff]
                | fp_maskr[7][r & 0xff];
        return(0);
}

static int
des_cipher(const char *in, char *out, uint32_t salt, int count,
        struct php_crypt_extended_data *data)
{
        uint32_t        l_out, r_out, rawl, rawr;
        int     retval;

        setup_salt(salt, data);

        rawl =
                (uint32_t)(u_char)in[3] |
                ((uint32_t)(u_char)in[2] << 8) |
                ((uint32_t)(u_char)in[1] << 16) |
                ((uint32_t)(u_char)in[0] << 24);
        rawr =
                (uint32_t)(u_char)in[7] |
                ((uint32_t)(u_char)in[6] << 8) |
                ((uint32_t)(u_char)in[5] << 16) |
                ((uint32_t)(u_char)in[4] << 24);

        retval = do_des(rawl, rawr, &l_out, &r_out, count, data);

        out[0] = l_out >> 24;
        out[1] = l_out >> 16;
        out[2] = l_out >> 8;
        out[3] = l_out;
        out[4] = r_out >> 24;
        out[5] = r_out >> 16;
        out[6] = r_out >> 8;
        out[7] = r_out;

        return(retval);
}

char *
_crypt_extended_r(const char *key, const char *setting,
        struct php_crypt_extended_data *data)
{
        int             i;
        uint32_t        count, salt, l, r0, r1, keybuf[2];
        u_char          *p, *q;

        if (!data->initialized)
                des_init_local(data);

        /*
         * Copy the key, shifting each character up by one bit
         * and padding with zeros.
         */
        q = (u_char *) keybuf;
        while (q - (u_char *) keybuf < sizeof(keybuf)) {
                *q++ = *key << 1;
                if (*key)
                        key++;
        }
        if (des_setkey((u_char *) keybuf, data))
                return(NULL);

        if (*setting == _PASSWORD_EFMT1) {
                /*
                 * "new"-style:
                 *      setting - underscore, 4 chars of count, 4 chars of salt
                 *      key - unlimited characters
                 */
                for (i = 1, count = 0; i < 5; i++) {
                        int value = ascii_to_bin(setting[i]);
                        if (ascii64[value] != setting[i])
                                return(NULL);
                        count |= value << (i - 1) * 6;
                }
                if (!count)
                        return(NULL);

                for (i = 5, salt = 0; i < 9; i++) {
                        int value = ascii_to_bin(setting[i]);
                        if (ascii64[value] != setting[i])
                                return(NULL);
                        salt |= value << (i - 5) * 6;
                }

                while (*key) {
                        /*
                         * Encrypt the key with itself.
                         */
                        if (des_cipher((u_char *) keybuf, (u_char *) keybuf,
                            0, 1, data))
                                return(NULL);
                        /*
                         * And XOR with the next 8 characters of the key.
                         */
                        q = (u_char *) keybuf;
                        while (q - (u_char *) keybuf < sizeof(keybuf) && *key)
                                *q++ ^= *key++ << 1;

                        if (des_setkey((u_char *) keybuf, data))
                                return(NULL);
                }
                memcpy(data->output, setting, 9);
                data->output[9] = '\0';
                p = (u_char *) data->output + 9;
        } else {
                /*
                 * "old"-style:
                 *      setting - 2 chars of salt
                 *      key - up to 8 characters
                 */
                count = 25;

                if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
                        return(NULL);

                salt = (ascii_to_bin(setting[1]) << 6)
                     |  ascii_to_bin(setting[0]);

                data->output[0] = setting[0];
                data->output[1] = setting[1];
                p = (u_char *) data->output + 2;
        }
        setup_salt(salt, data);
        /*
         * Do it.
         */
        if (do_des(0, 0, &r0, &r1, count, data))
                return(NULL);
        /*
         * Now encode the result...
         */
        l = (r0 >> 8);
        *p++ = ascii64[(l >> 18) & 0x3f];
        *p++ = ascii64[(l >> 12) & 0x3f];
        *p++ = ascii64[(l >> 6) & 0x3f];
        *p++ = ascii64[l & 0x3f];

