/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- matches
- addChar
- merge
- primaryCmp
- primaryDelta
- cmpYX
- getText
- getCharBBox
- getBaseIdx
- addWord
- addWord
- primaryDelta
- primaryCmp
- secondaryCmp
- cmpYX
- cmpXY
- coalesce
- init
- computeCoords
- cmpYXPrimaryRot
- cmpYXLineRot
- cmpXYLineRot
- cmpXYColumnPrimaryRot
- cmpXYColumnLineRot
- addWord
- coalesce
- updatePriMinMax
- cmpXYPrimaryRot
- cmpYXPrimaryRot
- primaryCmp
- secondaryDelta
- isBelow
- addBlock
- blockFits
- getLength
- get
- startPage
- endPage
- clear
- updateFont
- beginWord
- addChar
- endWord
- addWord
- addUnderline
- addLink
- coalesce
- findText
- getText
- findCharRange
- dump
- assignColumns
- dumpFragment
- makeWordList
- outputToFile
- startPage
- endPage
- updateFont
- beginString
- endString
- drawChar
- stroke
- fill
- eoFill
- processLink
- findText
- getText
- findCharRange
- makeWordList
- takeText
//========================================================================
//
// TextOutputDev.cc
//
// Copyright 1997-2003 Glyph & Cog, LLC
//
//========================================================================
#include <aconf.h>
#ifdef USE_GCC_PRAGMAS
#pragma implementation
#endif
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>
#include <ctype.h>
#ifdef WIN32
#include <fcntl.h> // for O_BINARY
#include <io.h> // for setmode
#endif
#include "gmem.h"
#include "GString.h"
#include "GList.h"
#include "config.h"
#include "Error.h"
#include "GlobalParams.h"
#include "UnicodeMap.h"
#include "UnicodeTypeTable.h"
#include "GfxState.h"
#include "Link.h"
#include "TextOutputDev.h"
#ifdef MACOS
// needed for setting type/creator of MacOS files
#include "ICSupport.h"
#endif
//------------------------------------------------------------------------
// parameters
//------------------------------------------------------------------------
// Each bucket in a text pool includes baselines within a range of
// this many points.
#define textPoolStep 4
// Inter-character space width which will cause addChar to start a new
// word.
#define minWordBreakSpace 0.1
// Negative inter-character space width, i.e., overlap, which will
// cause addChar to start a new word.
#define minDupBreakOverlap 0.2
// Max distance between baselines of two lines within a block, as a
// fraction of the font size.
#define maxLineSpacingDelta 1.5
// Max difference in primary font sizes on two lines in the same
// block. Delta1 is used when examining new lines above and below the
// current block; delta2 is used when examining text that overlaps the
// current block; delta3 is used when examining text to the left and
// right of the current block.
#define maxBlockFontSizeDelta1 0.05
#define maxBlockFontSizeDelta2 0.6
#define maxBlockFontSizeDelta3 0.2
// Max difference in font sizes inside a word.
#define maxWordFontSizeDelta 0.05
// Maximum distance between baselines of two words on the same line,
// e.g., distance between subscript or superscript and the primary
// baseline, as a fraction of the font size.
#define maxIntraLineDelta 0.5
// Minimum inter-word spacing, as a fraction of the font size. (Only
// used for raw ordering.)
#define minWordSpacing 0.15
// Maximum inter-word spacing, as a fraction of the font size.
#define maxWordSpacing 1.5
// Maximum horizontal spacing which will allow a word to be pulled
// into a block.
#define minColSpacing1 0.3
// Minimum spacing between columns, as a fraction of the font size.
#define minColSpacing2 1.0
// Maximum vertical spacing between blocks within a flow, as a
// multiple of the font size.
#define maxBlockSpacing 2.5
// Minimum spacing between characters within a word, as a fraction of
// the font size.
#define minCharSpacing -0.2
// Maximum spacing between characters within a word, as a fraction of
// the font size, when there is no obvious extra-wide character
// spacing.
#define maxCharSpacing 0.03
// When extra-wide character spacing is detected, the inter-character
// space threshold is set to the minimum inter-character space
// multiplied by this constant.
#define maxWideCharSpacingMul 1.3
// Upper limit on spacing between characters in a word.
#define maxWideCharSpacing 0.4
// Max difference in primary,secondary coordinates (as a fraction of
// the font size) allowed for duplicated text (fake boldface, drop
// shadows) which is to be discarded.
#define dupMaxPriDelta 0.1
#define dupMaxSecDelta 0.2
// Max width of underlines (in points).
#define maxUnderlineWidth 3
// Min distance between baseline and underline (in points).
//~ this should be font-size-dependent
#define minUnderlineGap -2
// Max distance between baseline and underline (in points).
//~ this should be font-size-dependent
#define maxUnderlineGap 4
// Max horizontal distance between edge of word and start of underline
// (in points).
//~ this should be font-size-dependent
#define underlineSlack 1
// Max distance between edge of text and edge of link border
#define hyperlinkSlack 2
//------------------------------------------------------------------------
// TextUnderline
//------------------------------------------------------------------------
class TextUnderline {
public:
TextUnderline(double x0A, double y0A, double x1A, double y1A)
{ x0 = x0A; y0 = y0A; x1 = x1A; y1 = y1A; horiz = y0 == y1; }
~TextUnderline() {}
double x0, y0, x1, y1;
GBool horiz;
};
//------------------------------------------------------------------------
// TextLink
//------------------------------------------------------------------------
class TextLink {
public:
TextLink(int xMinA, int yMinA, int xMaxA, int yMaxA, Link *linkA)
{ xMin = xMinA; yMin = yMinA; xMax = xMaxA; yMax = yMaxA; link = linkA; }
~TextLink() {}
int xMin, yMin, xMax, yMax;
Link *link;
};
//------------------------------------------------------------------------
// TextFontInfo
//------------------------------------------------------------------------
TextFontInfo::TextFontInfo(GfxState *state) {
gfxFont = state->getFont();
#if TEXTOUT_WORD_LIST
fontName = (gfxFont && gfxFont->getOrigName())
? gfxFont->getOrigName()->copy()
: (GString *)NULL;
flags = gfxFont ? gfxFont->getFlags() : 0;
#endif
}
TextFontInfo::~TextFontInfo() {
#if TEXTOUT_WORD_LIST
if (fontName) {
delete fontName;
}
#endif
}
GBool TextFontInfo::matches(GfxState *state) {
return state->getFont() == gfxFont;
}
//------------------------------------------------------------------------
// TextWord
//------------------------------------------------------------------------
TextWord::TextWord(GfxState *state, int rotA, double x0, double y0,
int charPosA, TextFontInfo *fontA, double fontSizeA) {
GfxFont *gfxFont;
double x, y, ascent, descent;
rot = rotA;
charPos = charPosA;
charLen = 0;
font = fontA;
fontSize = fontSizeA;
state->transform(x0, y0, &x, &y);
if ((gfxFont = font->gfxFont)) {
ascent = gfxFont->getAscent() * fontSize;
descent = gfxFont->getDescent() * fontSize;
} else {
// this means that the PDF file draws text without a current font,
// which should never happen
ascent = 0.95 * fontSize;
descent = -0.35 * fontSize;
}
switch (rot) {
case 0:
yMin = y - ascent;
yMax = y - descent;
if (yMin == yMax) {
// this is a sanity check for a case that shouldn't happen -- but
// if it does happen, we want to avoid dividing by zero later
yMin = y;
yMax = y + 1;
}
base = y;
break;
case 1:
xMin = x + descent;
xMax = x + ascent;
if (xMin == xMax) {
// this is a sanity check for a case that shouldn't happen -- but
// if it does happen, we want to avoid dividing by zero later
xMin = x;
xMax = x + 1;
}
base = x;
break;
case 2:
yMin = y + descent;
yMax = y + ascent;
if (yMin == yMax) {
// this is a sanity check for a case that shouldn't happen -- but
// if it does happen, we want to avoid dividing by zero later
yMin = y;
yMax = y + 1;
}
base = y;
break;
case 3:
xMin = x - ascent;
xMax = x - descent;
if (xMin == xMax) {
// this is a sanity check for a case that shouldn't happen -- but
// if it does happen, we want to avoid dividing by zero later
xMin = x;
xMax = x + 1;
}
base = x;
break;
}
text = NULL;
edge = NULL;
len = size = 0;
spaceAfter = gFalse;
next = NULL;
#if TEXTOUT_WORD_LIST
GfxRGB rgb;
if ((state->getRender() & 3) == 1) {
state->getStrokeRGB(&rgb);
} else {
state->getFillRGB(&rgb);
}
colorR = colToDbl(rgb.r);
colorG = colToDbl(rgb.g);
colorB = colToDbl(rgb.b);
#endif
underlined = gFalse;
link = NULL;
}
TextWord::~TextWord() {
gfree(text);
gfree(edge);
}
void TextWord::addChar(GfxState *state, double x, double y,
double dx, double dy, Unicode u) {
if (len == size) {
size += 16;
text = (Unicode *)greallocn(text, size, sizeof(Unicode));
edge = (double *)greallocn(edge, size + 1, sizeof(double));
}
text[len] = u;
switch (rot) {
case 0:
if (len == 0) {
xMin = x;
}
edge[len] = x;
xMax = edge[len+1] = x + dx;
break;
case 1:
if (len == 0) {
yMin = y;
}
edge[len] = y;
yMax = edge[len+1] = y + dy;
break;
case 2:
if (len == 0) {
xMax = x;
}
edge[len] = x;
xMin = edge[len+1] = x + dx;
break;
case 3:
if (len == 0) {
yMax = y;
}
edge[len] = y;
yMin = edge[len+1] = y + dy;
break;
}
++len;
}
void TextWord::merge(TextWord *word) {
int i;
if (word->xMin < xMin) {
xMin = word->xMin;
}
if (word->yMin < yMin) {
yMin = word->yMin;
}
if (word->xMax > xMax) {
xMax = word->xMax;
}
if (word->yMax > yMax) {
yMax = word->yMax;
}
if (len + word->len > size) {
size = len + word->len;
text = (Unicode *)greallocn(text, size, sizeof(Unicode));
edge = (double *)greallocn(edge, size + 1, sizeof(double));
}
for (i = 0; i < word->len; ++i) {
text[len + i] = word->text[i];
edge[len + i] = word->edge[i];
}
edge[len + word->len] = word->edge[word->len];
len += word->len;
charLen += word->charLen;
}
inline int TextWord::primaryCmp(TextWord *word) {
double cmp;
cmp = 0; // make gcc happy
switch (rot) {
case 0:
cmp = xMin - word->xMin;
break;
case 1:
cmp = yMin - word->yMin;
break;
case 2:
cmp = word->xMax - xMax;
break;
case 3:
cmp = word->yMax - yMax;
break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
double TextWord::primaryDelta(TextWord *word) {
double delta;
delta = 0; // make gcc happy
switch (rot) {
case 0:
delta = word->xMin - xMax;
break;
case 1:
delta = word->yMin - yMax;
break;
case 2:
delta = xMin - word->xMax;
break;
case 3:
delta = yMin - word->yMax;
break;
}
return delta;
}
int TextWord::cmpYX(const void *p1, const void *p2) {
TextWord *word1 = *(TextWord **)p1;
TextWord *word2 = *(TextWord **)p2;
double cmp;
cmp = word1->yMin - word2->yMin;
if (cmp == 0) {
cmp = word1->xMin - word2->xMin;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
#if TEXTOUT_WORD_LIST
GString *TextWord::getText() {
GString *s;
UnicodeMap *uMap;
char buf[8];
int n, i;
s = new GString();
if (!(uMap = globalParams->getTextEncoding())) {
return s;
}
for (i = 0; i < len; ++i) {
n = uMap->mapUnicode(text[i], buf, sizeof(buf));
s->append(buf, n);
}
uMap->decRefCnt();
return s;
}
void TextWord::getCharBBox(int charIdx, double *xMinA, double *yMinA,
double *xMaxA, double *yMaxA) {
if (charIdx < 0 || charIdx >= len) {
return;
}
switch (rot) {
case 0:
*xMinA = edge[charIdx];
*xMaxA = edge[charIdx + 1];
*yMinA = yMin;
*yMaxA = yMax;
break;
case 1:
*xMinA = xMin;
*xMaxA = xMax;
*yMinA = edge[charIdx];
*yMaxA = edge[charIdx + 1];
break;
case 2:
*xMinA = edge[charIdx + 1];
*xMaxA = edge[charIdx];
*yMinA = yMin;
*yMaxA = yMax;
break;
case 3:
*xMinA = xMin;
*xMaxA = xMax;
*yMinA = edge[charIdx + 1];
*yMaxA = edge[charIdx];
break;
}
}
#endif // TEXTOUT_WORD_LIST
//------------------------------------------------------------------------
// TextPool
//------------------------------------------------------------------------
TextPool::TextPool() {
minBaseIdx = 0;
