root/src/mips/simulator-mips.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. HaveSameSign
  2. get_fcsr_condition_bit
  3. InitializeCoverage
  4. Stop
  5. InitializeCoverage
  6. Stop
  7. GetRegisterValue
  8. GetFPURegisterValueInt
  9. GetFPURegisterValueLong
  10. GetFPURegisterValueFloat
  11. GetFPURegisterValueDouble
  12. GetValue
  13. SetBreakpoint
  14. DeleteBreakpoint
  15. UndoBreakpoints
  16. RedoBreakpoints
  17. PrintAllRegs
  18. PrintAllRegsIncludingFPU
  19. ICacheMatch
  20. ICacheHash
  21. AllOnOnePage
  22. set_last_debugger_input
  23. FlushICache
  24. GetCachePage
  25. FlushOnePage
  26. CheckICache
  27. Initialize
  28. next_
  29. address_of_swi_instruction
  30. external_function
  31. type
  32. Get
  33. FromSwiInstruction
  34. RedirectExternalReference
  35. current
  36. set_register
  37. set_fpu_register
  38. set_fpu_register_float
  39. set_fpu_register_double
  40. get_register
  41. get_fpu_register
  42. get_fpu_register_long
  43. get_fpu_register_float
  44. get_fpu_register_double
  45. GetFpArgs
  46. GetFpArgs
  47. GetFpArgs
  48. SetFpResult
  49. set_fcsr_bit
  50. test_fcsr_bit
  51. set_fcsr_round_error
  52. set_pc
  53. has_bad_pc
  54. get_pc
  55. ReadW
  56. WriteW
  57. ReadD
  58. WriteD
  59. ReadHU
  60. ReadH
  61. WriteH
  62. WriteH
  63. ReadBU
  64. ReadB
  65. WriteB
  66. WriteB
  67. StackLimit
  68. Format
  69. SoftwareInterrupt
  70. IsWatchpoint
  71. PrintWatchpoint
  72. HandleStop
  73. IsStopInstruction
  74. IsEnabledStop
  75. EnableStop
  76. DisableStop
  77. IncreaseStopCounter
  78. PrintStopInfo
  79. SignalExceptions
  80. ConfigureTypeRegister
  81. DecodeTypeRegister
  82. DecodeTypeImmediate
  83. DecodeTypeJump
  84. InstructionDecode
  85. Execute
  86. Call
  87. PushAddress
  88. PopAddress

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <cstdarg>
#include "v8.h"

#if defined(V8_TARGET_ARCH_MIPS)

#include "cpu.h"
#include "disasm.h"
#include "assembler.h"
#include "globals.h"    // Need the BitCast.
#include "mips/constants-mips.h"
#include "mips/simulator-mips.h"


// Only build the simulator if not compiling for real MIPS hardware.
#if defined(USE_SIMULATOR)

namespace v8 {
namespace internal {

// Utils functions.
bool HaveSameSign(int32_t a, int32_t b) {
  return ((a ^ b) >= 0);
}


uint32_t get_fcsr_condition_bit(uint32_t cc) {
  if (cc == 0) {
    return 23;
  } else {
    return 24 + cc;
  }
}


// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent was through
// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
// Library does not provide vsscanf.
#define SScanF sscanf  // NOLINT

// The MipsDebugger class is used by the simulator while debugging simulated
// code.
class MipsDebugger {
 public:
  explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
  ~MipsDebugger();

  void Stop(Instruction* instr);
  void Debug();
  // Print all registers with a nice formatting.
  void PrintAllRegs();
  void PrintAllRegsIncludingFPU();

 private:
  // We set the breakpoint code to 0xfffff to easily recognize it.
  static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
  static const Instr kNopInstr =  0x0;

  Simulator* sim_;

  int32_t GetRegisterValue(int regnum);
  int32_t GetFPURegisterValueInt(int regnum);
  int64_t GetFPURegisterValueLong(int regnum);
  float GetFPURegisterValueFloat(int regnum);
  double GetFPURegisterValueDouble(int regnum);
  bool GetValue(const char* desc, int32_t* value);

  // Set or delete a breakpoint. Returns true if successful.
  bool SetBreakpoint(Instruction* breakpc);
  bool DeleteBreakpoint(Instruction* breakpc);

  // Undo and redo all breakpoints. This is needed to bracket disassembly and
  // execution to skip past breakpoints when run from the debugger.
  void UndoBreakpoints();
  void RedoBreakpoints();
};


