/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- strdup_n
- qstrdup
- qstrndup
- allocprintf
- mem_init
- mem_clear
- mem_destroy
- mem_put_
- mem_put
- mem_putstring
- mem_get
- medianf
- ringbuffer_init
- ringbuffer_read
- ringbuffer_put
- ringbuffer_clear
- heap_init
- heap_new
- heap_clone
- heap_clear
- heap_destroy
- up
- down
- heap_put
- heap_size
- heap_peek
- heap_chopmax
- heap_dump
- heap_flatten
- trie_new
- _trie_put
- _trie_remove
- trie_put
- trie_remove
- trie_contains
- trie_lookup
- trie_rollback_adds
- trie_rollback_removes
- _trie_dump
- trie_dump
- trie_remember
- trie_rollback
- crc32_init
- string_set2
- string_set
- string_new
- string_new2
- string_new3
- string_new4
- string_free
- string_cstr
- string_escape
- crc32_add_byte
- crc32_add_string
- crc32_add_bytes
- string_hash
- string_hash2
- string_hash3
- string_dup2
- string_dup
- string_equals
- string_equals2
- stringarray_init
- stringarray_put
- stringarray_at
- stringarray_at2
- stringlist_del
- stringarray_del
- stringarray_find
- stringarray_clear
- stringarray_destroy
- ptr_equals
- ptr_hash
- ptr_dup
- ptr_free
- int_equals
- int_hash
- int_dup
- int_free
- charptr_equals
- charptr_hash
- charptr_dup
- charptr_free
- stringstruct_equals
- stringstruct_hash
- string_dup3
- stringstruct_free
- max
- dict_new
- dict_new2
- dict_init
- dict_init2
- dict_clone
- dict_expand
- dict_put
- dict_put2
- dict_dump
- dict_count
- dict_do_lookup
- dict_lookup
- dict_contains
- dict_del
- dict_del2
- dict_get_slot
- dict_foreach_keyvalue
- dict_foreach_value
- dict_free_all
- dict_clear_shallow
- dict_clear
- dict_destroy_shallow
- dict_destroy
- mtf_new
- mtf_increase
- mtf_destroy
- map_init
- map_put
- map_lookup
- freestring
- dumpmapentry
- map_dump
- map_clear
- map_destroy
- array_new
- array_new2
- array_getkey
- array_getvalue
- array_append
- array_find
- array_find2
- array_update
- array_append_if_new
- array_free
- list_length_
- list_concat_
- list_append_
- list_prepend_
- list_free_
- list_deep_free_
- list_clone_
/* q.c
Part of the swftools package.
Copyright (c) 2001,2002,2003,2004 Matthias Kramm <kramm@quiss.org>
This program is rfx_free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the rfx_free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the rfx_free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include <memory.h>
#include "mem.h"
#include "types.h"
#include "q.h"
// ------------------------------- malloc, alloc routines ---------------------
#ifndef STRNDUP
char* strdup_n(const char*str, int size)
{
char*m = (char*)rfx_alloc(size+1);
memcpy(m, str, size);
m[size] = 0;
return m;
}
#endif
char*qstrdup(const char*string)
{
return strdup(string);
}
char*qstrndup(const char*string, int len)
{
return strdup_n(string, len);
}
char* allocprintf(const char*format, ...)
{
va_list arglist1;
va_start(arglist1, format);
char dummy;
int l = vsnprintf(&dummy, 1, format, arglist1);
va_end(arglist1);
va_list arglist2;
va_start(arglist2, format);
char*buf = malloc(l+1);
vsnprintf(buf, l+1, format, arglist2);
va_end(arglist2);
return buf;
}
// ------------------------------- mem_t --------------------------------------
void mem_init(mem_t*mem)
{
memset(mem, 0, sizeof(mem_t));
}
void mem_clear(mem_t*mem)
{
rfx_free(mem->buffer);mem->buffer = 0;
}
void mem_destroy(mem_t*mem)
{
mem_clear(mem);
rfx_free(mem);
}
static int mem_put_(mem_t*m,const void*data, int length, int null)
{
int n = m->pos;
m->pos += length + (null?1:0);
if(m->pos > m->len) {
int v1 = (m->pos+63)&~63;
int v2 = m->len + m->len / 2;
m->len = v1>v2?v1:v2;
m->buffer = m->buffer?(char*)rfx_realloc(m->buffer,m->len):(char*)rfx_alloc(m->len);
}
assert(n+length <= m->len);
memcpy(&m->buffer[n], data, length);
if(null)
m->buffer[n + length] = 0;
return n;
}
int mem_put(mem_t*m,void*data, int length)
{
return mem_put_(m, data, length, 0);
}
int mem_putstring(mem_t*m,string_t str)
{
return mem_put_(m, str.str, str.len, 1);
}
int mem_get(mem_t*m, void*data, int length)
{
if(m->read_pos + length > m->pos) {
length = m->pos - m->read_pos;
}
memcpy(data, m->buffer+m->read_pos, length);
m->read_pos += length;
return length;
}
// ------------------------------- median -------------------------------------
float medianf(float*a, int n)
{
int i,j,l,m;
float x;
int k=n&1?n/2:n/2-1;
l=0;
m=n-1;
while(l<m) {
x=a[k];
i=l;j=m;
do {
while(a[i]<x) i++;
while(x<a[j]) j--;
if(i<=j) {
//swap
float t = a[i];
a[i] = a[j];
a[j] = t;
i++;
j--;
}
} while(i<=j);
if(j<k) l=i;
if(k<i) m=j;
}
return a[k];
}
// ------------------------------- ringbuffer_t -------------------------------
typedef struct _ringbuffer_internal_t
{