maxBaseIdx = -1;
pool = NULL;
cursor = NULL;
cursorBaseIdx = -1;
}
TextPool::~TextPool() {
int baseIdx;
TextWord *word, *word2;
for (baseIdx = minBaseIdx; baseIdx <= maxBaseIdx; ++baseIdx) {
for (word = pool[baseIdx - minBaseIdx]; word; word = word2) {
word2 = word->next;
delete word;
}
}
gfree(pool);
}
int TextPool::getBaseIdx(double base) {
int baseIdx;
baseIdx = (int)(base / textPoolStep);
if (baseIdx < minBaseIdx) {
return minBaseIdx;
}
if (baseIdx > maxBaseIdx) {
return maxBaseIdx;
}
return baseIdx;
}
void TextPool::addWord(TextWord *word) {
TextWord **newPool;
int wordBaseIdx, newMinBaseIdx, newMaxBaseIdx, baseIdx;
TextWord *w0, *w1;
// expand the array if needed
wordBaseIdx = (int)(word->base / textPoolStep);
if (minBaseIdx > maxBaseIdx) {
minBaseIdx = wordBaseIdx - 128;
maxBaseIdx = wordBaseIdx + 128;
pool = (TextWord **)gmallocn(maxBaseIdx - minBaseIdx + 1,
sizeof(TextWord *));
for (baseIdx = minBaseIdx; baseIdx <= maxBaseIdx; ++baseIdx) {
pool[baseIdx - minBaseIdx] = NULL;
}
} else if (wordBaseIdx < minBaseIdx) {
newMinBaseIdx = wordBaseIdx - 128;
newPool = (TextWord **)gmallocn(maxBaseIdx - newMinBaseIdx + 1,
sizeof(TextWord *));
for (baseIdx = newMinBaseIdx; baseIdx < minBaseIdx; ++baseIdx) {
newPool[baseIdx - newMinBaseIdx] = NULL;
}
memcpy(&newPool[minBaseIdx - newMinBaseIdx], pool,
(maxBaseIdx - minBaseIdx + 1) * sizeof(TextWord *));
gfree(pool);
pool = newPool;
minBaseIdx = newMinBaseIdx;
} else if (wordBaseIdx > maxBaseIdx) {
newMaxBaseIdx = wordBaseIdx + 128;
pool = (TextWord **)greallocn(pool, newMaxBaseIdx - minBaseIdx + 1,
sizeof(TextWord *));
for (baseIdx = maxBaseIdx + 1; baseIdx <= newMaxBaseIdx; ++baseIdx) {
pool[baseIdx - minBaseIdx] = NULL;
}
maxBaseIdx = newMaxBaseIdx;
}
// insert the new word
if (cursor && wordBaseIdx == cursorBaseIdx &&
word->primaryCmp(cursor) > 0) {
w0 = cursor;
w1 = cursor->next;
} else {
w0 = NULL;
w1 = pool[wordBaseIdx - minBaseIdx];
}
for (; w1 && word->primaryCmp(w1) > 0; w0 = w1, w1 = w1->next) ;
word->next = w1;
if (w0) {
w0->next = word;
} else {
pool[wordBaseIdx - minBaseIdx] = word;
}
cursor = word;
cursorBaseIdx = wordBaseIdx;
}
//------------------------------------------------------------------------
// TextLine
//------------------------------------------------------------------------
TextLine::TextLine(TextBlock *blkA, int rotA, double baseA) {
blk = blkA;
rot = rotA;
xMin = yMin = 0;
xMax = yMax = -1;
base = baseA;
words = lastWord = NULL;
text = NULL;
edge = NULL;
col = NULL;
len = 0;
convertedLen = 0;
hyphenated = gFalse;
next = NULL;
}
TextLine::~TextLine() {
TextWord *word;
while (words) {
word = words;
words = words->next;
delete word;
}
gfree(text);
gfree(edge);
gfree(col);
}
void TextLine::addWord(TextWord *word) {
if (lastWord) {
lastWord->next = word;
} else {
words = word;
}
lastWord = word;
if (xMin > xMax) {
xMin = word->xMin;
xMax = word->xMax;
yMin = word->yMin;
yMax = word->yMax;
} else {
if (word->xMin < xMin) {
xMin = word->xMin;
}
if (word->xMax > xMax) {
xMax = word->xMax;
}
if (word->yMin < yMin) {
yMin = word->yMin;
}
if (word->yMax > yMax) {
yMax = word->yMax;
}
}
}
double TextLine::primaryDelta(TextLine *line) {
double delta;
delta = 0; // make gcc happy
switch (rot) {
case 0:
delta = line->xMin - xMax;
break;
case 1:
delta = line->yMin - yMax;
break;
case 2:
delta = xMin - line->xMax;
break;
case 3:
delta = yMin - line->yMax;
break;
}
return delta;
}
int TextLine::primaryCmp(TextLine *line) {
double cmp;
cmp = 0; // make gcc happy
switch (rot) {
case 0:
cmp = xMin - line->xMin;
break;
case 1:
cmp = yMin - line->yMin;
break;
case 2:
cmp = line->xMax - xMax;
break;
case 3:
cmp = line->yMax - yMax;
break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
int TextLine::secondaryCmp(TextLine *line) {
double cmp;
cmp = (rot == 0 || rot == 3) ? base - line->base : line->base - base;
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
int TextLine::cmpYX(TextLine *line) {
int cmp;
if ((cmp = secondaryCmp(line))) {
return cmp;
}
return primaryCmp(line);
}
int TextLine::cmpXY(const void *p1, const void *p2) {
TextLine *line1 = *(TextLine **)p1;
TextLine *line2 = *(TextLine **)p2;
int cmp;
if ((cmp = line1->primaryCmp(line2))) {
return cmp;
}
return line1->secondaryCmp(line2);
}
void TextLine::coalesce(UnicodeMap *uMap) {
TextWord *word0, *word1;
double space, delta, minSpace;
GBool isUnicode;
char buf[8];
int i, j;
if (words->next) {
// compute the inter-word space threshold
if (words->len > 1 || words->next->len > 1) {
minSpace = 0;
} else {
minSpace = words->primaryDelta(words->next);
for (word0 = words->next, word1 = word0->next;
word1 && minSpace > 0;
word0 = word1, word1 = word0->next) {
if (word1->len > 1) {
minSpace = 0;
}
delta = word0->primaryDelta(word1);
if (delta < minSpace) {
minSpace = delta;
}
}
}
if (minSpace <= 0) {
space = maxCharSpacing * words->fontSize;
} else {
space = maxWideCharSpacingMul * minSpace;
if (space > maxWideCharSpacing * words->fontSize) {
space = maxWideCharSpacing * words->fontSize;
}
}
// merge words
word0 = words;
word1 = words->next;
while (word1) {
if (word0->primaryDelta(word1) >= space) {
word0->spaceAfter = gTrue;
word0 = word1;
word1 = word1->next;
} else if (word0->font == word1->font &&
word0->underlined == word1->underlined &&
fabs(word0->fontSize - word1->fontSize) <
maxWordFontSizeDelta * words->fontSize &&
word1->charPos == word0->charPos + word0->charLen) {
word0->merge(word1);
word0->next = word1->next;
delete word1;
word1 = word0->next;
} else {
word0 = word1;
word1 = word1->next;
}
}
}
// build the line text
isUnicode = uMap ? uMap->isUnicode() : gFalse;
len = 0;
for (word1 = words; word1; word1 = word1->next) {
len += word1->len;
if (word1->spaceAfter) {
++len;
}
}
text = (Unicode *)gmallocn(len, sizeof(Unicode));
edge = (double *)gmallocn(len + 1, sizeof(double));
i = 0;
for (word1 = words; word1; word1 = word1->next) {
for (j = 0; j < word1->len; ++j) {
text[i] = word1->text[j];
edge[i] = word1->edge[j];
++i;
}
edge[i] = word1->edge[word1->len];
if (word1->spaceAfter) {
text[i] = (Unicode)0x0020;
++i;
}
}
// compute convertedLen and set up the col array
col = (int *)gmallocn(len + 1, sizeof(int));
convertedLen = 0;
for (i = 0; i < len; ++i) {
col[i] = convertedLen;
if (isUnicode) {
++convertedLen;
} else if (uMap) {
convertedLen += uMap->mapUnicode(text[i], buf, sizeof(buf));
}
}
col[len] = convertedLen;
// check for hyphen at end of line
//~ need to check for other chars used as hyphens
hyphenated = text[len - 1] == (Unicode)'-';
}
//------------------------------------------------------------------------
// TextLineFrag
//------------------------------------------------------------------------
class TextLineFrag {
public:
TextLine *line; // the line object
int start, len; // offset and length of this fragment
// (in Unicode chars)
double xMin, xMax; // bounding box coordinates
double yMin, yMax;
double base; // baseline virtual coordinate
int col; // first column
void init(TextLine *lineA, int startA, int lenA);
void computeCoords(GBool oneRot);
static int cmpYXPrimaryRot(const void *p1, const void *p2);
static int cmpYXLineRot(const void *p1, const void *p2);
static int cmpXYLineRot(const void *p1, const void *p2);
static int cmpXYColumnPrimaryRot(const void *p1, const void *p2);
static int cmpXYColumnLineRot(const void *p1, const void *p2);
};
void TextLineFrag::init(TextLine *lineA, int startA, int lenA) {
line = lineA;
start = startA;
len = lenA;
col = line->col[start];
}
void TextLineFrag::computeCoords(GBool oneRot) {
TextBlock *blk;
double d0, d1, d2, d3, d4;
if (oneRot) {
switch (line->rot) {
case 0:
xMin = line->edge[start];
xMax = line->edge[start + len];
yMin = line->yMin;
yMax = line->yMax;
break;
case 1:
xMin = line->xMin;
xMax = line->xMax;
yMin = line->edge[start];
yMax = line->edge[start + len];
break;
case 2:
xMin = line->edge[start + len];
xMax = line->edge[start];
yMin = line->yMin;
yMax = line->yMax;
break;
case 3:
xMin = line->xMin;
xMax = line->xMax;
yMin = line->edge[start + len];
yMax = line->edge[start];
break;
}
base = line->base;
} else {
if (line->rot == 0 && line->blk->page->primaryRot == 0) {
xMin = line->edge[start];
xMax = line->edge[start + len];
yMin = line->yMin;
yMax = line->yMax;
base = line->base;
} else {
blk = line->blk;
d0 = line->edge[start];
d1 = line->edge[start + len];
d2 = d3 = d4 = 0; // make gcc happy
switch (line->rot) {
case 0:
d2 = line->yMin;
d3 = line->yMax;
d4 = line->base;
d0 = (d0 - blk->xMin) / (blk->xMax - blk->xMin);
d1 = (d1 - blk->xMin) / (blk->xMax - blk->xMin);
d2 = (d2 - blk->yMin) / (blk->yMax - blk->yMin);
d3 = (d3 - blk->yMin) / (blk->yMax - blk->yMin);
d4 = (d4 - blk->yMin) / (blk->yMax - blk->yMin);
break;
case 1:
d2 = line->xMax;
d3 = line->xMin;
d4 = line->base;
d0 = (d0 - blk->yMin) / (blk->yMax - blk->yMin);
d1 = (d1 - blk->yMin) / (blk->yMax - blk->yMin);
d2 = (blk->xMax - d2) / (blk->xMax - blk->xMin);
d3 = (blk->xMax - d3) / (blk->xMax - blk->xMin);
d4 = (blk->xMax - d4) / (blk->xMax - blk->xMin);
break;
case 2:
d2 = line->yMax;
d3 = line->yMin;
d4 = line->base;
d0 = (blk->xMax - d0) / (blk->xMax - blk->xMin);
d1 = (blk->xMax - d1) / (blk->xMax - blk->xMin);
d2 = (blk->yMax - d2) / (blk->yMax - blk->yMin);
d3 = (blk->yMax - d3) / (blk->yMax - blk->yMin);
d4 = (blk->yMax - d4) / (blk->yMax - blk->yMin);
break;
case 3:
d2 = line->xMin;
d3 = line->xMax;
d4 = line->base;
d0 = (blk->yMax - d0) / (blk->yMax - blk->yMin);
d1 = (blk->yMax - d1) / (blk->yMax - blk->yMin);
d2 = (d2 - blk->xMin) / (blk->xMax - blk->xMin);
d3 = (d3 - blk->xMin) / (blk->xMax - blk->xMin);
d4 = (d4 - blk->xMin) / (blk->xMax - blk->xMin);
break;
}
switch (line->blk->page->primaryRot) {
case 0:
xMin = blk->xMin + d0 * (blk->xMax - blk->xMin);
xMax = blk->xMin + d1 * (blk->xMax - blk->xMin);
yMin = blk->yMin + d2 * (blk->yMax - blk->yMin);
yMax = blk->yMin + d3 * (blk->yMax - blk->yMin);
base = blk->yMin + base * (blk->yMax - blk->yMin);
break;
case 1:
xMin = blk->xMax - d3 * (blk->xMax - blk->xMin);
xMax = blk->xMax - d2 * (blk->xMax - blk->xMin);
yMin = blk->yMin + d0 * (blk->yMax - blk->yMin);
yMax = blk->yMin + d1 * (blk->yMax - blk->yMin);
base = blk->xMax - d4 * (blk->xMax - blk->xMin);
break;
case 2:
xMin = blk->xMax - d1 * (blk->xMax - blk->xMin);
xMax = blk->xMax - d0 * (blk->xMax - blk->xMin);
yMin = blk->yMax - d3 * (blk->yMax - blk->yMin);
yMax = blk->yMax - d2 * (blk->yMax - blk->yMin);
base = blk->yMax - d4 * (blk->yMax - blk->yMin);
break;
case 3:
xMin = blk->xMin + d2 * (blk->xMax - blk->xMin);
xMax = blk->xMin + d3 * (blk->xMax - blk->xMin);
yMin = blk->yMax - d1 * (blk->yMax - blk->yMin);
yMax = blk->yMax - d0 * (blk->yMax - blk->yMin);
base = blk->xMin + d4 * (blk->xMax - blk->xMin);
break;
}
}
}
}
int TextLineFrag::cmpYXPrimaryRot(const void *p1, const void *p2) {
TextLineFrag *frag1 = (TextLineFrag *)p1;
TextLineFrag *frag2 = (TextLineFrag *)p2;
double cmp;
cmp = 0; // make gcc happy
switch (frag1->line->blk->page->primaryRot) {
case 0:
if (fabs(cmp = frag1->yMin - frag2->yMin) < 0.01) {
cmp = frag1->xMin - frag2->xMin;
}
break;
case 1:
if (fabs(cmp = frag2->xMax - frag1->xMax) < 0.01) {
cmp = frag1->yMin - frag2->yMin;
}
break;
case 2:
if (fabs(cmp = frag2->yMin - frag1->yMin) < 0.01) {
cmp = frag2->xMax - frag1->xMax;
}
break;
case 3:
if (fabs(cmp = frag1->xMax - frag2->xMax) < 0.01) {
cmp = frag2->yMax - frag1->yMax;
}
break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
int TextLineFrag::cmpYXLineRot(const void *p1, const void *p2) {
TextLineFrag *frag1 = (TextLineFrag *)p1;
TextLineFrag *frag2 = (TextLineFrag *)p2;
double cmp;
cmp = 0; // make gcc happy
