root/ext/pcre/pcrelib/sljit/sljitNativePPC_64.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. load_immediate
  2. emit_single_op
  3. emit_const
  4. sljit_set_jump_addr
  5. sljit_set_const

/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* ppc 64-bit arch dependent functions. */

#if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
#define ASM_SLJIT_CLZ(src, dst) \
        __asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) )
#elif defined(__xlc__)
#error "Please enable GCC syntax for inline assembly statements"
#else
#error "Must implement count leading zeroes"
#endif

#define RLDI(dst, src, sh, mb, type) \
        (HI(30) | S(src) | A(dst) | ((type) << 2) | (((sh) & 0x1f) << 11) | (((sh) & 0x20) >> 4) | (((mb) & 0x1f) << 6) | ((mb) & 0x20))

#define PUSH_RLDICR(reg, shift) \
        push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1))

static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si reg, sljit_sw imm)
{
        sljit_uw tmp;
        sljit_uw shift;
        sljit_uw tmp2;
        sljit_uw shift2;

        if (imm <= SIMM_MAX && imm >= SIMM_MIN)
                return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));

        if (!(imm & ~0xffff))
                return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));

        if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
                FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
                return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
        }

        /* Count leading zeroes. */
        tmp = (imm >= 0) ? imm : ~imm;
        ASM_SLJIT_CLZ(tmp, shift);
        SLJIT_ASSERT(shift > 0);
        shift--;
        tmp = (imm << shift);

        if ((tmp & ~0xffff000000000000ul) == 0) {
                FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
                shift += 15;
                return PUSH_RLDICR(reg, shift);
        }

        if ((tmp & ~0xffffffff00000000ul) == 0) {
                FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(tmp >> 48)));
                FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32)));
                shift += 31;
                return PUSH_RLDICR(reg, shift);
        }

        /* Cut out the 16 bit from immediate. */
        shift += 15;
        tmp2 = imm & ((1ul << (63 - shift)) - 1);

        if (tmp2 <= 0xffff) {
                FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
                FAIL_IF(PUSH_RLDICR(reg, shift));
                return push_inst(compiler, ORI | S(reg) | A(reg) | tmp2);
        }

        if (tmp2 <= 0xffffffff) {
                FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
                FAIL_IF(PUSH_RLDICR(reg, shift));
                FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (tmp2 >> 16)));
                return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS;
        }

        ASM_SLJIT_CLZ(tmp2, shift2);
        tmp2 <<= shift2;

        if ((tmp2 & ~0xffff000000000000ul) == 0) {
                FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
                shift2 += 15;
                shift += (63 - shift2);
                FAIL_IF(PUSH_RLDICR(reg, shift));
                FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (tmp2 >> 48)));
                return PUSH_RLDICR(reg, shift2);
        }

        /* The general version. */
        FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 48)));
        FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32)));
        FAIL_IF(PUSH_RLDICR(reg, 31));
        FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16)));
        return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm));
}

/* Simplified mnemonics: clrldi. */
#define INS_CLEAR_LEFT(dst, src, from) \
        (RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5))

/* Sign extension for integer operations. */
#define UN_EXTS() \
        if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \
                FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
                src2 = TMP_REG2; \
        }

#define BIN_EXTS() \
        if (flags & ALT_SIGN_EXT) { \
                if (flags & REG1_SOURCE) { \
                        FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
                        src1 = TMP_REG1; \
                } \
                if (flags & REG2_SOURCE) { \
                        FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
                        src2 = TMP_REG2; \
                } \
        }