unsigned char*buffer;
int readpos;
int writepos;
int buffersize;
} ringbuffer_internal_t;
void ringbuffer_init(ringbuffer_t*r)
{
ringbuffer_internal_t*i = (ringbuffer_internal_t*)rfx_calloc(sizeof(ringbuffer_internal_t));
memset(r, 0, sizeof(ringbuffer_t));
r->internal = i;
i->buffer = (unsigned char*)rfx_alloc(1024);
i->buffersize = 1024;
}
int ringbuffer_read(ringbuffer_t*r, void*buf, int len)
{
unsigned char* data = (unsigned char*)buf;
ringbuffer_internal_t*i = (ringbuffer_internal_t*)r->internal;
if(r->available < len)
len = r->available;
if(!len)
return 0;
if(i->readpos + len > i->buffersize) {
int read1 = i->buffersize-i->readpos;
memcpy(data, &i->buffer[i->readpos], read1);
memcpy(&data[read1], &i->buffer[0], len - read1);
i->readpos = len - read1;
} else {
memcpy(data, &i->buffer[i->readpos], len);
i->readpos += len;
i->readpos %= i->buffersize;
}
r->available -= len;
return len;
}
void ringbuffer_put(ringbuffer_t*r, void*buf, int len)
{
unsigned char* data = (unsigned char*)buf;
ringbuffer_internal_t*i = (ringbuffer_internal_t*)r->internal;
if(i->buffersize - r->available < len)
{
unsigned char* buf2;
int newbuffersize = i->buffersize;
int oldavailable = r->available;
newbuffersize*=3;newbuffersize/=2; /*grow at least by 50% each time */
if(newbuffersize < r->available + len)
newbuffersize = r->available + len + 1024;
buf2 = (unsigned char*)rfx_alloc(newbuffersize);
ringbuffer_read(r, buf2, r->available);
rfx_free(i->buffer);
i->buffer = buf2;
i->buffersize = newbuffersize;
i->readpos = 0;
i->writepos = oldavailable;
r->available = oldavailable;
}
if(i->writepos + len > i->buffersize) {
int read1 = i->buffersize-i->writepos;
memcpy(&i->buffer[i->writepos], data, read1);
memcpy(&i->buffer[0], &data[read1], len - read1);
i->writepos = len - read1;
} else {
memcpy(&i->buffer[i->writepos], data, len);
i->writepos += len;
i->writepos %= i->buffersize;
}
r->available += len;
}
void ringbuffer_clear(ringbuffer_t*r)
{
ringbuffer_internal_t*i = (ringbuffer_internal_t*)r->internal;
rfx_free(i->buffer);i->buffer = 0;
rfx_free(i);
}
// ------------------------------- heap_t -------------------------------
void heap_init(heap_t*h,int elem_size, int(*compare)(const void *, const void *))
{
memset(h, 0, sizeof(heap_t));
h->size = 0;
h->elem_size = elem_size;
h->compare = compare;
h->elements = 0;
h->max_size = 0;
}
heap_t* heap_new(int elem_size, int(*compare)(const void *, const void *))
{
heap_t*h = malloc(sizeof(heap_t));
heap_init(h, elem_size, compare);
return h;
}
heap_t* heap_clone(heap_t*o)
{
heap_t*h = malloc(sizeof(heap_t));
memcpy(h, o, sizeof(heap_t));
h->elements = rfx_alloc(sizeof(void*)*h->size);
int t;
for(t=0;t<h->size;t++) {
h->elements[t] = rfx_alloc(h->elem_size);
memcpy(h->elements[t], o->elements[t], h->elem_size);
}
return h;
}
void heap_clear(heap_t*h)
{
int t;
for(t=0;t<h->size;t++) {
rfx_free(h->elements[t]);
h->elements[t]=0;
}
rfx_free(h->elements);
}
void heap_destroy(heap_t*h)
{
heap_clear(h);
free(h);
}
#define HEAP_NODE_LARGER(h,node1,node2) ((h)->compare((node1),(node2))>0)
#define HEAP_NODE_SMALLER(h,node1,node2) ((h)->compare((node1),(node2))<0)
static void up(heap_t*h, int node)
{
void*node_p = h->elements[node];
int parent = node;
int tmp = node;
do {
node = parent;
if(!node) break;
parent = (node-1)/2;
h->elements[node] = h->elements[parent];
} while(HEAP_NODE_SMALLER(h, h->elements[parent], node_p));
h->elements[node] = node_p;
}
static void down(heap_t*h, int node)
{
void*node_p = h->elements[node];
int child = node;
do {
node = child;
/* determine new child's position */
child = node<<1|1;
if(child >= h->size)
break;
if(child+1 < h->size && HEAP_NODE_SMALLER(h,h->elements[child],h->elements[child+1])) // search for bigger child
child++;
h->elements[node] = h->elements[child];
} while(HEAP_NODE_SMALLER(h,node_p, h->elements[child]));
h->elements[node] = node_p;
}
void heap_put(heap_t*h, void*e)
{
int pos = h->size++;
void*data = rfx_alloc(h->elem_size);
memcpy(data,e,h->elem_size);
if(pos>=h->max_size) {
h->max_size = h->max_size<15?15:(h->max_size+1)*2-1;
h->elements = (void**)rfx_realloc(h->elements, h->max_size*sizeof(void*));
assert(pos<h->max_size);
}
h->elements[pos] = data;
up(h, pos);
}
int heap_size(heap_t*h)
{
return h->size;
}
void* heap_peek(heap_t*h)
{
if(!h || !h->size)
return 0;
return h->elements[0];
}
void* heap_chopmax(heap_t*h)
{
if(!h->size)
return 0;
void*p = h->elements[0];
h->elements[0] = h->elements[--h->size];
down(h,0);
return p;
}
void heap_dump(heap_t*h, FILE*fi)
{
int t;
for(t=0;t<h->size;t++) {
int s;
for(s=0;s<=t;s=(s+1)*2-1) {
if(s==t) fprintf(fi,"\n");
}
//fprintf(fi,"%d ", h->elements[t]->x); //?