switch (frag1->line->rot) {
case 0:
if ((cmp = frag1->yMin - frag2->yMin) == 0) {
cmp = frag1->xMin - frag2->xMin;
}
break;
case 1:
if ((cmp = frag2->xMax - frag1->xMax) == 0) {
cmp = frag1->yMin - frag2->yMin;
}
break;
case 2:
if ((cmp = frag2->yMin - frag1->yMin) == 0) {
cmp = frag2->xMax - frag1->xMax;
}
break;
case 3:
if ((cmp = frag1->xMax - frag2->xMax) == 0) {
cmp = frag2->yMax - frag1->yMax;
}
break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
int TextLineFrag::cmpXYLineRot(const void *p1, const void *p2) {
TextLineFrag *frag1 = (TextLineFrag *)p1;
TextLineFrag *frag2 = (TextLineFrag *)p2;
double cmp;
cmp = 0; // make gcc happy
switch (frag1->line->rot) {
case 0:
if ((cmp = frag1->xMin - frag2->xMin) == 0) {
cmp = frag1->yMin - frag2->yMin;
}
break;
case 1:
if ((cmp = frag1->yMin - frag2->yMin) == 0) {
cmp = frag2->xMax - frag1->xMax;
}
break;
case 2:
if ((cmp = frag2->xMax - frag1->xMax) == 0) {
cmp = frag2->yMin - frag1->yMin;
}
break;
case 3:
if ((cmp = frag2->yMax - frag1->yMax) == 0) {
cmp = frag1->xMax - frag2->xMax;
}
break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
int TextLineFrag::cmpXYColumnPrimaryRot(const void *p1, const void *p2) {
TextLineFrag *frag1 = (TextLineFrag *)p1;
TextLineFrag *frag2 = (TextLineFrag *)p2;
double cmp;
// if columns overlap, compare y values
if (frag1->col < frag2->col + (frag2->line->col[frag2->start + frag2->len] -
frag2->line->col[frag2->start]) &&
frag2->col < frag1->col + (frag1->line->col[frag1->start + frag1->len] -
frag1->line->col[frag1->start])) {
cmp = 0; // make gcc happy
switch (frag1->line->blk->page->primaryRot) {
case 0: cmp = frag1->yMin - frag2->yMin; break;
case 1: cmp = frag2->xMax - frag1->xMax; break;
case 2: cmp = frag2->yMin - frag1->yMin; break;
case 3: cmp = frag1->xMax - frag2->xMax; break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
// otherwise, compare starting column
return frag1->col - frag2->col;
}
int TextLineFrag::cmpXYColumnLineRot(const void *p1, const void *p2) {
TextLineFrag *frag1 = (TextLineFrag *)p1;
TextLineFrag *frag2 = (TextLineFrag *)p2;
double cmp;
// if columns overlap, compare y values
if (frag1->col < frag2->col + (frag2->line->col[frag2->start + frag2->len] -
frag2->line->col[frag2->start]) &&
frag2->col < frag1->col + (frag1->line->col[frag1->start + frag1->len] -
frag1->line->col[frag1->start])) {
cmp = 0; // make gcc happy
switch (frag1->line->rot) {
case 0: cmp = frag1->yMin - frag2->yMin; break;
case 1: cmp = frag2->xMax - frag1->xMax; break;
case 2: cmp = frag2->yMin - frag1->yMin; break;
case 3: cmp = frag1->xMax - frag2->xMax; break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
// otherwise, compare starting column
return frag1->col - frag2->col;
}
//------------------------------------------------------------------------
// TextBlock
//------------------------------------------------------------------------
TextBlock::TextBlock(TextPage *pageA, int rotA) {
page = pageA;
rot = rotA;
xMin = yMin = 0;
xMax = yMax = -1;
priMin = 0;
priMax = page->pageWidth;
pool = new TextPool();
lines = NULL;
curLine = NULL;
next = NULL;
stackNext = NULL;
}
TextBlock::~TextBlock() {
TextLine *line;
delete pool;
while (lines) {
line = lines;
lines = lines->next;
delete line;
}
}
void TextBlock::addWord(TextWord *word) {
pool->addWord(word);
if (xMin > xMax) {
xMin = word->xMin;
xMax = word->xMax;
yMin = word->yMin;
yMax = word->yMax;
} else {
if (word->xMin < xMin) {
xMin = word->xMin;
}
if (word->xMax > xMax) {
xMax = word->xMax;
}
if (word->yMin < yMin) {
yMin = word->yMin;
}
if (word->yMax > yMax) {
yMax = word->yMax;
}
}
}
void TextBlock::coalesce(UnicodeMap *uMap) {
TextWord *word0, *word1, *word2, *bestWord0, *bestWord1, *lastWord;
TextLine *line, *line0, *line1;
int poolMinBaseIdx, startBaseIdx, minBaseIdx, maxBaseIdx;
int baseIdx, bestWordBaseIdx, idx0, idx1;
double minBase, maxBase;
double fontSize, delta, priDelta, secDelta;
TextLine **lineArray;
GBool found;
int col1, col2;
int i, j, k;
// discard duplicated text (fake boldface, drop shadows)
for (idx0 = pool->minBaseIdx; idx0 <= pool->maxBaseIdx; ++idx0) {
word0 = pool->getPool(idx0);
while (word0) {
priDelta = dupMaxPriDelta * word0->fontSize;
secDelta = dupMaxSecDelta * word0->fontSize;
if (rot == 0 || rot == 3) {
maxBaseIdx = pool->getBaseIdx(word0->base + secDelta);
} else {
maxBaseIdx = pool->getBaseIdx(word0->base - secDelta);
}
found = gFalse;
word1 = word2 = NULL; // make gcc happy
for (idx1 = idx0; idx1 <= maxBaseIdx; ++idx1) {
if (idx1 == idx0) {
word1 = word0;
word2 = word0->next;
} else {
word1 = NULL;
word2 = pool->getPool(idx1);
}
for (; word2; word1 = word2, word2 = word2->next) {
if (word2->len == word0->len &&
!memcmp(word2->text, word0->text,
word0->len * sizeof(Unicode))) {
switch (rot) {
case 0:
case 2:
found = fabs(word0->xMin - word2->xMin) < priDelta &&
fabs(word0->xMax - word2->xMax) < priDelta &&
fabs(word0->yMin - word2->yMin) < secDelta &&
fabs(word0->yMax - word2->yMax) < secDelta;
break;
case 1:
case 3:
found = fabs(word0->xMin - word2->xMin) < secDelta &&
fabs(word0->xMax - word2->xMax) < secDelta &&
fabs(word0->yMin - word2->yMin) < priDelta &&
fabs(word0->yMax - word2->yMax) < priDelta;
break;
}
}
if (found) {
break;
}
}
if (found) {
break;
}
}
if (found) {
if (word1) {
word1->next = word2->next;
} else {
pool->setPool(idx1, word2->next);
}
delete word2;
} else {
word0 = word0->next;
}
}
}
// build the lines
curLine = NULL;
poolMinBaseIdx = pool->minBaseIdx;
charCount = 0;
nLines = 0;
while (1) {
// find the first non-empty line in the pool
for (;
poolMinBaseIdx <= pool->maxBaseIdx && !pool->getPool(poolMinBaseIdx);
++poolMinBaseIdx) ;
if (poolMinBaseIdx > pool->maxBaseIdx) {
break;
}
// look for the left-most word in the first four lines of the
// pool -- this avoids starting with a superscript word
startBaseIdx = poolMinBaseIdx;
for (baseIdx = poolMinBaseIdx + 1;
baseIdx < poolMinBaseIdx + 4 && baseIdx <= pool->maxBaseIdx;
++baseIdx) {
if (!pool->getPool(baseIdx)) {
continue;
}
if (pool->getPool(baseIdx)->primaryCmp(pool->getPool(startBaseIdx))
< 0) {
startBaseIdx = baseIdx;
}
}
// create a new line
word0 = pool->getPool(startBaseIdx);
pool->setPool(startBaseIdx, word0->next);
word0->next = NULL;
line = new TextLine(this, word0->rot, word0->base);
line->addWord(word0);
lastWord = word0;
// compute the search range
fontSize = word0->fontSize;
minBase = word0->base - maxIntraLineDelta * fontSize;
maxBase = word0->base + maxIntraLineDelta * fontSize;
minBaseIdx = pool->getBaseIdx(minBase);
maxBaseIdx = pool->getBaseIdx(maxBase);
// find the rest of the words in this line
while (1) {
// find the left-most word whose baseline is in the range for
// this line
bestWordBaseIdx = 0;
bestWord0 = bestWord1 = NULL;
for (baseIdx = minBaseIdx; baseIdx <= maxBaseIdx; ++baseIdx) {
for (word0 = NULL, word1 = pool->getPool(baseIdx);
word1;
word0 = word1, word1 = word1->next) {
if (word1->base >= minBase &&
word1->base <= maxBase &&
(delta = lastWord->primaryDelta(word1)) >=
minCharSpacing * fontSize) {
if (delta < maxWordSpacing * fontSize &&
(!bestWord1 || word1->primaryCmp(bestWord1) < 0)) {
bestWordBaseIdx = baseIdx;
bestWord0 = word0;
bestWord1 = word1;
}
break;
}
}
}
if (!bestWord1) {
break;
}
// remove it from the pool, and add it to the line
if (bestWord0) {
bestWord0->next = bestWord1->next;
} else {
pool->setPool(bestWordBaseIdx, bestWord1->next);
}
bestWord1->next = NULL;
line->addWord(bestWord1);
lastWord = bestWord1;
}
// add the line
if (curLine && line->cmpYX(curLine) > 0) {
line0 = curLine;
line1 = curLine->next;
} else {
line0 = NULL;
line1 = lines;
}
for (;
line1 && line->cmpYX(line1) > 0;
line0 = line1, line1 = line1->next) ;
if (line0) {
line0->next = line;
} else {
lines = line;
}
line->next = line1;
curLine = line;
line->coalesce(uMap);
charCount += line->len;
++nLines;
}
// sort lines into xy order for column assignment
lineArray = (TextLine **)gmallocn(nLines, sizeof(TextLine *));
for (line = lines, i = 0; line; line = line->next, ++i) {
lineArray[i] = line;
}
qsort(lineArray, nLines, sizeof(TextLine *), &TextLine::cmpXY);
// column assignment
nColumns = 0;
for (i = 0; i < nLines; ++i) {
line0 = lineArray[i];
col1 = 0;
for (j = 0; j < i; ++j) {
line1 = lineArray[j];
if (line1->primaryDelta(line0) >= 0) {
col2 = line1->col[line1->len] + 1;
} else {
k = 0; // make gcc happy
switch (rot) {
case 0:
for (k = 0;
k < line1->len &&
line0->xMin >= 0.5 * (line1->edge[k] + line1->edge[k+1]);
++k) ;
break;
case 1:
for (k = 0;
k < line1->len &&
line0->yMin >= 0.5 * (line1->edge[k] + line1->edge[k+1]);
++k) ;
break;
case 2:
for (k = 0;
k < line1->len &&
line0->xMax <= 0.5 * (line1->edge[k] + line1->edge[k+1]);
++k) ;
break;
case 3:
for (k = 0;
k < line1->len &&
line0->yMax <= 0.5 * (line1->edge[k] + line1->edge[k+1]);
++k) ;
break;
}
col2 = line1->col[k];
}
if (col2 > col1) {
col1 = col2;
}
}
for (k = 0; k <= line0->len; ++k) {
line0->col[k] += col1;
}
if (line0->col[line0->len] > nColumns) {
nColumns = line0->col[line0->len];
}
}
gfree(lineArray);
}
void TextBlock::updatePriMinMax(TextBlock *blk) {
double newPriMin, newPriMax;
GBool gotPriMin, gotPriMax;
gotPriMin = gotPriMax = gFalse;
newPriMin = newPriMax = 0; // make gcc happy
switch (page->primaryRot) {
case 0:
case 2:
if (blk->yMin < yMax && blk->yMax > yMin) {
if (blk->xMin < xMin) {
newPriMin = blk->xMax;
gotPriMin = gTrue;
}
if (blk->xMax > xMax) {
newPriMax = blk->xMin;
gotPriMax = gTrue;
}
}
break;
case 1:
case 3:
if (blk->xMin < xMax && blk->xMax > xMin) {
if (blk->yMin < yMin) {
newPriMin = blk->yMax;
gotPriMin = gTrue;
}
if (blk->yMax > yMax) {
newPriMax = blk->yMin;
gotPriMax = gTrue;
}
}
break;
}
if (gotPriMin) {
if (newPriMin > xMin) {
newPriMin = xMin;
}
if (newPriMin > priMin) {
priMin = newPriMin;
}
}
if (gotPriMax) {
if (newPriMax < xMax) {
newPriMax = xMax;
}
if (newPriMax < priMax) {
priMax = newPriMax;
}
}
}
int TextBlock::cmpXYPrimaryRot(const void *p1, const void *p2) {
TextBlock *blk1 = *(TextBlock **)p1;
TextBlock *blk2 = *(TextBlock **)p2;
double cmp;
cmp = 0; // make gcc happy
switch (blk1->page->primaryRot) {
case 0:
if ((cmp = blk1->xMin - blk2->xMin) == 0) {
cmp = blk1->yMin - blk2->yMin;
}
break;
case 1:
if ((cmp = blk1->yMin - blk2->yMin) == 0) {
cmp = blk2->xMax - blk1->xMax;
}
break;
case 2:
if ((cmp = blk2->xMax - blk1->xMax) == 0) {
cmp = blk2->yMin - blk1->yMin;
}
break;
case 3:
if ((cmp = blk2->yMax - blk1->yMax) == 0) {
cmp = blk1->xMax - blk2->xMax;
}
break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
int TextBlock::cmpYXPrimaryRot(const void *p1, const void *p2) {
TextBlock *blk1 = *(TextBlock **)p1;
TextBlock *blk2 = *(TextBlock **)p2;
double cmp;
cmp = 0; // make gcc happy
switch (blk1->page->primaryRot) {
case 0:
if ((cmp = blk1->yMin - blk2->yMin) == 0) {
cmp = blk1->xMin - blk2->xMin;
}
break;
case 1:
if ((cmp = blk2->xMax - blk1->xMax) == 0) {
cmp = blk1->yMin - blk2->yMin;
}
break;
case 2:
if ((cmp = blk2->yMin - blk1->yMin) == 0) {
cmp = blk2->xMax - blk1->xMax;
}
break;
case 3:
if ((cmp = blk1->xMax - blk2->xMax) == 0) {
cmp = blk2->yMax - blk1->yMax;
}
break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
int TextBlock::primaryCmp(TextBlock *blk) {
double cmp;
cmp = 0; // make gcc happy
switch (rot) {
case 0:
cmp = xMin - blk->xMin;
break;
case 1:
cmp = yMin - blk->yMin;
break;
case 2:
cmp = blk->xMax - xMax;
break;
case 3:
cmp = blk->yMax - yMax;
break;
}
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
double TextBlock::secondaryDelta(TextBlock *blk) {
double delta;
delta = 0; // make gcc happy
switch (rot) {
case 0:
delta = blk->yMin - yMax;
break;
case 1:
delta = xMin - blk->xMax;
break;
case 2:
delta = yMin - blk->yMax;
break;
case 3:
delta = blk->xMin - xMax;
break;
}
return delta;
}
GBool TextBlock::isBelow(TextBlock *blk) {
GBool below;
below = gFalse; // make gcc happy
switch (page->primaryRot) {
case 0:
below = xMin >= blk->priMin && xMax <= blk->priMax &&
yMin > blk->yMin;
break;
case 1:
below = yMin >= blk->priMin && yMax <= blk->priMax &&
xMax < blk->xMax;
break;
case 2:
below = xMin >= blk->priMin && xMax <= blk->priMax &&
yMax < blk->yMax;
break;
case 3:
below = yMin >= blk->priMin && yMax <= blk->priMax &&
xMin > blk->xMin;
break;
}
return below;
}
//------------------------------------------------------------------------
// TextFlow
//------------------------------------------------------------------------
TextFlow::TextFlow(TextPage *pageA, TextBlock *blk) {
page = pageA;
xMin = blk->xMin;
xMax = blk->xMax;
yMin = blk->yMin;
yMax = blk->yMax;
priMin = blk->priMin;
priMax = blk->priMax;
blocks = lastBlk = blk;
next = NULL;
}
TextFlow::~TextFlow() {
TextBlock *blk;
while (blocks) {
blk = blocks;
blocks = blocks->next;
delete blk;
}
}
void TextFlow::addBlock(TextBlock *blk) {
if (lastBlk) {
lastBlk->next = blk;
} else {
blocks = blk;
}
lastBlk = blk;
if (blk->xMin < xMin) {
xMin = blk->xMin;
}
if (blk->xMax > xMax) {
xMax = blk->xMax;
}
if (blk->yMin < yMin) {
yMin = blk->yMin;
}
if (blk->yMax > yMax) {
yMax = blk->yMax;
}
}
GBool TextFlow::blockFits(TextBlock *blk, TextBlock *prevBlk) {
GBool fits;
// lower blocks must use smaller fonts
if (blk->lines->words->fontSize > lastBlk->lines->words->fontSize) {
return gFalse;
}
fits = gFalse; // make gcc happy
switch (page->primaryRot) {
case 0:
fits = blk->xMin >= priMin && blk->xMax <= priMax;
break;
case 1:
fits = blk->yMin >= priMin && blk->yMax <= priMax;
break;
case 2:
fits = blk->xMin >= priMin && blk->xMax <= priMax;
break;
case 3:
fits = blk->yMin >= priMin && blk->yMax <= priMax;
break;
}
return fits;
}
#if TEXTOUT_WORD_LIST
//------------------------------------------------------------------------
// TextWordList
//------------------------------------------------------------------------
TextWordList::TextWordList(TextPage *text, GBool physLayout) {
TextFlow *flow;
TextBlock *blk;
TextLine *line;
TextWord *word;
TextWord **wordArray;
int nWords, i;
words = new GList();
if (text->rawOrder) {
for (word = text->rawWords; word; word = word->next) {
words->append(word);
}
} else if (physLayout) {
// this is inefficient, but it's also the least useful of these
// three cases
nWords = 0;
for (flow = text->flows; flow; flow = flow->next) {
for (blk = flow->blocks; blk; blk = blk->next) {
for (line = blk->lines; line; line = line->next) {
for (word = line->words; word; word = word->next) {
++nWords;
}
}
}
}
wordArray = (TextWord **)gmallocn(nWords, sizeof(TextWord *));
i = 0;
for (flow = text->flows; flow; flow = flow->next) {
for (blk = flow->blocks; blk; blk = blk->next) {
for (line = blk->lines; line; line = line->next) {
for (word = line->words; word; word = word->next) {
wordArray[i++] = word;
}
}
}
}
qsort(wordArray, nWords, sizeof(TextWord *), &TextWord::cmpYX);
for (i = 0; i < nWords; ++i) {
words->append(wordArray[i]);
}
gfree(wordArray);
} else {
for (flow = text->flows; flow; flow = flow->next) {
for (blk = flow->blocks; blk; blk = blk->next) {
for (line = blk->lines; line; line = line->next) {
for (word = line->words; word; word = word->next) {
words->append(word);
}
}
}
}
}
}
TextWordList::~TextWordList() {
delete words;
}
int TextWordList::getLength() {
return words->getLength();
}
TextWord *TextWordList::get(int idx) {
if (idx < 0 || idx >= words->getLength()) {
return NULL;
}
return (TextWord *)words->get(idx);
}
#endif // TEXTOUT_WORD_LIST
//------------------------------------------------------------------------
// TextPage
//------------------------------------------------------------------------
TextPage::TextPage(GBool rawOrderA) {
int rot;
rawOrder = rawOrderA;
curWord = NULL;
charPos = 0;
curFont = NULL;
curFontSize = 0;
nest = 0;
nTinyChars = 0;
lastCharOverlap = gFalse;
if (!rawOrder) {
for (rot = 0; rot < 4; ++rot) {
pools[rot] = new TextPool();
}
}
flows = NULL;
blocks = NULL;
rawWords = NULL;
rawLastWord = NULL;
fonts = new GList();
lastFindXMin = lastFindYMin = 0;
haveLastFind = gFalse;
underlines = new GList();
links = new GList();
}
TextPage::~TextPage() {
int rot;
clear();
if (!rawOrder) {
for (rot = 0; rot < 4; ++rot) {
delete pools[rot];
}
}
delete fonts;
deleteGList(underlines, TextUnderline);
deleteGList(links, TextLink);
}
void TextPage::startPage(GfxState *state) {
clear();
if (state) {
pageWidth = state->getPageWidth();
pageHeight = state->getPageHeight();
} else {
pageWidth = pageHeight = 0;
}
}
void TextPage::endPage() {
if (curWord) {
endWord();
}
}
void TextPage::clear() {
int rot;
TextFlow *flow;
TextWord *word;
if (curWord) {
delete curWord;
curWord = NULL;
}
if (rawOrder) {
while (rawWords) {
word = rawWords;
rawWords = rawWords->next;
delete word;
}
} else {
for (rot = 0; rot < 4; ++rot) {
delete pools[rot];
}
while (flows) {
flow = flows;
flows = flows->next;
delete flow;
}
gfree(blocks);
}
deleteGList(fonts, TextFontInfo);
curWord = NULL;
charPos = 0;
curFont = NULL;
curFontSize = 0;
nest = 0;
nTinyChars = 0;
if (!rawOrder) {
for (rot = 0; rot < 4; ++rot) {
pools[rot] = new TextPool();
}
}
flows = NULL;
blocks = NULL;
rawWords = NULL;
rawLastWord = NULL;
fonts = new GList();
}
void TextPage::updateFont(GfxState *state) {
GfxFont *gfxFont;
double *fm;
char *name;
int code, mCode, letterCode, anyCode;
double w;
int i;
// get the font info object
curFont = NULL;
for (i = 0; i < fonts->getLength(); ++i) {
curFont = (TextFontInfo *)fonts->get(i);
if (curFont->matches(state)) {
break;
}
curFont = NULL;
}
if (!curFont) {
curFont = new TextFontInfo(state);
fonts->append(curFont);
}
// adjust the font size
gfxFont = state->getFont();
curFontSize = state->getTransformedFontSize();
if (gfxFont && gfxFont->getType() == fontType3) {
// This is a hack which makes it possible to deal with some Type 3
// fonts. The problem is that it's impossible to know what the
// base coordinate system used in the font is without actually
// rendering the font. This code tries to guess by looking at the
// width of the character 'm' (which breaks if the font is a
// subset that doesn't contain 'm').
mCode = letterCode = anyCode = -1;
for (code = 0; code < 256; ++code) {
name = ((Gfx8BitFont *)gfxFont)->getCharName(code);
if (name && name[0] == 'm' && name[1] == '\0') {
mCode = code;
}
if (letterCode < 0 && name && name[1] == '\0' &&
((name[0] >= 'A' && name[0] <= 'Z') ||
(name[0] >= 'a' && name[0] <= 'z'))) {
letterCode = code;
}
if (anyCode < 0 && name &&
((Gfx8BitFont *)gfxFont)->getWidth(code) > 0) {
anyCode = code;
}
}
if (mCode >= 0 &&
(w = ((Gfx8BitFont *)gfxFont)->getWidth(mCode)) > 0) {
// 0.6 is a generic average 'm' width -- yes, this is a hack
curFontSize *= w / 0.6;
} else if (letterCode >= 0 &&
(w = ((Gfx8BitFont *)gfxFont)->getWidth(letterCode)) > 0) {
// even more of a hack: 0.5 is a generic letter width
curFontSize *= w / 0.5;
} else if (anyCode >= 0 &&
(w = ((Gfx8BitFont *)gfxFont)->getWidth(anyCode)) > 0) {
// better than nothing: 0.5 is a generic character width
curFontSize *= w / 0.5;
}
fm = gfxFont->getFontMatrix();
if (fm[0] != 0) {
curFontSize *= fabs(fm[3] / fm[0]);
}
}
}
void TextPage::beginWord(GfxState *state, double x0, double y0) {
double *fontm;
double m[4], m2[4];
int rot;
// This check is needed because Type 3 characters can contain
// text-drawing operations (when TextPage is being used via
// {X,Win}SplashOutputDev rather than TextOutputDev).
if (curWord) {
++nest;
return;
}
// compute the rotation
state->getFontTransMat(&m[0], &m[1], &m[2], &m[3]);
if (state->getFont()->getType() == fontType3) {
fontm = state->getFont()->getFontMatrix();
m2[0] = fontm[0] * m[0] + fontm[1] * m[2];
m2[1] = fontm[0] * m[1] + fontm[1] * m[3];
m2[2] = fontm[2] * m[0] + fontm[3] * m[2];
m2[3] = fontm[2] * m[1] + fontm[3] * m[3];
m[0] = m2[0];
m[1] = m2[1];
m[2] = m2[2];
m[3] = m2[3];
}
if (fabs(m[0] * m[3]) > fabs(m[1] * m[2])) {
rot = (m[3] < 0) ? 0 : 2;
} else {
rot = (m[2] > 0) ? 1 : 3;
}
curWord = new TextWord(state, rot, x0, y0, charPos, curFont, curFontSize);
}
void TextPage::addChar(GfxState *state, double x, double y,
double dx, double dy,
CharCode c, int nBytes, Unicode *u, int uLen) {
double x1, y1, w1, h1, dx2, dy2, base, sp, delta;
GBool overlap;
int i;
// subtract char and word spacing from the dx,dy values
sp = state->getCharSpace();
if (c == (CharCode)0x20) {
sp += state->getWordSpace();
}
state->textTransformDelta(sp * state->getHorizScaling(), 0, &dx2, &dy2);
dx -= dx2;
dy -= dy2;
state->transformDelta(dx, dy, &w1, &h1);
// throw away chars that aren't inside the page bounds
// (and also do a sanity check on the character size)
state->transform(x, y, &x1, &y1);
if (x1 + w1 < 0 || x1 > pageWidth ||
y1 + h1 < 0 || y1 > pageHeight ||
w1 > pageWidth || h1 > pageHeight) {
charPos += nBytes;
return;
}
// check the tiny chars limit
if (!globalParams->getTextKeepTinyChars() &&
fabs(w1) < 3 && fabs(h1) < 3) {
if (++nTinyChars > 50000) {
charPos += nBytes;
return;
}
}
// break words at space character
if (uLen == 1 && u[0] == (Unicode)0x20) {
if (curWord) {
++curWord->charLen;
}
charPos += nBytes;
endWord();
return;
}
// start a new word if:
// (1) this character doesn't fall in the right place relative to
// the end of the previous word (this places upper and lower
// constraints on the position deltas along both the primary
// and secondary axes), or
// (2) this character overlaps the previous one (duplicated text), or
// (3) the previous character was an overlap (we want each duplicated
// character to be in a word by itself at this stage),
// (4) the font size has changed
if (curWord && curWord->len > 0) {
base = sp = delta = 0; // make gcc happy
switch (curWord->rot) {
case 0:
base = y1;
sp = x1 - curWord->xMax;
delta = x1 - curWord->edge[curWord->len - 1];
break;
case 1:
base = x1;
sp = y1 - curWord->yMax;
delta = y1 - curWord->edge[curWord->len - 1];
break;
case 2:
base = y1;
sp = curWord->xMin - x1;
delta = curWord->edge[curWord->len - 1] - x1;
break;
case 3:
base = x1;
sp = curWord->yMin - y1;
delta = curWord->edge[curWord->len - 1] - y1;
break;
}
overlap = fabs(delta) < dupMaxPriDelta * curWord->fontSize &&
fabs(base - curWord->base) < dupMaxSecDelta * curWord->fontSize;
if (overlap || lastCharOverlap ||
sp < -minDupBreakOverlap * curWord->fontSize ||
sp > minWordBreakSpace * curWord->fontSize ||
fabs(base - curWord->base) > 0.5 ||
curFontSize != curWord->fontSize) {
endWord();
}
lastCharOverlap = overlap;
} else {
lastCharOverlap = gFalse;
}
if (uLen != 0) {
// start a new word if needed
if (!curWord) {
beginWord(state, x, y);
}
// page rotation and/or transform matrices can cause text to be
// drawn in reverse order -- in this case, swap the begin/end
// coordinates and break text into individual chars
if ((curWord->rot == 0 && w1 < 0) ||
(curWord->rot == 1 && h1 < 0) ||
(curWord->rot == 2 && w1 > 0) ||
(curWord->rot == 3 && h1 > 0)) {
endWord();
beginWord(state, x + dx, y + dy);
x1 += w1;
y1 += h1;
w1 = -w1;
h1 = -h1;
}
// add the characters to the current word
w1 /= uLen;
h1 /= uLen;
for (i = 0; i < uLen; ++i) {
curWord->addChar(state, x1 + i*w1, y1 + i*h1, w1, h1, u[i]);
}
}
if (curWord) {
curWord->charLen += nBytes;
}
charPos += nBytes;
}
void TextPage::endWord() {
// This check is needed because Type 3 characters can contain
// text-drawing operations (when TextPage is being used via
// {X,Win}SplashOutputDev rather than TextOutputDev).