        l = (r0 << 16) | ((r1 >> 16) & 0xffff);
        *p++ = ascii64[(l >> 18) & 0x3f];
        *p++ = ascii64[(l >> 12) & 0x3f];
        *p++ = ascii64[(l >> 6) & 0x3f];
        *p++ = ascii64[l & 0x3f];

        l = r1 << 2;
        *p++ = ascii64[(l >> 12) & 0x3f];
        *p++ = ascii64[(l >> 6) & 0x3f];
        *p++ = ascii64[l & 0x3f];
        *p = 0;

        return(data->output);
}

#ifdef TEST
static char *
_crypt_extended(const char *key, const char *setting)
{
        static int initialized = 0;
        static struct php_crypt_extended_data data;

        if (!initialized) {
                _crypt_extended_init();
                initialized = 1;
                data.initialized = 0;
        }
        return _crypt_extended_r(key, setting, &data);
}

#define crypt _crypt_extended

static struct {
        char *hash;
        char *pw;
} tests[] = {
/* "new"-style */
        {"_J9..CCCCXBrJUJV154M", "U*U*U*U*"},
        {"_J9..CCCCXUhOBTXzaiE", "U*U***U"},
        {"_J9..CCCC4gQ.mB/PffM", "U*U***U*"},
        {"_J9..XXXXvlzQGqpPPdk", "*U*U*U*U"},
        {"_J9..XXXXsqM/YSSP..Y", "*U*U*U*U*"},
        {"_J9..XXXXVL7qJCnku0I", "*U*U*U*U*U*U*U*U"},
        {"_J9..XXXXAj8cFbP5scI", "*U*U*U*U*U*U*U*U*"},
        {"_J9..SDizh.vll5VED9g", "ab1234567"},
        {"_J9..SDizRjWQ/zePPHc", "cr1234567"},
        {"_J9..SDizxmRI1GjnQuE", "zxyDPWgydbQjgq"},
        {"_K9..SaltNrQgIYUAeoY", "726 even"},
        {"_J9..SDSD5YGyRCr4W4c", ""},
/* "old"-style, valid salts */
        {"CCNf8Sbh3HDfQ", "U*U*U*U*"},
        {"CCX.K.MFy4Ois", "U*U***U"},
        {"CC4rMpbg9AMZ.", "U*U***U*"},
        {"XXxzOu6maQKqQ", "*U*U*U*U"},
        {"SDbsugeBiC58A", ""},
        {"./xZjzHv5vzVE", "password"},
        {"0A2hXM1rXbYgo", "password"},
        {"A9RXdR23Y.cY6", "password"},
        {"ZziFATVXHo2.6", "password"},
        {"zZDDIZ0NOlPzw", "password"},
/* "old"-style, "reasonable" invalid salts, UFC-crypt behavior expected */
        {"\001\002wyd0KZo65Jo", "password"},
        {"a_C10Dk/ExaG.", "password"},
        {"~\377.5OTsRVjwLo", "password"},
/* The below are erroneous inputs, so NULL return is expected/required */
        {"", ""}, /* no salt */
        {" ", ""}, /* setting string is too short */
        {"a:", ""}, /* unsafe character */
        {"\na", ""}, /* unsafe character */
        {"_/......", ""}, /* setting string is too short for its type */
        {"_........", ""}, /* zero iteration count */
        {"_/!......", ""}, /* invalid character in count */
        {"_/......!", ""}, /* invalid character in salt */
        {NULL}
};

int main(void)
{
        int i;

        for (i = 0; tests[i].hash; i++) {
                char *hash = crypt(tests[i].pw, tests[i].hash);
                if (!hash && strlen(tests[i].hash) < 13)
                        continue; /* expected failure */
                if (!strcmp(hash, tests[i].hash))
                        continue; /* expected success */
                puts("FAILED");
                return 1;
        }

        puts("PASSED");

        return 0;
}
#endif

/* [<][>][^][v][top][bottom][index][help] */