}
}
void** heap_flatten(heap_t*h)
{
void**nodes = (void**)rfx_alloc((h->size+1)*sizeof(void*));
void**p = nodes;
while(h->size) {
/*printf("Heap Size: %d\n", h->size);
heap_print(stdout, h);
printf("\n");*/
*p++ = heap_chopmax(h);
}
*p++ = 0;
return nodes;
}
// ------------------------------- trie --------------------------------------
trie_t*trie_new()
{
return (trie_t*)rfx_calloc(sizeof(trie_t));
}
static char _trie_put(trielayer_t**t, unsigned const char*id, void*data)
{
if(!*t) {
(*t) = rfx_calloc(sizeof(trielayer_t));
(*t)->rest = (unsigned char*)strdup((char*)id);
(*t)->data = data;
return 0;
}
if((*t)->rest && (*t)->rest[0]) {
// make room: shift whatever's currently in here one node down
_trie_put(&(*t)->row[(*t)->rest[0]], (*t)->rest+1, (*t)->data);
(*t)->rest = 0;
}
if(id[0]) {
return _trie_put(&(*t)->row[id[0]], id+1, data);
} else {
char overwrite = 0;
if((*t)->rest)
overwrite = 1;
(*t)->rest = (unsigned char*)strdup("");
(*t)->data = data;
return overwrite;
}
}
static char _trie_remove(trielayer_t*t, unsigned const char*id)
{
while(t) {
if(t->rest && !strcmp((char*)t->rest, (char*)id)) {
free(t->rest);
t->rest = 0;
return 1;
}
if(!*id)
return 0;
t = t->row[*id++];
}
return 0;
}
static void trie_rollback_removes(trie_t*t, unsigned const char*id, void*data);
static void trie_rollback_adds(trie_t*t, unsigned const char*id, void*data);
void trie_put(trie_t*t, unsigned const char*id, void*data)
{
if(!t->rollback) {
_trie_put(&t->start, id, data);
} else {
char contains = trie_contains(t, id);
void*olddata = contains?trie_lookup(t, id):0;
_trie_put(&t->start, id, data);
if(contains) {
trie_rollback_adds(t, id, olddata);
}
trie_rollback_removes(t, id, data);
}
}
char trie_remove(trie_t*t, unsigned const char*id)
{
if(!t->rollback) {
return _trie_remove(t->start, id);
} else {
void*olddata = trie_lookup(t, id);
char exists = _trie_remove(t->start, id);
if(exists) {
trie_rollback_adds(t, id, olddata);
}
return exists;
}
}
int trie_contains(trie_t*trie, unsigned const char*id)
{
trielayer_t*t = trie->start;
while(t) {
if(t->rest && !strcmp((char*)t->rest, (char*)id))
return 1;
if(!*id)
return 0;
t = t->row[*id++];
}
return 0;
}
void* trie_lookup(trie_t*trie, unsigned const char*id)
{
trielayer_t*t = trie->start;
while(t) {
if(t->rest && !strcmp((char*)t->rest, (char*)id))
return t->data;
if(!*id)
return 0;
t = t->row[*id++];
}
return 0;
}
typedef struct _triememory {
const unsigned char*key;
void*data;
char del; // 0/1
struct _triememory*next;
} triememory_t;
typedef struct _trierollback {
triememory_t*ops;
struct _trierollback*prev;
} trierollback_t;
static void trie_rollback_adds(trie_t*t, unsigned const char*id, void*data)
{
trierollback_t*rollback = (trierollback_t*)t->rollback;
triememory_t*m = (triememory_t*)rfx_calloc(sizeof(triememory_t));
m->key = id;
m->data = data;
m->del = 0;
m->next = rollback->ops;
rollback->ops = m;
}
static void trie_rollback_removes(trie_t*t, unsigned const char*id, void*data)
{
trierollback_t*rollback = (trierollback_t*)t->rollback;
triememory_t*m = (triememory_t*)rfx_calloc(sizeof(triememory_t));
m->key = id;
m->data = data;
m->del = 1;
m->next = rollback->ops;
rollback->ops = m;
}
void _trie_dump(trielayer_t*t, char*buffer, int pos)
{
int i;
for(i=0;i<256;i++) {
if(t->row[i]) {
buffer[pos]=i;
_trie_dump(t->row[i], buffer, pos+1);
}
}
if(t->rest) {
buffer[pos]=0;
printf("%s%s %08x\n", buffer, t->rest, (int)t->data);
}
}
void trie_dump(trie_t*t)
{
char buffer[256];
_trie_dump(t->start, buffer, 0);
}
void trie_remember(trie_t*t)
{
trierollback_t*old = (trierollback_t*)t->rollback;
t->rollback = (trierollback_t*)rfx_calloc(sizeof(trierollback_t));
((trierollback_t*)t->rollback)->prev = old;
}
void trie_rollback(trie_t*t)
{
trierollback_t*rollback = (trierollback_t*)t->rollback;
if(!rollback) {
fprintf(stderr, "Internal error: can't roll back this trie any further\n");
return;
}
t->rollback = ((trierollback_t*)t->rollback)->prev;
triememory_t*op = rollback->ops;
while(op) {
triememory_t*next = op->next;
if(op->del) {
if(!_trie_remove(t->start, op->key)) {
fprintf(stderr, "Internal error: can't delete key %s in trie during rollback\n", op->key);
}
} else {
if(_trie_put(&t->start, op->key, op->data)) {