if (nest > 0) {
--nest;
return;
}
if (curWord) {
addWord(curWord);
curWord = NULL;
}
}
void TextPage::addWord(TextWord *word) {
// throw away zero-length words -- they don't have valid xMin/xMax
// values, and they're useless anyway
if (word->len == 0) {
delete word;
return;
}
if (rawOrder) {
if (rawLastWord) {
rawLastWord->next = word;
} else {
rawWords = word;
}
rawLastWord = word;
} else {
pools[word->rot]->addWord(word);
}
}
void TextPage::addUnderline(double x0, double y0, double x1, double y1) {
underlines->append(new TextUnderline(x0, y0, x1, y1));
}
void TextPage::addLink(int xMin, int yMin, int xMax, int yMax, Link *link) {
links->append(new TextLink(xMin, yMin, xMax, yMax, link));
}
void TextPage::coalesce(GBool physLayout, GBool doHTML) {
UnicodeMap *uMap;
TextPool *pool;
TextWord *word0, *word1, *word2;
TextLine *line;
TextBlock *blkList, *blkStack, *blk, *lastBlk, *blk0, *blk1;
TextBlock **blkArray;
TextFlow *flow, *lastFlow;
TextUnderline *underline;
TextLink *link;
int rot, poolMinBaseIdx, baseIdx, startBaseIdx, endBaseIdx;
double minBase, maxBase, newMinBase, newMaxBase;
double fontSize, colSpace1, colSpace2, lineSpace, intraLineSpace, blkSpace;
GBool found;
int count[4];
int lrCount;
int firstBlkIdx, nBlocksLeft;
int col1, col2;
int i, j, n;
if (rawOrder) {
primaryRot = 0;
primaryLR = gTrue;
return;
}
uMap = globalParams->getTextEncoding();
blkList = NULL;
lastBlk = NULL;
nBlocks = 0;
primaryRot = -1;
#if 0 // for debugging
printf("*** initial words ***\n");
for (rot = 0; rot < 4; ++rot) {
pool = pools[rot];
for (baseIdx = pool->minBaseIdx; baseIdx <= pool->maxBaseIdx; ++baseIdx) {
for (word0 = pool->getPool(baseIdx); word0; word0 = word0->next) {
printf(" word: x=%.2f..%.2f y=%.2f..%.2f base=%.2f fontSize=%.2f rot=%d link=%p '",
word0->xMin, word0->xMax, word0->yMin, word0->yMax,
word0->base, word0->fontSize, rot*90, word0->link);
for (i = 0; i < word0->len; ++i) {
fputc(word0->text[i] & 0xff, stdout);
}
printf("'\n");
}
}
}
printf("\n");
#endif
#if 0 //~ for debugging
for (i = 0; i < underlines->getLength(); ++i) {
underline = (TextUnderline *)underlines->get(i);
printf("underline: x=%g..%g y=%g..%g horiz=%d\n",
underline->x0, underline->x1, underline->y0, underline->y1,
underline->horiz);
}
#endif
if (doHTML) {
//----- handle underlining
for (i = 0; i < underlines->getLength(); ++i) {
underline = (TextUnderline *)underlines->get(i);
if (underline->horiz) {
// rot = 0
if (pools[0]->minBaseIdx <= pools[0]->maxBaseIdx) {
startBaseIdx = pools[0]->getBaseIdx(underline->y0 + minUnderlineGap);
endBaseIdx = pools[0]->getBaseIdx(underline->y0 + maxUnderlineGap);
for (j = startBaseIdx; j <= endBaseIdx; ++j) {
for (word0 = pools[0]->getPool(j); word0; word0 = word0->next) {
//~ need to check the y value against the word baseline
if (underline->x0 < word0->xMin + underlineSlack &&
word0->xMax - underlineSlack < underline->x1) {
word0->underlined = gTrue;
}
}
}
}
// rot = 2
if (pools[2]->minBaseIdx <= pools[2]->maxBaseIdx) {
startBaseIdx = pools[2]->getBaseIdx(underline->y0 - maxUnderlineGap);
endBaseIdx = pools[2]->getBaseIdx(underline->y0 - minUnderlineGap);
for (j = startBaseIdx; j <= endBaseIdx; ++j) {
for (word0 = pools[2]->getPool(j); word0; word0 = word0->next) {
if (underline->x0 < word0->xMin + underlineSlack &&
word0->xMax - underlineSlack < underline->x1) {
word0->underlined = gTrue;
}
}
}
}
} else {
// rot = 1
if (pools[1]->minBaseIdx <= pools[1]->maxBaseIdx) {
startBaseIdx = pools[1]->getBaseIdx(underline->x0 - maxUnderlineGap);
endBaseIdx = pools[1]->getBaseIdx(underline->x0 - minUnderlineGap);
for (j = startBaseIdx; j <= endBaseIdx; ++j) {
for (word0 = pools[1]->getPool(j); word0; word0 = word0->next) {
if (underline->y0 < word0->yMin + underlineSlack &&
word0->yMax - underlineSlack < underline->y1) {
word0->underlined = gTrue;
}
}
}
}
// rot = 3
if (pools[3]->minBaseIdx <= pools[3]->maxBaseIdx) {
startBaseIdx = pools[3]->getBaseIdx(underline->x0 + minUnderlineGap);
endBaseIdx = pools[3]->getBaseIdx(underline->x0 + maxUnderlineGap);
for (j = startBaseIdx; j <= endBaseIdx; ++j) {
for (word0 = pools[3]->getPool(j); word0; word0 = word0->next) {
if (underline->y0 < word0->yMin + underlineSlack &&
word0->yMax - underlineSlack < underline->y1) {
word0->underlined = gTrue;
}
}
}
}
}
}
//----- handle links
for (i = 0; i < links->getLength(); ++i) {
link = (TextLink *)links->get(i);
// rot = 0
if (pools[0]->minBaseIdx <= pools[0]->maxBaseIdx) {
startBaseIdx = pools[0]->getBaseIdx(link->yMin);
endBaseIdx = pools[0]->getBaseIdx(link->yMax);
for (j = startBaseIdx; j <= endBaseIdx; ++j) {
for (word0 = pools[0]->getPool(j); word0; word0 = word0->next) {
if (link->xMin < word0->xMin + hyperlinkSlack &&
word0->xMax - hyperlinkSlack < link->xMax &&
link->yMin < word0->yMin + hyperlinkSlack &&
word0->yMax - hyperlinkSlack < link->yMax) {
word0->link = link->link;
}
}
}
}
// rot = 2
if (pools[2]->minBaseIdx <= pools[2]->maxBaseIdx) {
startBaseIdx = pools[2]->getBaseIdx(link->yMin);
endBaseIdx = pools[2]->getBaseIdx(link->yMax);
for (j = startBaseIdx; j <= endBaseIdx; ++j) {
for (word0 = pools[2]->getPool(j); word0; word0 = word0->next) {
if (link->xMin < word0->xMin + hyperlinkSlack &&
word0->xMax - hyperlinkSlack < link->xMax &&
link->yMin < word0->yMin + hyperlinkSlack &&
word0->yMax - hyperlinkSlack < link->yMax) {
word0->link = link->link;
}
}
}
}
// rot = 1
if (pools[1]->minBaseIdx <= pools[1]->maxBaseIdx) {
startBaseIdx = pools[1]->getBaseIdx(link->xMin);
endBaseIdx = pools[1]->getBaseIdx(link->xMax);
for (j = startBaseIdx; j <= endBaseIdx; ++j) {
for (word0 = pools[1]->getPool(j); word0; word0 = word0->next) {
if (link->yMin < word0->yMin + hyperlinkSlack &&
word0->yMax - hyperlinkSlack < link->yMax &&
link->xMin < word0->xMin + hyperlinkSlack &&
word0->xMax - hyperlinkSlack < link->xMax) {
word0->link = link->link;
}
}
}
}
// rot = 3
if (pools[3]->minBaseIdx <= pools[3]->maxBaseIdx) {
startBaseIdx = pools[3]->getBaseIdx(link->xMin);
endBaseIdx = pools[3]->getBaseIdx(link->xMax);
for (j = startBaseIdx; j <= endBaseIdx; ++j) {
for (word0 = pools[3]->getPool(j); word0; word0 = word0->next) {
if (link->yMin < word0->yMin + hyperlinkSlack &&
word0->yMax - hyperlinkSlack < link->yMax &&
link->xMin < word0->xMin + hyperlinkSlack &&
word0->xMax - hyperlinkSlack < link->xMax) {
word0->link = link->link;
}
}
}
}
}
}
//----- assemble the blocks
//~ add an outer loop for writing mode (vertical text)
// build blocks for each rotation value
for (rot = 0; rot < 4; ++rot) {
pool = pools[rot];
poolMinBaseIdx = pool->minBaseIdx;
count[rot] = 0;
// add blocks until no more words are left
while (1) {
// find the first non-empty line in the pool
for (;
poolMinBaseIdx <= pool->maxBaseIdx &&
!pool->getPool(poolMinBaseIdx);
++poolMinBaseIdx) ;
if (poolMinBaseIdx > pool->maxBaseIdx) {
break;
}
// look for the left-most word in the first four lines of the
// pool -- this avoids starting with a superscript word
startBaseIdx = poolMinBaseIdx;
for (baseIdx = poolMinBaseIdx + 1;
baseIdx < poolMinBaseIdx + 4 && baseIdx <= pool->maxBaseIdx;
++baseIdx) {
if (!pool->getPool(baseIdx)) {
continue;
}
if (pool->getPool(baseIdx)->primaryCmp(pool->getPool(startBaseIdx))
< 0) {
startBaseIdx = baseIdx;
}
}
// create a new block
word0 = pool->getPool(startBaseIdx);
pool->setPool(startBaseIdx, word0->next);
word0->next = NULL;
blk = new TextBlock(this, rot);
blk->addWord(word0);
fontSize = word0->fontSize;
minBase = maxBase = word0->base;
colSpace1 = minColSpacing1 * fontSize;
colSpace2 = minColSpacing2 * fontSize;
lineSpace = maxLineSpacingDelta * fontSize;
intraLineSpace = maxIntraLineDelta * fontSize;
// add words to the block
do {
found = gFalse;
// look for words on the line above the current top edge of
// the block
newMinBase = minBase;
for (baseIdx = pool->getBaseIdx(minBase);
baseIdx >= pool->getBaseIdx(minBase - lineSpace);
--baseIdx) {
word0 = NULL;
word1 = pool->getPool(baseIdx);
while (word1) {
if (word1->base < minBase &&
word1->base >= minBase - lineSpace &&
((rot == 0 || rot == 2)
? (word1->xMin < blk->xMax && word1->xMax > blk->xMin)
: (word1->yMin < blk->yMax && word1->yMax > blk->yMin)) &&
fabs(word1->fontSize - fontSize) <
maxBlockFontSizeDelta1 * fontSize) {
word2 = word1;
if (word0) {
word0->next = word1->next;
} else {
pool->setPool(baseIdx, word1->next);
}
word1 = word1->next;
word2->next = NULL;
blk->addWord(word2);
found = gTrue;
newMinBase = word2->base;
} else {
word0 = word1;
word1 = word1->next;
}
}
}
minBase = newMinBase;
// look for words on the line below the current bottom edge of
// the block
newMaxBase = maxBase;
for (baseIdx = pool->getBaseIdx(maxBase);
baseIdx <= pool->getBaseIdx(maxBase + lineSpace);
++baseIdx) {
word0 = NULL;
word1 = pool->getPool(baseIdx);
while (word1) {
if (word1->base > maxBase &&
word1->base <= maxBase + lineSpace &&
((rot == 0 || rot == 2)
? (word1->xMin < blk->xMax && word1->xMax > blk->xMin)
: (word1->yMin < blk->yMax && word1->yMax > blk->yMin)) &&
fabs(word1->fontSize - fontSize) <
maxBlockFontSizeDelta1 * fontSize) {
word2 = word1;
if (word0) {
word0->next = word1->next;
} else {
pool->setPool(baseIdx, word1->next);
}
word1 = word1->next;
word2->next = NULL;
blk->addWord(word2);
found = gTrue;
newMaxBase = word2->base;
} else {
word0 = word1;
word1 = word1->next;
}
}
}
maxBase = newMaxBase;
// look for words that are on lines already in the block, and
// that overlap the block horizontally
for (baseIdx = pool->getBaseIdx(minBase - intraLineSpace);
baseIdx <= pool->getBaseIdx(maxBase + intraLineSpace);
++baseIdx) {
word0 = NULL;
word1 = pool->getPool(baseIdx);
while (word1) {
if (word1->base >= minBase - intraLineSpace &&
word1->base <= maxBase + intraLineSpace &&
((rot == 0 || rot == 2)
? (word1->xMin < blk->xMax + colSpace1 &&
word1->xMax > blk->xMin - colSpace1)
: (word1->yMin < blk->yMax + colSpace1 &&
word1->yMax > blk->yMin - colSpace1)) &&
fabs(word1->fontSize - fontSize) <
maxBlockFontSizeDelta2 * fontSize) {
word2 = word1;
if (word0) {
word0->next = word1->next;
} else {
pool->setPool(baseIdx, word1->next);
}
word1 = word1->next;
word2->next = NULL;
blk->addWord(word2);
found = gTrue;
} else {
word0 = word1;
word1 = word1->next;
}
}
}
// only check for outlying words (the next two chunks of code)
// if we didn't find anything else
if (found) {
continue;
}
// scan down the left side of the block, looking for words
// that are near (but not overlapping) the block; if there are
// three or fewer, add them to the block
n = 0;
for (baseIdx = pool->getBaseIdx(minBase - intraLineSpace);
baseIdx <= pool->getBaseIdx(maxBase + intraLineSpace);
++baseIdx) {
word1 = pool->getPool(baseIdx);
while (word1) {
if (word1->base >= minBase - intraLineSpace &&
word1->base <= maxBase + intraLineSpace &&
((rot == 0 || rot == 2)
? (word1->xMax <= blk->xMin &&
word1->xMax > blk->xMin - colSpace2)
: (word1->yMax <= blk->yMin &&
word1->yMax > blk->yMin - colSpace2)) &&
fabs(word1->fontSize - fontSize) <
maxBlockFontSizeDelta3 * fontSize) {
++n;
break;
}
word1 = word1->next;
}
}
if (n > 0 && n <= 3) {
for (baseIdx = pool->getBaseIdx(minBase - intraLineSpace);
baseIdx <= pool->getBaseIdx(maxBase + intraLineSpace);
++baseIdx) {
word0 = NULL;
word1 = pool->getPool(baseIdx);
while (word1) {
if (word1->base >= minBase - intraLineSpace &&
word1->base <= maxBase + intraLineSpace &&
((rot == 0 || rot == 2)
? (word1->xMax <= blk->xMin &&
word1->xMax > blk->xMin - colSpace2)
: (word1->yMax <= blk->yMin &&
word1->yMax > blk->yMin - colSpace2)) &&
fabs(word1->fontSize - fontSize) <
maxBlockFontSizeDelta3 * fontSize) {
word2 = word1;
if (word0) {
word0->next = word1->next;
} else {
pool->setPool(baseIdx, word1->next);
}
word1 = word1->next;