#define BIN_IMM_EXTS() \
        if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \
                FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
                src1 = TMP_REG1; \
        }

static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
        sljit_si dst, sljit_si src1, sljit_si src2)
{
        switch (op) {
        case SLJIT_MOV:
        case SLJIT_MOV_P:
                SLJIT_ASSERT(src1 == TMP_REG1);
                if (dst != src2)
                        return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
                return SLJIT_SUCCESS;

        case SLJIT_MOV_UI:
        case SLJIT_MOV_SI:
                SLJIT_ASSERT(src1 == TMP_REG1);
                if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
                        if (op == SLJIT_MOV_SI)
                                return push_inst(compiler, EXTSW | S(src2) | A(dst));
                        return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0));
                }
                else {
                        SLJIT_ASSERT(dst == src2);
                }
                return SLJIT_SUCCESS;

        case SLJIT_MOV_UB:
        case SLJIT_MOV_SB:
                SLJIT_ASSERT(src1 == TMP_REG1);
                if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
                        if (op == SLJIT_MOV_SB)
                                return push_inst(compiler, EXTSB | S(src2) | A(dst));
                        return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
                }
                else if ((flags & REG_DEST) && op == SLJIT_MOV_SB)
                        return push_inst(compiler, EXTSB | S(src2) | A(dst));
                else {
                        SLJIT_ASSERT(dst == src2);
                }
                return SLJIT_SUCCESS;

        case SLJIT_MOV_UH:
        case SLJIT_MOV_SH:
                SLJIT_ASSERT(src1 == TMP_REG1);
                if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
                        if (op == SLJIT_MOV_SH)
                                return push_inst(compiler, EXTSH | S(src2) | A(dst));
                        return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
                }
                else {
                        SLJIT_ASSERT(dst == src2);
                }
                return SLJIT_SUCCESS;

        case SLJIT_NOT:
                SLJIT_ASSERT(src1 == TMP_REG1);
                UN_EXTS();
                return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));

        case SLJIT_NEG:
                SLJIT_ASSERT(src1 == TMP_REG1);
                UN_EXTS();
                return push_inst(compiler, NEG | OERC(flags) | D(dst) | A(src2));

        case SLJIT_CLZ:
                SLJIT_ASSERT(src1 == TMP_REG1);
                if (flags & ALT_FORM1)
                        return push_inst(compiler, CNTLZW | RC(flags) | S(src2) | A(dst));
                return push_inst(compiler, CNTLZD | RC(flags) | S(src2) | A(dst));

        case SLJIT_ADD:
                if (flags & ALT_FORM1) {
                        /* Flags does not set: BIN_IMM_EXTS unnecessary. */
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm);
                }
                if (flags & ALT_FORM2) {
                        /* Flags does not set: BIN_IMM_EXTS unnecessary. */
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
                }
                if (flags & ALT_FORM3) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        BIN_IMM_EXTS();
                        return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
                }
                if (flags & ALT_FORM4) {
                        /* Flags does not set: BIN_IMM_EXTS unnecessary. */
                        FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff)));
                        return push_inst(compiler, ADDIS | D(dst) | A(dst) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1)));
                }
                if (!(flags & ALT_SET_FLAGS))
                        return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
                BIN_EXTS();
                return push_inst(compiler, ADDC | OERC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));

        case SLJIT_ADDC:
                if (flags & ALT_FORM1) {
                        FAIL_IF(push_inst(compiler, MFXER | D(0)));
                        FAIL_IF(push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2)));
                        return push_inst(compiler, MTXER | S(0));
                }
                BIN_EXTS();
                return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));

        case SLJIT_SUB:
                if (flags & ALT_FORM1) {
                        /* Flags does not set: BIN_IMM_EXTS unnecessary. */
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
                }
                if (flags & (ALT_FORM2 | ALT_FORM3)) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        if (flags & ALT_FORM2)
                                FAIL_IF(push_inst(compiler, CMPI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
                        if (flags & ALT_FORM3)
                                return push_inst(compiler, CMPLI | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm);
                        return SLJIT_SUCCESS;
                }
                if (flags & (ALT_FORM4 | ALT_FORM5)) {
                        if (flags & ALT_FORM4)
                                FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
                        if (flags & ALT_FORM5)
                                return push_inst(compiler, CMP | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2));
                        return SLJIT_SUCCESS;
                }
                if (!(flags & ALT_SET_FLAGS))
                        return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
                BIN_EXTS();
                if (flags & ALT_FORM6)
                        FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
                return push_inst(compiler, SUBFC | OERC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));