fprintf(stderr, "Internal error: overwrote key %s in trie during rollback\n", op->key);
}
}
free(op);
op = next;
}
}
// ------------------------------- crc32 --------------------------------------
static unsigned int crc32[256];
static char crc32_initialized=0;
static void crc32_init(void)
{
int t;
if(crc32_initialized)
return;
crc32_initialized = 1;
for(t=0; t<256; t++) {
unsigned int c = t;
int s;
for (s = 0; s < 8; s++) {
c = (0xedb88320L*(c&1)) ^ (c >> 1);
}
crc32[t] = c;
}
}
// ------------------------------- string_t -----------------------------------
void string_set2(string_t*str, const char*text, int len)
{
str->len = len;
str->str = text;
}
void string_set(string_t*str, const char*text)
{
if(text) {
str->len = strlen(text);
} else {
str->len = 0;
}
str->str = text;
}
string_t string_new(const char*text, int len)
{
string_t s;
s.len = len;
s.str = text;
return s;
}
string_t string_new2(const char*text)
{
string_t s;
if(text) {
s.len = strlen(text);
} else {
s.len = 0;
}
s.str = text;
return s;
}
string_t* string_new3(const char*text, int len)
{
if(!text) {
string_t*s = malloc(sizeof(string_t));
s->len = 0;
s->str = 0;
return s;
} else {
string_t*s = malloc(sizeof(string_t)+len+1);
s->len = len;
s->str = (const char*)(s+1);
memcpy((char*)s->str, text, len);
((char*)s->str)[len]=0;
return s;
}
}
string_t* string_new4(const char*text)
{
int l = strlen(text);
return string_new3(text, l);
}
void string_free(string_t*s)
{
if(!s)
return;
s->len = 0;
if((string_t*)(s->str) == s+1) {
s->str = 0;
rfx_free(s);
} else {
rfx_free((char*)(s->str));
s->str = 0;
rfx_free(s);
}
}
char* string_cstr(string_t*str)
{
return strdup_n(str->str, str->len);
}
char* string_escape(string_t*str)
{
int t;
int len = 0;
for(t=0;t<str->len;t++) {
if(str->str[t]<0x20)
len+=3;
else
len++;
}
char*s = malloc(len+1);
char*p=s;
for(t=0;t<str->len;t++) {
if(str->str[t]<0x20) {
*p++ ='\\';
unsigned char c = str->str[t];
*p++ = "0123456789abcdef"[c>>4];
*p++ = "0123456789abcdef"[c&0x0f];
} else {
*p++ = str->str[t];
}
}
*p++ = 0;
assert(p == &s[len+1]);
return s;
}
unsigned int crc32_add_byte(unsigned int checksum, unsigned char b)
{
crc32_init();
return checksum>>8 ^ crc32[(b^checksum)&0xff];
}
unsigned int crc32_add_string(unsigned int checksum, const char*s)
{
crc32_init();
if(!s)
return checksum;
while(*s) {
checksum = checksum>>8 ^ crc32[(*s^checksum)&0xff];
s++;
}
return checksum;
}
unsigned int crc32_add_bytes(unsigned int checksum, const void*_s, int len)
{
unsigned char*s = (unsigned char*)_s;
crc32_init();
if(!s || !len)
return checksum;
do {
checksum = checksum>>8 ^ crc32[(*s^checksum)&0xff];
s++;
} while(--len);
return checksum;
}
unsigned int string_hash(const string_t*str)
{
int t;
unsigned int checksum = 0;
crc32_init();
for(t=0;t<str->len;t++) {
checksum = checksum>>8 ^ crc32[(str->str[t]^checksum)&0xff];
}
return checksum;
}
unsigned int string_hash2(const char*str)
{
unsigned int checksum = 0;
const char*p = str;
crc32_init();
while(*p) {
checksum = checksum>>8 ^ crc32[(*p^checksum)&0xff];
p++;
}
return checksum;
}
unsigned int string_hash3(const char*str, int len)
{
string_t s;
s.str = str;
s.len = len;
return string_hash(&s);
}
void string_dup2(string_t*str, const char*text, int len)
{
str->len = len;
str->str = strdup_n(text, len);
}
void string_dup(string_t*str, const char*text)
{
str->len = strlen(text);
str->str = strdup(text);
}
int string_equals(string_t*str, const char*text)
{
int l = strlen(text);
if(str->len == l && !memcmp(str->str, text, l))
return 1;
return 0;
}
int string_equals2(string_t*str, string_t*str2)
{
if(str->len == str2->len && !memcmp(str->str, str2->str, str->len))
return 1;
return 0;
}
// ------------------------------- stringarray_t ------------------------------
typedef struct _stringlist {
int index;
struct _stringlist*next;
} stringlist_t;
typedef struct _stringarray_internal_t
{
mem_t pos;
stringlist_t**hash;
int num;
int hashsize;
} stringarray_internal_t;
void stringarray_init(stringarray_t*sa, int hashsize)
{
stringarray_internal_t*s;
int t;
sa->internal = (stringarray_internal_t*)rfx_calloc(sizeof(stringarray_internal_t));
s = (stringarray_internal_t*)sa->internal;
mem_init(&s->pos);
s->hash = rfx_calloc(sizeof(stringlist_t*)*hashsize);