word2->next = NULL;
blk->addWord(word2);
if (word2->base < minBase) {
minBase = word2->base;
} else if (word2->base > maxBase) {
maxBase = word2->base;
}
found = gTrue;
break;
} else {
word0 = word1;
word1 = word1->next;
}
}
}
}
// scan down the right side of the block, looking for words
// that are near (but not overlapping) the block; if there are
// three or fewer, add them to the block
n = 0;
for (baseIdx = pool->getBaseIdx(minBase - intraLineSpace);
baseIdx <= pool->getBaseIdx(maxBase + intraLineSpace);
++baseIdx) {
word1 = pool->getPool(baseIdx);
while (word1) {
if (word1->base >= minBase - intraLineSpace &&
word1->base <= maxBase + intraLineSpace &&
((rot == 0 || rot == 2)
? (word1->xMin >= blk->xMax &&
word1->xMin < blk->xMax + colSpace2)
: (word1->yMin >= blk->yMax &&
word1->yMin < blk->yMax + colSpace2)) &&
fabs(word1->fontSize - fontSize) <
maxBlockFontSizeDelta3 * fontSize) {
++n;
break;
}
word1 = word1->next;
}
}
if (n > 0 && n <= 3) {
for (baseIdx = pool->getBaseIdx(minBase - intraLineSpace);
baseIdx <= pool->getBaseIdx(maxBase + intraLineSpace);
++baseIdx) {
word0 = NULL;
word1 = pool->getPool(baseIdx);
while (word1) {
if (word1->base >= minBase - intraLineSpace &&
word1->base <= maxBase + intraLineSpace &&
((rot == 0 || rot == 2)
? (word1->xMin >= blk->xMax &&
word1->xMin < blk->xMax + colSpace2)
: (word1->yMin >= blk->yMax &&
word1->yMin < blk->yMax + colSpace2)) &&
fabs(word1->fontSize - fontSize) <
maxBlockFontSizeDelta3 * fontSize) {
word2 = word1;
if (word0) {
word0->next = word1->next;
} else {
pool->setPool(baseIdx, word1->next);
}
word1 = word1->next;
word2->next = NULL;
blk->addWord(word2);
if (word2->base < minBase) {
minBase = word2->base;
} else if (word2->base > maxBase) {
maxBase = word2->base;
}
found = gTrue;
break;
} else {
word0 = word1;
word1 = word1->next;
}
}
}
}
} while (found);
//~ need to compute the primary writing mode (horiz/vert) in
//~ addition to primary rotation
// coalesce the block, and add it to the list
blk->coalesce(uMap);
if (lastBlk) {
lastBlk->next = blk;
} else {
blkList = blk;
}
lastBlk = blk;
count[rot] += blk->charCount;
if (primaryRot < 0 || count[rot] > count[primaryRot]) {
primaryRot = rot;
}
++nBlocks;
}
}
#if 0 // for debugging
printf("*** rotation ***\n");
for (rot = 0; rot < 4; ++rot) {
printf(" %d: %6d\n", rot, count[rot]);
}
printf(" primary rot = %d\n", primaryRot);
printf("\n");
#endif
#if 0 // for debugging
printf("*** blocks ***\n");
for (blk = blkList; blk; blk = blk->next) {
printf("block: rot=%d x=%.2f..%.2f y=%.2f..%.2f\n",
blk->rot, blk->xMin, blk->xMax, blk->yMin, blk->yMax);
for (line = blk->lines; line; line = line->next) {
printf(" line: x=%.2f..%.2f y=%.2f..%.2f base=%.2f\n",
line->xMin, line->xMax, line->yMin, line->yMax, line->base);
for (word0 = line->words; word0; word0 = word0->next) {
printf(" word: x=%.2f..%.2f y=%.2f..%.2f base=%.2f fontSize=%.2f space=%d: '",
word0->xMin, word0->xMax, word0->yMin, word0->yMax,
word0->base, word0->fontSize, word0->spaceAfter);
for (i = 0; i < word0->len; ++i) {
fputc(word0->text[i] & 0xff, stdout);
}
printf("'\n");
}
}
}
printf("\n");
#endif
// determine the primary direction
lrCount = 0;
for (blk = blkList; blk; blk = blk->next) {
for (line = blk->lines; line; line = line->next) {
for (word0 = line->words; word0; word0 = word0->next) {
for (i = 0; i < word0->len; ++i) {
if (unicodeTypeL(word0->text[i])) {
++lrCount;
} else if (unicodeTypeR(word0->text[i])) {
--lrCount;
}
}
}
}
}
primaryLR = lrCount >= 0;
#if 0 // for debugging
printf("*** direction ***\n");
printf("lrCount = %d\n", lrCount);
printf("primaryLR = %d\n", primaryLR);
#endif
//----- column assignment
// sort blocks into xy order for column assignment
blocks = (TextBlock **)gmallocn(nBlocks, sizeof(TextBlock *));
for (blk = blkList, i = 0; blk; blk = blk->next, ++i) {
blocks[i] = blk;
}
qsort(blocks, nBlocks, sizeof(TextBlock *), &TextBlock::cmpXYPrimaryRot);
// column assignment
for (i = 0; i < nBlocks; ++i) {
blk0 = blocks[i];
col1 = 0;
for (j = 0; j < i; ++j) {
blk1 = blocks[j];
col2 = 0; // make gcc happy
switch (primaryRot) {
case 0:
if (blk0->xMin > blk1->xMax) {
col2 = blk1->col + blk1->nColumns + 3;
} else if (blk1->xMax == blk1->xMin) {
col2 = blk1->col;
} else {
col2 = blk1->col + (int)(((blk0->xMin - blk1->xMin) /
(blk1->xMax - blk1->xMin)) *
blk1->nColumns);
}
break;
case 1:
if (blk0->yMin > blk1->yMax) {
col2 = blk1->col + blk1->nColumns + 3;
} else if (blk1->yMax == blk1->yMin) {
col2 = blk1->col;
} else {
col2 = blk1->col + (int)(((blk0->yMin - blk1->yMin) /
(blk1->yMax - blk1->yMin)) *
blk1->nColumns);
}
break;
case 2:
if (blk0->xMax < blk1->xMin) {
col2 = blk1->col + blk1->nColumns + 3;
} else if (blk1->xMin == blk1->xMax) {
col2 = blk1->col;
} else {
col2 = blk1->col + (int)(((blk0->xMax - blk1->xMax) /
(blk1->xMin - blk1->xMax)) *
blk1->nColumns);
}
break;
case 3:
if (blk0->yMax < blk1->yMin) {
col2 = blk1->col + blk1->nColumns + 3;
} else if (blk1->yMin == blk1->yMax) {
col2 = blk1->col;
} else {
col2 = blk1->col + (int)(((blk0->yMax - blk1->yMax) /
(blk1->yMin - blk1->yMax)) *
blk1->nColumns);
}
break;
}
if (col2 > col1) {
col1 = col2;
}
}
blk0->col = col1;
for (line = blk0->lines; line; line = line->next) {
for (j = 0; j <= line->len; ++j) {
line->col[j] += col1;
}
}
}
#if 0 // for debugging
printf("*** blocks, after column assignment ***\n");
for (blk = blkList; blk; blk = blk->next) {
printf("block: rot=%d x=%.2f..%.2f y=%.2f..%.2f col=%d nCols=%d\n",
blk->rot, blk->xMin, blk->xMax, blk->yMin, blk->yMax, blk->col,
blk->nColumns);
for (line = blk->lines; line; line = line->next) {
printf(" line:\n");
for (word0 = line->words; word0; word0 = word0->next) {
printf(" word: x=%.2f..%.2f y=%.2f..%.2f base=%.2f fontSize=%.2f space=%d: '",
word0->xMin, word0->xMax, word0->yMin, word0->yMax,
word0->base, word0->fontSize, word0->spaceAfter);
for (i = 0; i < word0->len; ++i) {
fputc(word0->text[i] & 0xff, stdout);
}
printf("'\n");
}
}
}
printf("\n");
#endif
//----- reading order sort
// sort blocks into yx order (in preparation for reading order sort)
qsort(blocks, nBlocks, sizeof(TextBlock *), &TextBlock::cmpYXPrimaryRot);
// compute space on left and right sides of each block
for (i = 0; i < nBlocks; ++i) {
blk0 = blocks[i];
for (j = 0; j < nBlocks; ++j) {
blk1 = blocks[j];
if (blk1 != blk0) {
blk0->updatePriMinMax(blk1);
}
}
}
#if 0 // for debugging
printf("*** blocks, after yx sort ***\n");
for (i = 0; i < nBlocks; ++i) {
blk = blocks[i];
printf("block: rot=%d x=%.2f..%.2f y=%.2f..%.2f space=%.2f..%.2f\n",
blk->rot, blk->xMin, blk->xMax, blk->yMin, blk->yMax,
blk->priMin, blk->priMax);
for (line = blk->lines; line; line = line->next) {
printf(" line:\n");
for (word0 = line->words; word0; word0 = word0->next) {
printf(" word: x=%.2f..%.2f y=%.2f..%.2f base=%.2f fontSize=%.2f space=%d: '",
word0->xMin, word0->xMax, word0->yMin, word0->yMax,
word0->base, word0->fontSize, word0->spaceAfter);
for (j = 0; j < word0->len; ++j) {
fputc(word0->text[j] & 0xff, stdout);
}
printf("'\n");
}
}
}
printf("\n");
#endif
// build the flows
//~ this needs to be adjusted for writing mode (vertical text)
//~ this also needs to account for right-to-left column ordering
blkArray = (TextBlock **)gmallocn(nBlocks, sizeof(TextBlock *));
memcpy(blkArray, blocks, nBlocks * sizeof(TextBlock *));
flows = lastFlow = NULL;
firstBlkIdx = 0;
nBlocksLeft = nBlocks;
while (nBlocksLeft > 0) {
// find the upper-left-most block
for (; !blkArray[firstBlkIdx]; ++firstBlkIdx) ;
i = firstBlkIdx;
blk = blkArray[i];
for (j = firstBlkIdx + 1; j < nBlocks; ++j) {
blk1 = blkArray[j];
if (blk1) {
if (blk && blk->secondaryDelta(blk1) > 0) {
break;
}
if (blk1->primaryCmp(blk) < 0) {
i = j;
blk = blk1;
}
}
}
blkArray[i] = NULL;
--nBlocksLeft;
blk->next = NULL;
// create a new flow, starting with the upper-left-most block
flow = new TextFlow(this, blk);
if (lastFlow) {
lastFlow->next = flow;
} else {
flows = flow;
}
lastFlow = flow;
fontSize = blk->lines->words->fontSize;
// push the upper-left-most block on the stack
blk->stackNext = NULL;
blkStack = blk;
// find the other blocks in this flow
while (blkStack) {
// find the upper-left-most block under (but within
// maxBlockSpacing of) the top block on the stack
blkSpace = maxBlockSpacing * blkStack->lines->words->fontSize;
blk = NULL;
i = -1;
for (j = firstBlkIdx; j < nBlocks; ++j) {
blk1 = blkArray[j];
if (blk1) {
if (blkStack->secondaryDelta(blk1) > blkSpace) {
break;
}
if (blk && blk->secondaryDelta(blk1) > 0) {
break;
}
if (blk1->isBelow(blkStack) &&
(!blk || blk1->primaryCmp(blk) < 0)) {
i = j;
blk = blk1;
}
}
}
// if a suitable block was found, add it to the flow and push it
// onto the stack
if (blk && flow->blockFits(blk, blkStack)) {
blkArray[i] = NULL;
--nBlocksLeft;
blk->next = NULL;
flow->addBlock(blk);
fontSize = blk->lines->words->fontSize;
blk->stackNext = blkStack;
blkStack = blk;
// otherwise (if there is no block under the top block or the
// block is not suitable), pop the stack
} else {
blkStack = blkStack->stackNext;
}
}
}
gfree(blkArray);
#if 0 // for debugging
printf("*** flows ***\n");
for (flow = flows; flow; flow = flow->next) {
printf("flow: x=%.2f..%.2f y=%.2f..%.2f pri:%.2f..%.2f\n",
flow->xMin, flow->xMax, flow->yMin, flow->yMax,
flow->priMin, flow->priMax);
for (blk = flow->blocks; blk; blk = blk->next) {
printf(" block: rot=%d x=%.2f..%.2f y=%.2f..%.2f pri=%.2f..%.2f\n",
blk->rot, blk->xMin, blk->xMax, blk->yMin, blk->yMax,
blk->priMin, blk->priMax);
for (line = blk->lines; line; line = line->next) {
printf(" line:\n");
for (word0 = line->words; word0; word0 = word0->next) {
printf(" word: x=%.2f..%.2f y=%.2f..%.2f base=%.2f fontSize=%.2f space=%d: '",
word0->xMin, word0->xMax, word0->yMin, word0->yMax,
word0->base, word0->fontSize, word0->spaceAfter);
for (i = 0; i < word0->len; ++i) {
fputc(word0->text[i] & 0xff, stdout);
}
printf("'\n");
}
}
}
}
printf("\n");
#endif
if (uMap) {
uMap->decRefCnt();
}
}
GBool TextPage::findText(Unicode *s, int len,
GBool startAtTop, GBool stopAtBottom,
GBool startAtLast, GBool stopAtLast,
GBool caseSensitive, GBool backward,
double *xMin, double *yMin,
double *xMax, double *yMax) {
TextBlock *blk;
TextLine *line;
Unicode *s2, *txt;
Unicode *p;
int txtSize, m, i, j, k;
double xStart, yStart, xStop, yStop;
double xMin0, yMin0, xMax0, yMax0;
double xMin1, yMin1, xMax1, yMax1;
GBool found;
//~ needs to handle right-to-left text
if (rawOrder) {
return gFalse;
}
// convert the search string to uppercase
if (!caseSensitive) {
s2 = (Unicode *)gmallocn(len, sizeof(Unicode));
for (i = 0; i < len; ++i) {
s2[i] = unicodeToUpper(s[i]);
}
} else {
s2 = s;
}
txt = NULL;
txtSize = 0;
xStart = yStart = xStop = yStop = 0;
if (startAtLast && haveLastFind) {
xStart = lastFindXMin;
yStart = lastFindYMin;
} else if (!startAtTop) {
xStart = *xMin;
yStart = *yMin;
}
if (stopAtLast && haveLastFind) {
xStop = lastFindXMin;
yStop = lastFindYMin;
} else if (!stopAtBottom) {
xStop = *xMax;
yStop = *yMax;
}
found = gFalse;
xMin0 = xMax0 = yMin0 = yMax0 = 0; // make gcc happy
xMin1 = xMax1 = yMin1 = yMax1 = 0; // make gcc happy
for (i = backward ? nBlocks - 1 : 0;
backward ? i >= 0 : i < nBlocks;
i += backward ? -1 : 1) {
blk = blocks[i];
// check: is the block above the top limit?
if (!startAtTop && (backward ? blk->yMin > yStart : blk->yMax < yStart)) {
continue;
}
// check: is the block below the bottom limit?
if (!stopAtBottom && (backward ? blk->yMax < yStop : blk->yMin > yStop)) {
break;
}
for (line = blk->lines; line; line = line->next) {
// check: is the line above the top limit?
if (!startAtTop &&
(backward ? line->yMin > yStart : line->yMin < yStart)) {
continue;
}
// check: is the line below the bottom limit?