        case SLJIT_SUBC:
                if (flags & ALT_FORM1) {
                        FAIL_IF(push_inst(compiler, MFXER | D(0)));
                        FAIL_IF(push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1)));
                        return push_inst(compiler, MTXER | S(0));
                }
                BIN_EXTS();
                return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));

        case SLJIT_MUL:
                if (flags & ALT_FORM1) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
                }
                BIN_EXTS();
                if (flags & ALT_FORM2)
                        return push_inst(compiler, MULLW | OERC(flags) | D(dst) | A(src2) | B(src1));
                return push_inst(compiler, MULLD | OERC(flags) | D(dst) | A(src2) | B(src1));

        case SLJIT_AND:
                if (flags & ALT_FORM1) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
                }
                if (flags & ALT_FORM2) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
                }
                return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));

        case SLJIT_OR:
                if (flags & ALT_FORM1) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
                }
                if (flags & ALT_FORM2) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
                }
                if (flags & ALT_FORM3) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm)));
                        return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
                }
                return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));

        case SLJIT_XOR:
                if (flags & ALT_FORM1) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
                }
                if (flags & ALT_FORM2) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
                }
                if (flags & ALT_FORM3) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm)));
                        return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
                }
                return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));

        case SLJIT_SHL:
                if (flags & ALT_FORM1) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        if (flags & ALT_FORM2) {
                                compiler->imm &= 0x1f;
                                return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1));
                        }
                        else {
                                compiler->imm &= 0x3f;
                                return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags));
                        }
                }
                return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2));

        case SLJIT_LSHR:
                if (flags & ALT_FORM1) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        if (flags & ALT_FORM2) {
                                compiler->imm &= 0x1f;
                                return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1));
                        }
                        else {
                                compiler->imm &= 0x3f;
                                return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags));
                        }
                }
                return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2));

        case SLJIT_ASHR:
                if (flags & ALT_FORM3)
                        FAIL_IF(push_inst(compiler, MFXER | D(0)));
                if (flags & ALT_FORM1) {
                        SLJIT_ASSERT(src2 == TMP_REG2);
                        if (flags & ALT_FORM2) {
                                compiler->imm &= 0x1f;
                                FAIL_IF(push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11)));
                        }
                        else {
                                compiler->imm &= 0x3f;
                                FAIL_IF(push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4)));
                        }
                }
                else
                        FAIL_IF(push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2)));
                return (flags & ALT_FORM3) ? push_inst(compiler, MTXER | S(0)) : SLJIT_SUCCESS;
        }

        SLJIT_ASSERT_STOP();
        return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_si emit_const(struct sljit_compiler *compiler, sljit_si reg, sljit_sw init_value)
{
        FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48)));
        FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32)));
        FAIL_IF(PUSH_RLDICR(reg, 31));
        FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16)));
        return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
        sljit_ins *inst = (sljit_ins*)addr;

        inst[0] = (inst[0] & 0xffff0000) | ((new_addr >> 48) & 0xffff);
        inst[1] = (inst[1] & 0xffff0000) | ((new_addr >> 32) & 0xffff);
        inst[3] = (inst[3] & 0xffff0000) | ((new_addr >> 16) & 0xffff);
        inst[4] = (inst[4] & 0xffff0000) | (new_addr & 0xffff);
        SLJIT_CACHE_FLUSH(inst, inst + 5);
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
        sljit_ins *inst = (sljit_ins*)addr;

        inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
        inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
        inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
        inst[4] = (inst[4] & 0xffff0000) | (new_constant & 0xffff);
        SLJIT_CACHE_FLUSH(inst, inst + 5);
}

/* [<][>][^][v][top][bottom][index][help] */