s->hashsize = hashsize;
}
void stringarray_put(stringarray_t*sa, string_t str)
{
stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
int pos;
int hash = string_hash(&str) % s->hashsize;
char*ss = string_cstr(&str);
mem_put(&s->pos, &ss, sizeof(char*));
stringlist_t*l = rfx_alloc(sizeof(stringlist_t));
l->index = s->num;
l->next = s->hash[hash];
s->hash[hash] = l;
s->num++;
}
char* stringarray_at(stringarray_t*sa, int pos)
{
stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
char*p;
if(pos<0 || pos>=s->num)
return 0;
p = *(char**)&s->pos.buffer[pos*sizeof(char*)];
if(p<0)
return 0;
return p;
}
string_t stringarray_at2(stringarray_t*sa, int pos)
{
string_t s;
s.str = stringarray_at(sa, pos);
s.len = s.str?strlen(s.str):0;
return s;
}
static stringlist_t* stringlist_del(stringarray_t*sa, stringlist_t*l, int index)
{
stringlist_t*ll = l;
stringlist_t*old = l;
while(l) {
if(index==l->index) {
old->next = l->next;
memset(l, 0, sizeof(stringlist_t));
rfx_free(l);
if(old==l)
return 0;
else
return ll;
}
old = l;
l = l->next;
}
fprintf(stderr, "Internal error: did not find string %d in hash\n", index);
return ll;
}
void stringarray_del(stringarray_t*sa, int pos)
{
stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
string_t str = stringarray_at2(sa, pos);
int hash = string_hash(&str) % s->hashsize;
s->hash[hash] = stringlist_del(sa, s->hash[hash], pos);
*(char**)&s->pos.buffer[pos*sizeof(char*)] = 0;
}
int stringarray_find(stringarray_t*sa, string_t* str)
{
stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
int hash = string_hash(str) % s->hashsize;
int t;
stringlist_t*l = s->hash[hash];
//TODO: statistics
while(l) {
string_t s = stringarray_at2(sa, l->index);
if(string_equals2(str, &s)) {
return l->index;
}
l = l->next;
}
return -1;
}
void stringarray_clear(stringarray_t*sa)
{
stringarray_internal_t*s = (stringarray_internal_t*)sa->internal;
mem_clear(&s->pos);
int t;
for(t=0;t<s->hashsize;t++) {
stringlist_t*l = s->hash[t];
while(l) {
stringlist_t*next = l->next;
memset(l, 0, sizeof(stringlist_t));
rfx_free(l);
l = next;
}
}
rfx_free(s->hash);s->hash=0;
rfx_free(s);
}
void stringarray_destroy(stringarray_t*sa)
{
stringarray_clear(sa);
rfx_free(sa);
}
// ------------------------------- type_t -------------------------------
char ptr_equals(const void*o1, const void*o2)
{
return o1==o2;
}
unsigned int ptr_hash(const void*o)
{
return string_hash3((const char*)&o, sizeof(o));
}
void* ptr_dup(const void*o)
{
return (void*)o;
}
void ptr_free(void*o)
{
return;
}
char int_equals(const void*o1, const void*o2)
{
return o1==o2;
}
unsigned int int_hash(const void*o)
{
return string_hash3((const char*)&o, sizeof(o));
}
void* int_dup(const void*o)
{
return (void*)o;
}
void int_free(void*o)
{
return;
}
char charptr_equals(const void*o1, const void*o2)
{
if(!o1 || !o2)
return o1==o2;
return !strcmp(o1,o2);
}
unsigned int charptr_hash(const void*o)
{
if(!o)
return 0;
return string_hash2(o);
}
void* charptr_dup(const void*o)
{
if(!o)
return 0;
return strdup(o);
}
void charptr_free(void*o)
{
if(o) {
rfx_free(o);
}
}
char stringstruct_equals(const void*o1, const void*o2)
{
if(!o1 || !o2)
return o1==o2;
string_t*s1 = (string_t*)o1;
string_t*s2 = (string_t*)o2;
int l = s1->len<s2->len?s1->len:s2->len;
int r = memcmp(s1->str, s2->str, l);
if(r)
return 0;
else
return s1->len==s2->len;
}
unsigned int stringstruct_hash(const void*o)
{
if(!o) return 0;
return string_hash(o);
}
string_t*string_dup3(string_t*o)
{
if(!o) return 0;
if(!o->str) {
string_t*s = malloc(sizeof(string_t));
s->str=0;
s->len=0;
return s;
}
string_t*s = rfx_alloc(sizeof(string_t)+o->len+1);
s->len = o->len;
s->str = (const char*)(s+1);
memcpy((char*)s->str, o->str, s->len);
((char*)s->str)[s->len]=0;
return s;
}
void stringstruct_free(void*o)
{
if(o)
string_free(o);
}
type_t int_type = {
equals: int_equals,
hash: int_hash,
dup: int_dup,
free: int_free,
};
type_t ptr_type = {
equals: ptr_equals,
hash: ptr_hash,
dup: ptr_dup,
free: ptr_free,
};
type_t charptr_type = {
equals: charptr_equals,
hash: charptr_hash,
dup: charptr_dup,
free: charptr_free,
};
type_t stringstruct_type = {
equals: stringstruct_equals,
hash: stringstruct_hash,
dup: (dup_func)string_dup3,