if (!stopAtBottom &&
(backward ? line->yMin < yStop : line->yMin > yStop)) {
continue;
}
// convert the line to uppercase
m = line->len;
if (!caseSensitive) {
if (m > txtSize) {
txt = (Unicode *)greallocn(txt, m, sizeof(Unicode));
txtSize = m;
}
for (k = 0; k < m; ++k) {
txt[k] = unicodeToUpper(line->text[k]);
}
} else {
txt = line->text;
}
// search each position in this line
j = backward ? m - len : 0;
p = txt + j;
while (backward ? j >= 0 : j <= m - len) {
// compare the strings
for (k = 0; k < len; ++k) {
if (p[k] != s2[k]) {
break;
}
}
// found it
if (k == len) {
switch (line->rot) {
case 0:
xMin1 = line->edge[j];
xMax1 = line->edge[j + len];
yMin1 = line->yMin;
yMax1 = line->yMax;
break;
case 1:
xMin1 = line->xMin;
xMax1 = line->xMax;
yMin1 = line->edge[j];
yMax1 = line->edge[j + len];
break;
case 2:
xMin1 = line->edge[j + len];
xMax1 = line->edge[j];
yMin1 = line->yMin;
yMax1 = line->yMax;
break;
case 3:
xMin1 = line->xMin;
xMax1 = line->xMax;
yMin1 = line->edge[j + len];
yMax1 = line->edge[j];
break;
}
if (backward) {
if ((startAtTop ||
yMin1 < yStart || (yMin1 == yStart && xMin1 < xStart)) &&
(stopAtBottom ||
yMin1 > yStop || (yMin1 == yStop && xMin1 > xStop))) {
if (!found ||
yMin1 > yMin0 || (yMin1 == yMin0 && xMin1 > xMin0)) {
xMin0 = xMin1;
xMax0 = xMax1;
yMin0 = yMin1;
yMax0 = yMax1;
found = gTrue;
}
}
} else {
if ((startAtTop ||
yMin1 > yStart || (yMin1 == yStart && xMin1 > xStart)) &&
(stopAtBottom ||
yMin1 < yStop || (yMin1 == yStop && xMin1 < xStop))) {
if (!found ||
yMin1 < yMin0 || (yMin1 == yMin0 && xMin1 < xMin0)) {
xMin0 = xMin1;
xMax0 = xMax1;
yMin0 = yMin1;
yMax0 = yMax1;
found = gTrue;
}
}
}
}
if (backward) {
--j;
--p;
} else {
++j;
++p;
}
}
}
}
if (!caseSensitive) {
gfree(s2);
gfree(txt);
}
if (found) {
*xMin = xMin0;
*xMax = xMax0;
*yMin = yMin0;
*yMax = yMax0;
lastFindXMin = xMin0;
lastFindYMin = yMin0;
haveLastFind = gTrue;
return gTrue;
}
return gFalse;
}
GString *TextPage::getText(double xMin, double yMin,
double xMax, double yMax) {
GString *s;
UnicodeMap *uMap;
GBool isUnicode;
TextBlock *blk;
TextLine *line;
TextLineFrag *frags;
int nFrags, fragsSize;
TextLineFrag *frag;
char space[8], eol[16];
int spaceLen, eolLen;
int lastRot;
double x, y, delta;
int col, idx0, idx1, i, j;
GBool multiLine, oneRot;
s = new GString();
if (rawOrder) {
return s;
}
// get the output encoding
if (!(uMap = globalParams->getTextEncoding())) {
return s;
}
isUnicode = uMap->isUnicode();
spaceLen = uMap->mapUnicode(0x20, space, sizeof(space));
eolLen = 0; // make gcc happy
switch (globalParams->getTextEOL()) {
case eolUnix:
eolLen = uMap->mapUnicode(0x0a, eol, sizeof(eol));
break;
case eolDOS:
eolLen = uMap->mapUnicode(0x0d, eol, sizeof(eol));
eolLen += uMap->mapUnicode(0x0a, eol + eolLen, sizeof(eol) - eolLen);
break;
case eolMac:
eolLen = uMap->mapUnicode(0x0d, eol, sizeof(eol));
break;
}
//~ writing mode (horiz/vert)
// collect the line fragments that are in the rectangle
fragsSize = 256;
frags = (TextLineFrag *)gmallocn(fragsSize, sizeof(TextLineFrag));
nFrags = 0;
lastRot = -1;
oneRot = gTrue;
for (i = 0; i < nBlocks; ++i) {
blk = blocks[i];
if (xMin < blk->xMax && blk->xMin < xMax &&
yMin < blk->yMax && blk->yMin < yMax) {
for (line = blk->lines; line; line = line->next) {
if (xMin < line->xMax && line->xMin < xMax &&
yMin < line->yMax && line->yMin < yMax) {
idx0 = idx1 = -1;
switch (line->rot) {
case 0:
y = 0.5 * (line->yMin + line->yMax);
if (yMin < y && y < yMax) {
j = 0;
while (j < line->len) {
if (0.5 * (line->edge[j] + line->edge[j+1]) > xMin) {
idx0 = j;
break;
}
++j;
}
j = line->len - 1;
while (j >= 0) {
if (0.5 * (line->edge[j] + line->edge[j+1]) < xMax) {
idx1 = j;
break;
}
--j;
}
}
break;
case 1:
x = 0.5 * (line->xMin + line->xMax);
if (xMin < x && x < xMax) {
j = 0;
while (j < line->len) {
if (0.5 * (line->edge[j] + line->edge[j+1]) > yMin) {
idx0 = j;
break;
}
++j;
}
j = line->len - 1;
while (j >= 0) {
if (0.5 * (line->edge[j] + line->edge[j+1]) < yMax) {
idx1 = j;
break;
}
--j;
}
}
break;
case 2:
y = 0.5 * (line->yMin + line->yMax);
if (yMin < y && y < yMax) {
j = 0;
while (j < line->len) {
if (0.5 * (line->edge[j] + line->edge[j+1]) < xMax) {
idx0 = j;
break;
}
++j;
}
j = line->len - 1;
while (j >= 0) {
if (0.5 * (line->edge[j] + line->edge[j+1]) > xMin) {
idx1 = j;
break;
}
--j;
}
}
break;
case 3:
x = 0.5 * (line->xMin + line->xMax);
if (xMin < x && x < xMax) {
j = 0;
while (j < line->len) {
if (0.5 * (line->edge[j] + line->edge[j+1]) < yMax) {
idx0 = j;
break;
}
++j;
}
j = line->len - 1;
while (j >= 0) {
if (0.5 * (line->edge[j] + line->edge[j+1]) > yMin) {
idx1 = j;
break;
}
--j;
}
}
break;
}
if (idx0 >= 0 && idx1 >= 0) {
if (nFrags == fragsSize) {
fragsSize *= 2;
frags = (TextLineFrag *)
greallocn(frags, fragsSize, sizeof(TextLineFrag));
}
frags[nFrags].init(line, idx0, idx1 - idx0 + 1);
++nFrags;
if (lastRot >= 0 && line->rot != lastRot) {
oneRot = gFalse;
}
lastRot = line->rot;
}
}
}
}
}
// sort the fragments and generate the string
if (nFrags > 0) {
for (i = 0; i < nFrags; ++i) {
frags[i].computeCoords(oneRot);
}
assignColumns(frags, nFrags, oneRot);
// if all lines in the region have the same rotation, use it;
// otherwise, use the page's primary rotation
if (oneRot) {
qsort(frags, nFrags, sizeof(TextLineFrag),
&TextLineFrag::cmpYXLineRot);
} else {
qsort(frags, nFrags, sizeof(TextLineFrag),
&TextLineFrag::cmpYXPrimaryRot);
}
i = 0;
while (i < nFrags) {
delta = maxIntraLineDelta * frags[i].line->words->fontSize;
for (j = i+1;
j < nFrags && fabs(frags[j].base - frags[i].base) < delta;
++j) ;
qsort(frags + i, j - i, sizeof(TextLineFrag),
oneRot ? &TextLineFrag::cmpXYColumnLineRot
: &TextLineFrag::cmpXYColumnPrimaryRot);
i = j;
}
col = 0;
multiLine = gFalse;
for (i = 0; i < nFrags; ++i) {
frag = &frags[i];
// insert a return
if (frag->col < col ||
(i > 0 && fabs(frag->base - frags[i-1].base) >
maxIntraLineDelta * frags[i-1].line->words->fontSize)) {
s->append(eol, eolLen);
col = 0;
multiLine = gTrue;
}
// column alignment
for (; col < frag->col; ++col) {
s->append(space, spaceLen);
}
// get the fragment text
col += dumpFragment(frag->line->text + frag->start, frag->len, uMap, s);
}
if (multiLine) {
s->append(eol, eolLen);
}
}
gfree(frags);
uMap->decRefCnt();
return s;
}
GBool TextPage::findCharRange(int pos, int length,
double *xMin, double *yMin,
double *xMax, double *yMax) {
TextBlock *blk;
TextLine *line;
TextWord *word;
double xMin0, xMax0, yMin0, yMax0;
double xMin1, xMax1, yMin1, yMax1;
GBool first;
int i, j0, j1;
if (rawOrder) {
return gFalse;
}
//~ this doesn't correctly handle:
//~ - ranges split across multiple lines (the highlighted region
//~ is the bounding box of all the parts of the range)
//~ - cases where characters don't convert one-to-one into Unicode
first = gTrue;
xMin0 = xMax0 = yMin0 = yMax0 = 0; // make gcc happy
xMin1 = xMax1 = yMin1 = yMax1 = 0; // make gcc happy
for (i = 0; i < nBlocks; ++i) {
blk = blocks[i];
for (line = blk->lines; line; line = line->next) {
for (word = line->words; word; word = word->next) {
if (pos < word->charPos + word->charLen &&
word->charPos < pos + length) {
j0 = pos - word->charPos;
if (j0 < 0) {
j0 = 0;
}
j1 = pos + length - 1 - word->charPos;
if (j1 >= word->len) {
j1 = word->len - 1;
}
switch (line->rot) {
case 0:
xMin1 = word->edge[j0];
xMax1 = word->edge[j1 + 1];
yMin1 = word->yMin;
yMax1 = word->yMax;
break;
case 1:
xMin1 = word->xMin;
xMax1 = word->xMax;
yMin1 = word->edge[j0];
yMax1 = word->edge[j1 + 1];
break;
case 2:
xMin1 = word->edge[j1 + 1];
xMax1 = word->edge[j0];
yMin1 = word->yMin;
yMax1 = word->yMax;
break;
case 3:
xMin1 = word->xMin;
xMax1 = word->xMax;
yMin1 = word->edge[j1 + 1];
yMax1 = word->edge[j0];
break;
}
if (first || xMin1 < xMin0) {
xMin0 = xMin1;
}
if (first || xMax1 > xMax0) {
xMax0 = xMax1;
}
if (first || yMin1 < yMin0) {
yMin0 = yMin1;
}
if (first || yMax1 > yMax0) {
yMax0 = yMax1;
}
first = gFalse;
}
}
}
}
if (!first) {
*xMin = xMin0;
*xMax = xMax0;
*yMin = yMin0;
*yMax = yMax0;
return gTrue;
}
return gFalse;
}
void TextPage::dump(void *outputStream, TextOutputFunc outputFunc,
GBool physLayout) {
UnicodeMap *uMap;
TextFlow *flow;
TextBlock *blk;
TextLine *line;
TextLineFrag *frags;
TextWord *word;
int nFrags, fragsSize;
TextLineFrag *frag;
char space[8], eol[16], eop[8];
int spaceLen, eolLen, eopLen;
GBool pageBreaks;
GString *s;
double delta;
int col, i, j, d, n;
// get the output encoding
if (!(uMap = globalParams->getTextEncoding())) {
return;
}
spaceLen = uMap->mapUnicode(0x20, space, sizeof(space));
eolLen = 0; // make gcc happy
switch (globalParams->getTextEOL()) {
case eolUnix:
eolLen = uMap->mapUnicode(0x0a, eol, sizeof(eol));
break;
case eolDOS:
eolLen = uMap->mapUnicode(0x0d, eol, sizeof(eol));
eolLen += uMap->mapUnicode(0x0a, eol + eolLen, sizeof(eol) - eolLen);
break;
case eolMac:
eolLen = uMap->mapUnicode(0x0d, eol, sizeof(eol));
break;
}
eopLen = uMap->mapUnicode(0x0c, eop, sizeof(eop));
pageBreaks = globalParams->getTextPageBreaks();
//~ writing mode (horiz/vert)
// output the page in raw (content stream) order
if (rawOrder) {
for (word = rawWords; word; word = word->next) {
s = new GString();
dumpFragment(word->text, word->len, uMap, s);
(*outputFunc)(outputStream, s->getCString(), s->getLength());
delete s;
if (word->next &&
fabs(word->next->base - word->base) <
maxIntraLineDelta * word->fontSize) {
if (word->next->xMin > word->xMax + minWordSpacing * word->fontSize) {
(*outputFunc)(outputStream, space, spaceLen);
}
} else {
(*outputFunc)(outputStream, eol, eolLen);
}
}
// output the page, maintaining the original physical layout
} else if (physLayout) {
// collect the line fragments for the page and sort them
fragsSize = 256;
frags = (TextLineFrag *)gmallocn(fragsSize, sizeof(TextLineFrag));
nFrags = 0;
for (i = 0; i < nBlocks; ++i) {
blk = blocks[i];
for (line = blk->lines; line; line = line->next) {
if (nFrags == fragsSize) {
fragsSize *= 2;
frags = (TextLineFrag *)greallocn(frags,
fragsSize, sizeof(TextLineFrag));
}
frags[nFrags].init(line, 0, line->len);
frags[nFrags].computeCoords(gTrue);
++nFrags;
}
}
qsort(frags, nFrags, sizeof(TextLineFrag), &TextLineFrag::cmpYXPrimaryRot);
i = 0;
while (i < nFrags) {
delta = maxIntraLineDelta * frags[i].line->words->fontSize;
for (j = i+1;
j < nFrags && fabs(frags[j].base - frags[i].base) < delta;
++j) ;
qsort(frags + i, j - i, sizeof(TextLineFrag),
&TextLineFrag::cmpXYColumnPrimaryRot);
i = j;
}
#if 0 // for debugging
printf("*** line fragments ***\n");
for (i = 0; i < nFrags; ++i) {
frag = &frags[i];
printf("frag: x=%.2f..%.2f y=%.2f..%.2f base=%.2f '",
frag->xMin, frag->xMax, frag->yMin, frag->yMax, frag->base);
for (n = 0; n < frag->len; ++n) {
fputc(frag->line->text[frag->start + n] & 0xff, stdout);
}
printf("'\n");
}
printf("\n");
#endif
// generate output
col = 0;
for (i = 0; i < nFrags; ++i) {
frag = &frags[i];
// column alignment
for (; col < frag->col; ++col) {
(*outputFunc)(outputStream, space, spaceLen);
}
// print the line
s = new GString();
col += dumpFragment(frag->line->text + frag->start, frag->len, uMap, s);
(*outputFunc)(outputStream, s->getCString(), s->getLength());
delete s;
// print one or more returns if necessary