free: stringstruct_free,
};
// ------------------------------- dictionary_t -------------------------------
#define INITIAL_SIZE 1
static int max(int x, int y) {
return x>y?x:y;
}
dict_t*dict_new()
{
dict_t*d = rfx_alloc(sizeof(dict_t));
dict_init(d, INITIAL_SIZE);
return d;
}
dict_t*dict_new2(type_t*t)
{
dict_t*d = rfx_alloc(sizeof(dict_t));
dict_init(d, INITIAL_SIZE);
d->key_type = t;
return d;
}
void dict_init(dict_t*h, int size)
{
memset(h, 0, sizeof(dict_t));
h->hashsize = size;
h->slots = h->hashsize?(dictentry_t**)rfx_calloc(sizeof(dictentry_t*)*h->hashsize):0;
h->num = 0;
h->key_type = &charptr_type;
}
void dict_init2(dict_t*h, type_t*t, int size)
{
memset(h, 0, sizeof(dict_t));
h->hashsize = size;
h->slots = h->hashsize?(dictentry_t**)rfx_calloc(sizeof(dictentry_t*)*h->hashsize):0;
h->num = 0;
h->key_type = t;
}
dict_t*dict_clone(dict_t*o)
{
dict_t*h = rfx_alloc(sizeof(dict_t));
memcpy(h, o, sizeof(dict_t));
h->slots = h->hashsize?(dictentry_t**)rfx_calloc(sizeof(dictentry_t*)*h->hashsize):0;
int t;
for(t=0;t<o->hashsize;t++) {
dictentry_t*e = o->slots[t];
while(e) {
dictentry_t*n = (dictentry_t*)rfx_alloc(sizeof(dictentry_t));
memcpy(n, e, sizeof(dictentry_t));
n->key = h->key_type->dup(e->key);
n->data = e->data;
n->next = h->slots[t];
h->slots[t] = n;
e = e->next;
}
}
return h;
}
static void dict_expand(dict_t*h, int newlen)
{
assert(h->hashsize < newlen);
dictentry_t**newslots = (dictentry_t**)rfx_calloc(sizeof(dictentry_t*)*newlen);
int t;
for(t=0;t<h->hashsize;t++) {
dictentry_t*e = h->slots[t];
while(e) {
dictentry_t*next = e->next;
unsigned int newhash = e->hash%newlen;
e->next = newslots[newhash];
newslots[newhash] = e;
e = next;
}
}
if(h->slots)
rfx_free(h->slots);
h->slots = newslots;
h->hashsize = newlen;
}
dictentry_t* dict_put(dict_t*h, const void*key, void* data)
{
unsigned int hash = h->key_type->hash(key);
dictentry_t*e = (dictentry_t*)rfx_alloc(sizeof(dictentry_t));
if(!h->hashsize)
dict_expand(h, 1);
unsigned int hash2 = hash % h->hashsize;
e->key = h->key_type->dup(key);
e->hash = hash; //for resizing
e->next = h->slots[hash2];
e->data = data;
h->slots[hash2] = e;
h->num++;
return e;
}
void dict_put2(dict_t*h, const char*s, void*data)
{
assert(h->key_type == &charptr_type);
dict_put(h, s, data);
}
void dict_dump(dict_t*h, FILE*fi, const char*prefix)
{
int t;
for(t=0;t<h->hashsize;t++) {
dictentry_t*e = h->slots[t];
while(e) {
if(h->key_type!=&charptr_type) {
fprintf(fi, "%s%08x=%08x\n", prefix, (int)e->key, (int)e->data);
} else {
fprintf(fi, "%s%s=%08x\n", prefix, (char*)e->key, (int)e->data);
}
e = e->next;
}
}
}
int dict_count(dict_t*h)
{
return h->num;
}
static inline dictentry_t* dict_do_lookup(dict_t*h, const void*key)
{
if(!h->num) {
return 0;
}
unsigned int ohash = h->key_type->hash(key);
unsigned int hash = ohash % h->hashsize;
/* check first entry for match */
dictentry_t*e = h->slots[hash];
if(e && h->key_type->equals(e->key, key)) {
return e;
} else if(e) {
e = e->next;
}
/* if dict is 2/3 filled, double the size. Do
this the first time we have to actually iterate
through a slot to find our data */
if(e && h->num*3 >= h->hashsize*2) {
int newsize = h->hashsize;
while(h->num*3 >= newsize*2) {
newsize = newsize<15?15:(newsize+1)*2-1;
}
dict_expand(h, newsize);
hash = ohash % h->hashsize;
e = h->slots[hash];
if(e && h->key_type->equals(e->key, key)) {
// omit move to front
return e;
} else if(e) {
e = e->next;
}
}
/* check subsequent entries for a match */
dictentry_t*last = h->slots[hash];
while(e) {
if(h->key_type->equals(e->key, key)) {
/* move to front- makes a difference of about 10% in most applications */
last->next = e->next;
e->next = h->slots[hash];
h->slots[hash] = e;
return e;
}
last=e;
e = e->next;
}
return 0;
}
void* dict_lookup(dict_t*h, const void*key)
{
dictentry_t*e = dict_do_lookup(h, key);
if(e)
return e->data;
return 0;
}
char dict_contains(dict_t*h, const void*key)
{
dictentry_t*e = dict_do_lookup(h, key);
return !!e;
}
char dict_del(dict_t*h, const void*key)
{
if(!h->num)
return 0;
unsigned int hash = h->key_type->hash(key) % h->hashsize;
dictentry_t*head = h->slots[hash];
dictentry_t*e = head, *prev=0;
while(e) {
if(h->key_type->equals(e->key, key)) {
dictentry_t*next = e->next;
h->key_type->free(e->key);
memset(e, 0, sizeof(dictentry_t));
rfx_free(e);
if(e == head) {
h->slots[hash] = next;
} else {
assert(prev);
prev->next = next;
}
h->num--;
return 1;
}
prev = e;
e = e->next;
}
return 0;
}
char dict_del2(dict_t*h, const void*key, void*data)
{
if(!h->num)
return 0;
unsigned int hash = h->key_type->hash(key) % h->hashsize;
dictentry_t*head = h->slots[hash];
dictentry_t*e = head, *prev=0;
while(e) {
if(h->key_type->equals(e->key, key) && e->data == data) {
dictentry_t*next = e->next;
h->key_type->free(e->key);
memset(e, 0, sizeof(dictentry_t));
rfx_free(e);
if(e == head) {
h->slots[hash] = next;
} else {
assert(prev);
prev->next = next;
}
h->num--;
return 1;
}
prev = e;
e = e->next;
}
return 0;
}
dictentry_t* dict_get_slot(dict_t*h, const void*key)
{
if(!h->num)
return 0;
unsigned int ohash = h->key_type->hash(key);
unsigned int hash = ohash % h->hashsize;
return h->slots[hash];
}
void dict_foreach_keyvalue(dict_t*h, void (*runFunction)(void*data, const void*key, void*val), void*data)
{
int t;
for(t=0;t<h->hashsize;t++) {
dictentry_t*e = h->slots[t];
while(e) {
dictentry_t*next = e->next;
if(runFunction) {
runFunction(data, e->key, e->data);
}
e = e->next;
}
}
}
void dict_foreach_value(dict_t*h, void (*runFunction)(void*))
{
int t;
for(t=0;t<h->hashsize;t++) {
dictentry_t*e = h->slots[t];
while(e) {
dictentry_t*next = e->next;
if(runFunction) {
runFunction(e->data);
}
e = e->next;
}
}
}
void dict_free_all(dict_t*h, char free_keys, void (*free_data_function)(void*))
{
int t;
for(t=0;t<h->hashsize;t++) {
dictentry_t*e = h->slots[t];
while(e) {
dictentry_t*next = e->next;
if(free_keys) {
h->key_type->free(e->key);
}
if(free_data_function) {
free_data_function(e->data);
}
memset(e, 0, sizeof(dictentry_t));
rfx_free(e);
e = next;
}
h->slots[t]=0;
}
rfx_free(h->slots);
memset(h, 0, sizeof(dict_t));
}
void dict_clear_shallow(dict_t*h)
{
dict_free_all(h, 0, 0);
}
void dict_clear(dict_t*h)
{
dict_free_all(h, 1, 0);
}
void dict_destroy_shallow(dict_t*dict)
{
dict_clear_shallow(dict);
rfx_free(dict);
}
void dict_destroy(dict_t*dict)
{
if(!dict)
return;
dict_clear(dict);
rfx_free(dict);
}
// ------------------------------- mtf_t --------------------------------------
mtf_t* mtf_new(type_t*type)
{
NEW(mtf_t, mtf);
mtf->type = type;
return mtf;
}
void mtf_increase(mtf_t*m, const void*key)
{
mtf_item_t*item = m->first;
mtf_item_t*last = 0;
while(item) {
if(m->type->equals(item->key, key)) {
item->num++;
if(item->num>m->first->num) {
if(last) last->next = item->next;
else m->first = item->next;
item->next = m->first;
m->first = item;
}
return;
}
last = item;
item = item->next;
}
NEW(mtf_item_t,n);
if(last) last->next = n;
else m->first = n;
n->key = key;
n->num = 1;
}
void mtf_destroy(mtf_t*m)
{
if(!m) return;
mtf_item_t*item = m->first;
m->first = 0;
while(item) {
mtf_item_t*next = item->next;
item->next = 0;
free(item);
item = next;
}
free(m);
}
// ------------------------------- map_t --------------------------------------
typedef struct _map_internal_t
{
dict_t d;
} map_internal_t;
void map_init(map_t*map)
{
map_internal_t*m;
map->internal = (map_internal_t*)rfx_calloc(sizeof(map_internal_t));
m = (map_internal_t*)map->internal;
dict_init(&m->d, INITIAL_SIZE);
}
void map_put(map_t*map, string_t t1, string_t t2)
{
map_internal_t*m = (map_internal_t*)map->internal;
string_t s;
char* s1 = string_cstr(&t1);
dict_put2(&m->d, s1, (void*)string_cstr(&t2));
rfx_free(s1);
}
const char* map_lookup(map_t*map, const char*name)
{
map_internal_t*m = (map_internal_t*)map->internal;
const char*value = dict_lookup(&m->d, name);
return value;
}
static void freestring(void*data)
{
rfx_free(data);
}
static void dumpmapentry(void*data, const void*key, void*value)
{
FILE*fi = (FILE*)data;
fprintf(fi, "%s=%s\n", (char*)key, (char*)value);
}
void map_dump(map_t*map, FILE*fi, const char*prefix)
{
int t;
map_internal_t*m = (map_internal_t*)map->internal;
dict_foreach_keyvalue(&m->d, dumpmapentry, fi);
}
void map_clear(map_t*map)
{
map_internal_t*m = (map_internal_t*)map->internal;
dict_free_all(&m->d, 1, freestring);
rfx_free(m);
}
void map_destroy(map_t*map)
{
map_clear(map);
rfx_free(map);
}
// ------------------------------- array_t --------------------------------------