if (i == nFrags - 1 ||
frags[i+1].col < col ||
fabs(frags[i+1].base - frag->base) >
maxIntraLineDelta * frag->line->words->fontSize) {
if (i < nFrags - 1) {
d = (int)((frags[i+1].base - frag->base) /
frag->line->words->fontSize);
if (d < 1) {
d = 1;
} else if (d > 5) {
d = 5;
}
} else {
d = 1;
}
for (; d > 0; --d) {
(*outputFunc)(outputStream, eol, eolLen);
}
col = 0;
}
}
gfree(frags);
// output the page, "undoing" the layout
} else {
for (flow = flows; flow; flow = flow->next) {
for (blk = flow->blocks; blk; blk = blk->next) {
for (line = blk->lines; line; line = line->next) {
n = line->len;
if (line->hyphenated && (line->next || blk->next)) {
--n;
}
s = new GString();
dumpFragment(line->text, n, uMap, s);
(*outputFunc)(outputStream, s->getCString(), s->getLength());
delete s;
if (!line->hyphenated) {
if (line->next) {
(*outputFunc)(outputStream, space, spaceLen);
} else if (blk->next) {
//~ this is a bit of a kludge - we should really do a more
//~ intelligent determination of paragraphs
if (blk->next->lines->words->fontSize ==
blk->lines->words->fontSize) {
(*outputFunc)(outputStream, space, spaceLen);
} else {
(*outputFunc)(outputStream, eol, eolLen);
}
}
}
}
}
(*outputFunc)(outputStream, eol, eolLen);
(*outputFunc)(outputStream, eol, eolLen);
}
}
// end of page
if (pageBreaks) {
(*outputFunc)(outputStream, eop, eopLen);
}
uMap->decRefCnt();
}
void TextPage::assignColumns(TextLineFrag *frags, int nFrags, GBool oneRot) {
TextLineFrag *frag0, *frag1;
int rot, col1, col2, i, j, k;
// all text in the region has the same rotation -- recompute the
// column numbers based only on the text in the region
if (oneRot) {
qsort(frags, nFrags, sizeof(TextLineFrag), &TextLineFrag::cmpXYLineRot);
rot = frags[0].line->rot;
for (i = 0; i < nFrags; ++i) {
frag0 = &frags[i];
col1 = 0;
for (j = 0; j < i; ++j) {
frag1 = &frags[j];
col2 = 0; // make gcc happy
switch (rot) {
case 0:
if (frag0->xMin >= frag1->xMax) {
col2 = frag1->col + (frag1->line->col[frag1->start + frag1->len] -
frag1->line->col[frag1->start]) + 1;
} else {
for (k = frag1->start;
k < frag1->start + frag1->len &&
frag0->xMin >= 0.5 * (frag1->line->edge[k] +
frag1->line->edge[k+1]);
++k) ;
col2 = frag1->col +
frag1->line->col[k] - frag1->line->col[frag1->start];
}
break;
case 1:
if (frag0->yMin >= frag1->yMax) {
col2 = frag1->col + (frag1->line->col[frag1->start + frag1->len] -
frag1->line->col[frag1->start]) + 1;
} else {
for (k = frag1->start;
k < frag1->start + frag1->len &&
frag0->yMin >= 0.5 * (frag1->line->edge[k] +
frag1->line->edge[k+1]);
++k) ;
col2 = frag1->col +
frag1->line->col[k] - frag1->line->col[frag1->start];
}
break;
case 2:
if (frag0->xMax <= frag1->xMin) {
col2 = frag1->col + (frag1->line->col[frag1->start + frag1->len] -
frag1->line->col[frag1->start]) + 1;
} else {
for (k = frag1->start;
k < frag1->start + frag1->len &&
frag0->xMax <= 0.5 * (frag1->line->edge[k] +
frag1->line->edge[k+1]);
++k) ;
col2 = frag1->col +
frag1->line->col[k] - frag1->line->col[frag1->start];
}
break;
case 3:
if (frag0->yMax <= frag1->yMin) {
col2 = frag1->col + (frag1->line->col[frag1->start + frag1->len] -
frag1->line->col[frag1->start]) + 1;
} else {
for (k = frag1->start;
k < frag1->start + frag1->len &&
frag0->yMax <= 0.5 * (frag1->line->edge[k] +
frag1->line->edge[k+1]);
++k) ;
col2 = frag1->col +
frag1->line->col[k] - frag1->line->col[frag1->start];
}
break;
}
if (col2 > col1) {
col1 = col2;
}
}
frag0->col = col1;
}
// the region includes text at different rotations -- use the
// globally assigned column numbers, offset by the minimum column
// number (i.e., shift everything over to column 0)
} else {
col1 = frags[0].col;
for (i = 1; i < nFrags; ++i) {
if (frags[i].col < col1) {
col1 = frags[i].col;
}
}
for (i = 0; i < nFrags; ++i) {
frags[i].col -= col1;
}
}
}
int TextPage::dumpFragment(Unicode *text, int len, UnicodeMap *uMap,
GString *s) {
char lre[8], rle[8], popdf[8], buf[8];
int lreLen, rleLen, popdfLen, n;
int nCols, i, j, k;
nCols = 0;
if (uMap->isUnicode()) {
lreLen = uMap->mapUnicode(0x202a, lre, sizeof(lre));
rleLen = uMap->mapUnicode(0x202b, rle, sizeof(rle));
popdfLen = uMap->mapUnicode(0x202c, popdf, sizeof(popdf));
if (primaryLR) {
i = 0;
while (i < len) {
// output a left-to-right section
for (j = i; j < len && !unicodeTypeR(text[j]); ++j) ;
for (k = i; k < j; ++k) {
n = uMap->mapUnicode(text[k], buf, sizeof(buf));
s->append(buf, n);
++nCols;
}
i = j;
// output a right-to-left section
for (j = i; j < len && !unicodeTypeL(text[j]); ++j) ;
if (j > i) {
s->append(rle, rleLen);
for (k = j - 1; k >= i; --k) {
n = uMap->mapUnicode(text[k], buf, sizeof(buf));
s->append(buf, n);
++nCols;
}
s->append(popdf, popdfLen);
i = j;
}
}
} else {
s->append(rle, rleLen);
i = len - 1;
while (i >= 0) {
// output a right-to-left section
for (j = i; j >= 0 && !unicodeTypeL(text[j]); --j) ;
for (k = i; k > j; --k) {
n = uMap->mapUnicode(text[k], buf, sizeof(buf));
s->append(buf, n);
++nCols;
}
i = j;
// output a left-to-right section
for (j = i; j >= 0 && !unicodeTypeR(text[j]); --j) ;
if (j < i) {
s->append(lre, lreLen);
for (k = j + 1; k <= i; ++k) {
n = uMap->mapUnicode(text[k], buf, sizeof(buf));
s->append(buf, n);
++nCols;
}
s->append(popdf, popdfLen);
i = j;
}
}
s->append(popdf, popdfLen);
}
} else {
for (i = 0; i < len; ++i) {
n = uMap->mapUnicode(text[i], buf, sizeof(buf));
s->append(buf, n);
nCols += n;
}
}
return nCols;
}
#if TEXTOUT_WORD_LIST
TextWordList *TextPage::makeWordList(GBool physLayout) {
return new TextWordList(this, physLayout);
}
#endif
//------------------------------------------------------------------------
// TextOutputDev
//------------------------------------------------------------------------
static void outputToFile(void *stream, char *text, int len) {
fwrite(text, 1, len, (FILE *)stream);
}
TextOutputDev::TextOutputDev(char *fileName, GBool physLayoutA,
GBool rawOrderA, GBool append) {
text = NULL;
physLayout = physLayoutA;
rawOrder = rawOrderA;
doHTML = gFalse;
ok = gTrue;
// open file
needClose = gFalse;
if (fileName) {
if (!strcmp(fileName, "-")) {
outputStream = stdout;
#ifdef WIN32
// keep DOS from munging the end-of-line characters
setmode(fileno(stdout), O_BINARY);
#endif
} else if ((outputStream = fopen(fileName, append ? "ab" : "wb"))) {
needClose = gTrue;
} else {
error(-1, "Couldn't open text file '%s'", fileName);
ok = gFalse;
return;
}
outputFunc = &outputToFile;
} else {
outputStream = NULL;
}
// set up text object
text = new TextPage(rawOrderA);
}
TextOutputDev::TextOutputDev(TextOutputFunc func, void *stream,
GBool physLayoutA, GBool rawOrderA) {
outputFunc = func;
outputStream = stream;
needClose = gFalse;
physLayout = physLayoutA;
rawOrder = rawOrderA;
doHTML = gFalse;
text = new TextPage(rawOrderA);
ok = gTrue;
}
TextOutputDev::~TextOutputDev() {
if (needClose) {
#ifdef MACOS
ICS_MapRefNumAndAssign((short)((FILE *)outputStream)->handle);
#endif
fclose((FILE *)outputStream);
}
if (text) {
delete text;
}
}
void TextOutputDev::startPage(int pageNum, GfxState *state, double x1,double y1,double x2,double y2) {
text->startPage(state);
}
void TextOutputDev::endPage() {
text->endPage();
text->coalesce(physLayout, doHTML);
if (outputStream) {
text->dump(outputStream, outputFunc, physLayout);
}
}
void TextOutputDev::updateFont(GfxState *state) {
text->updateFont(state);
}
void TextOutputDev::beginString(GfxState *state, GString *s) {
}
void TextOutputDev::endString(GfxState *state) {
}
void TextOutputDev::drawChar(GfxState *state, double x, double y,
double dx, double dy,
double originX, double originY,
CharCode c, int nBytes, Unicode *u, int uLen) {
text->addChar(state, x, y, dx, dy, c, nBytes, u, uLen);
}
void TextOutputDev::stroke(GfxState *state) {
GfxPath *path;
GfxSubpath *subpath;
double x[2], y[2];
if (!doHTML) {
return;
}
path = state->getPath();
if (path->getNumSubpaths() != 1) {
return;
}
subpath = path->getSubpath(0);
if (subpath->getNumPoints() != 2) {
return;
}
state->transform(subpath->getX(0), subpath->getY(0), &x[0], &y[0]);
state->transform(subpath->getX(1), subpath->getY(1), &x[1], &y[1]);
// look for a vertical or horizontal line
if (x[0] == x[1] || y[0] == y[1]) {
text->addUnderline(x[0], y[0], x[1], y[1]);
}
}
void TextOutputDev::fill(GfxState *state) {
GfxPath *path;
GfxSubpath *subpath;
double x[5], y[5];
double rx0, ry0, rx1, ry1, t;
int i;
if (!doHTML) {
return;
}
path = state->getPath();
if (path->getNumSubpaths() != 1) {
return;
}
subpath = path->getSubpath(0);
if (subpath->getNumPoints() != 5) {
return;
}
for (i = 0; i < 5; ++i) {
if (subpath->getCurve(i)) {
return;
}
state->transform(subpath->getX(i), subpath->getY(i), &x[i], &y[i]);
}
// look for a rectangle
if (x[0] == x[1] && y[1] == y[2] && x[2] == x[3] && y[3] == y[4] &&
x[0] == x[4] && y[0] == y[4]) {
rx0 = x[0];
ry0 = y[0];
rx1 = x[2];
ry1 = y[1];
} else if (y[0] == y[1] && x[1] == x[2] && y[2] == y[3] && x[3] == x[4] &&
x[0] == x[4] && y[0] == y[4]) {
rx0 = x[0];
ry0 = y[0];
rx1 = x[1];
ry1 = y[2];
} else {
return;
}
if (rx1 < rx0) {
t = rx0;
rx0 = rx1;
rx1 = t;
}
if (ry1 < ry0) {
t = ry0;
ry0 = ry1;
ry1 = t;
}
// skinny horizontal rectangle
if (ry1 - ry0 < rx1 - rx0) {
if (ry1 - ry0 < maxUnderlineWidth) {
ry0 = 0.5 * (ry0 + ry1);
text->addUnderline(rx0, ry0, rx1, ry0);
}
// skinny vertical rectangle
} else {
if (rx1 - rx0 < maxUnderlineWidth) {
rx0 = 0.5 * (rx0 + rx1);
text->addUnderline(rx0, ry0, rx0, ry1);
}
}
}
void TextOutputDev::eoFill(GfxState *state) {
if (!doHTML) {
return;
}
fill(state);
}
void TextOutputDev::processLink(Link *link, Catalog *catalog) {
double x1, y1, x2, y2;
int xMin, yMin, xMax, yMax, x, y;
if (!doHTML) {
return;
}
link->getRect(&x1, &y1, &x2, &y2);
cvtUserToDev(x1, y1, &x, &y);
xMin = xMax = x;
yMin = yMax = y;
cvtUserToDev(x1, y2, &x, &y);
if (x < xMin) {
xMin = x;
} else if (x > xMax) {
xMax = x;
}
if (y < yMin) {
yMin = y;
} else if (y > yMax) {
yMax = y;
}
cvtUserToDev(x2, y1, &x, &y);
if (x < xMin) {
xMin = x;
} else if (x > xMax) {
xMax = x;
}
if (y < yMin) {
yMin = y;
} else if (y > yMax) {
yMax = y;
}
cvtUserToDev(x2, y2, &x, &y);
if (x < xMin) {
xMin = x;
} else if (x > xMax) {
xMax = x;
}
if (y < yMin) {
yMin = y;
} else if (y > yMax) {
yMax = y;
}
text->addLink(xMin, yMin, xMax, yMax, link);
}
GBool TextOutputDev::findText(Unicode *s, int len,
GBool startAtTop, GBool stopAtBottom,
GBool startAtLast, GBool stopAtLast,
GBool caseSensitive, GBool backward,
double *xMin, double *yMin,
double *xMax, double *yMax) {
return text->findText(s, len, startAtTop, stopAtBottom,
startAtLast, stopAtLast, caseSensitive, backward,
xMin, yMin, xMax, yMax);
}
GString *TextOutputDev::getText(double xMin, double yMin,
double xMax, double yMax) {
return text->getText(xMin, yMin, xMax, yMax);
}
GBool TextOutputDev::findCharRange(int pos, int length,
double *xMin, double *yMin,
double *xMax, double *yMax) {
return text->findCharRange(pos, length, xMin, yMin, xMax, yMax);
}
#if TEXTOUT_WORD_LIST
TextWordList *TextOutputDev::makeWordList() {
return text->makeWordList(physLayout);
}
#endif
TextPage *TextOutputDev::takeText() {
TextPage *ret;
ret = text;
text = new TextPage(rawOrder);
return ret;
}