array_t* array_new() {
array_t*d = malloc(sizeof(array_t));
memset(d, 0, sizeof(array_t));
d->entry2pos = dict_new();
return d;
}
array_t* array_new2(type_t*type) {
array_t*d = malloc(sizeof(array_t));
memset(d, 0, sizeof(array_t));
d->entry2pos = dict_new2(type);
return d;
}
void*array_getkey(array_t*array, int nr) {
if(nr > array->num || nr<0) {
fprintf(stderr, "error: reference to element %d in array[%d]\n", nr, array->num);
return 0;
}
return array->d[nr].name;
}
void*array_getvalue(array_t*array, int nr) {
if(nr > array->num || nr<0) {
fprintf(stderr, "error: reference to element %d in array[%d]\n", nr, array->num);
return 0;
}
return array->d[nr].data;
}
int array_append(array_t*array, const void*name, void*data) {
while(array->size <= array->num) {
array->size += 64;
if(!array->d) {
array->d = malloc(sizeof(array_entry_t)*array->size);
} else {
array->d = realloc(array->d, sizeof(array_entry_t)*array->size);
}
}
dictentry_t*e = dict_put(array->entry2pos, name, (void*)(ptroff_t)(array->num+1));
if(name) {
array->d[array->num].name = e->key;
} else {
array->d[array->num].name = 0;
}
array->d[array->num].data = (void*)data;
return array->num++;
}
int array_find(array_t*array, const void*name)
{
int pos = (int)(ptroff_t)dict_lookup(array->entry2pos, name);
return pos-1;
}
int array_find2(array_t*array, const void*name, void*data)
{
dict_t*h= array->entry2pos;
dictentry_t*e = dict_get_slot(array->entry2pos, name);
while(e) {
int index = ((int)(ptroff_t)e->data) - 1;
if(h->key_type->equals(e->key, name) && array->d[index].data == data) {
return index;
}
e = e->next;
}
return -1;
}
int array_update(array_t*array, const void*name, void*data) {
int pos = array_find(array, name);
if(pos>=0) {
array->d[pos].data = data;
return pos;
}
return array_append(array, name, data);
}
int array_append_if_new(array_t*array, const void*name, void*data) {
int pos = array_find(array, name);
if(pos>=0)
return pos;
return array_append(array, name, data);
}
void array_free(array_t*array) {
dict_destroy(array->entry2pos);
if(array->d) {
free(array->d);array->d = 0;
}
free(array);
}
// ------------------------------- list_t --------------------------------------
struct _commonlist;
typedef struct _listinfo {
int size;
struct _commonlist*last;
} listinfo_t;
typedef struct _commonlist {
void*entry;
struct _commonlist*next;
listinfo_t info[0];
} commonlist_t;
int list_length_(void*_list)
{
commonlist_t*l = (commonlist_t*)_list;
if(!l)
return 0;
return l->info[0].size;
}
void list_concat_(void*_l1, void*_l2)
{
commonlist_t**l1 = (commonlist_t**)_l1;
commonlist_t**l2 = (commonlist_t**)_l2;
if(!*l1) {
*l1 = *l2;
} else if(*l2) {
(*l1)->info[0].last->next = *l2;
(*l1)->info[0].last = (*l2)->info[0].last;
(*l1)->info[0].size += (*l2)->info[0].size;
}
*l2 = 0;
}
void list_append_(void*_list, void*entry)
{
commonlist_t**list = (commonlist_t**)_list;
commonlist_t* n = 0;
if(!*list) {
n = (commonlist_t*)malloc(sizeof(commonlist_t)+sizeof(listinfo_t));
*list = n;
(*list)->info[0].size = 0;
} else {
n = malloc(sizeof(commonlist_t));
(*list)->info[0].last->next = n;
}
n->next = 0;
n->entry = entry;
(*list)->info[0].last = n;
(*list)->info[0].size++;
}
/* notice: prepending uses slighly more space than appending */
void list_prepend_(void*_list, void*entry)
{
commonlist_t**list = (commonlist_t**)_list;
commonlist_t* n = (commonlist_t*)malloc(sizeof(commonlist_t)+sizeof(listinfo_t));
int size = 0;
commonlist_t* last = 0;
if(*list) {
last = (*list)->info[0].last;
size = (*list)->info[0].size;
}
n->next = *list;
n->entry = entry;
*list = n;
(*list)->info[0].last = last;
(*list)->info[0].size = size+1;
}
void list_free_(void*_list)
{
commonlist_t**list = (commonlist_t**)_list;
commonlist_t*l = *list;
while(l) {
commonlist_t*next = l->next;
free(l);
l = next;
}
*list = 0;
}
void list_deep_free_(void*_list)
{
commonlist_t**list = (commonlist_t**)_list;
commonlist_t*l = *list;
while(l) {
commonlist_t*next = l->next;
if(l->entry) {
free(l->entry);l->entry=0;
}
free(l);
l = next;
}
*list = 0;
}
void*list_clone_(void*_list)
{
commonlist_t*l = *(commonlist_t**)_list;
void*dest = 0;
while(l) {
commonlist_t*next = l->next;
list_append_(&dest, l->entry);
l = next;
}
return dest;
}