MipsDebugger::~MipsDebugger() {
}


#ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL;


static void InitializeCoverage() {
  char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
  if (file_name != NULL) {
    coverage_log = fopen(file_name, "aw+");
  }
}


void MipsDebugger::Stop(Instruction* instr) {
  // Get the stop code.
  uint32_t code = instr->Bits(25, 6);
  // Retrieve the encoded address, which comes just after this stop.
  char** msg_address =
    reinterpret_cast<char**>(sim_->get_pc() + Instr::kInstrSize);
  char* msg = *msg_address;
  ASSERT(msg != NULL);

  // Update this stop description.
  if (!watched_stops[code].desc) {
    watched_stops[code].desc = msg;
  }

  if (strlen(msg) > 0) {
    if (coverage_log != NULL) {
      fprintf(coverage_log, "%s\n", str);
      fflush(coverage_log);
    }
    // Overwrite the instruction and address with nops.
    instr->SetInstructionBits(kNopInstr);
    reinterpret_cast<Instr*>(msg_address)->SetInstructionBits(kNopInstr);
  }
  sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstructionSize);
}


#else  // GENERATED_CODE_COVERAGE

#define UNSUPPORTED() printf("Unsupported instruction.\n");

static void InitializeCoverage() {}


void MipsDebugger::Stop(Instruction* instr) {
  // Get the stop code.
  uint32_t code = instr->Bits(25, 6);
  // Retrieve the encoded address, which comes just after this stop.
  char* msg = *reinterpret_cast<char**>(sim_->get_pc() +
      Instruction::kInstrSize);
  // Update this stop description.
  if (!sim_->watched_stops[code].desc) {
    sim_->watched_stops[code].desc = msg;
  }
  PrintF("Simulator hit %s (%u)\n", msg, code);
  sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
  Debug();
}
#endif  // GENERATED_CODE_COVERAGE


int32_t MipsDebugger::GetRegisterValue(int regnum) {
  if (regnum == kNumSimuRegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_register(regnum);
  }
}


int32_t MipsDebugger::GetFPURegisterValueInt(int regnum) {
  if (regnum == kNumFPURegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_fpu_register(regnum);
  }
}


int64_t MipsDebugger::GetFPURegisterValueLong(int regnum) {
  if (regnum == kNumFPURegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_fpu_register_long(regnum);
  }
}


float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
  if (regnum == kNumFPURegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_fpu_register_float(regnum);
  }
}


double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
  if (regnum == kNumFPURegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_fpu_register_double(regnum);
  }
}


bool MipsDebugger::GetValue(const char* desc, int32_t* value) {
  int regnum = Registers::Number(desc);
  int fpuregnum = FPURegisters::Number(desc);

  if (regnum != kInvalidRegister) {
    *value = GetRegisterValue(regnum);
    return true;
  } else if (fpuregnum != kInvalidFPURegister) {
    *value = GetFPURegisterValueInt(fpuregnum);
    return true;
  } else if (strncmp(desc, "0x", 2) == 0) {
    return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
  } else {
    return SScanF(desc, "%i", value) == 1;
  }
  return false;
}


bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
  // Check if a breakpoint can be set. If not return without any side-effects.
  if (sim_->break_pc_ != NULL) {
    return false;
  }

  // Set the breakpoint.
  sim_->break_pc_ = breakpc;
  sim_->break_instr_ = breakpc->InstructionBits();
  // Not setting the breakpoint instruction in the code itself. It will be set
  // when the debugger shell continues.
  return true;
}


bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
  }

  sim_->break_pc_ = NULL;
  sim_->break_instr_ = 0;
  return true;
}


void MipsDebugger::UndoBreakpoints() {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
  }
}


void MipsDebugger::RedoBreakpoints() {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
  }
}


void MipsDebugger::PrintAllRegs() {
#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)

  PrintF("\n");
  // at, v0, a0.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(1), REG_INFO(2), REG_INFO(4));
  // v1, a1.
  PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         "", REG_INFO(3), REG_INFO(5));
  // a2.
  PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6));
  // a3.
  PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7));
  PrintF("\n");
  // t0-t7, s0-s7
  for (int i = 0; i < 8; i++) {
    PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
           REG_INFO(8+i), REG_INFO(16+i));
  }
  PrintF("\n");
  // t8, k0, LO.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(24), REG_INFO(26), REG_INFO(32));
  // t9, k1, HI.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(25), REG_INFO(27), REG_INFO(33));
  // sp, fp, gp.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(29), REG_INFO(30), REG_INFO(28));
  // pc.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(31), REG_INFO(34));

#undef REG_INFO
#undef FPU_REG_INFO
}


void MipsDebugger::PrintAllRegsIncludingFPU() {
#define FPU_REG_INFO(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \
        GetFPURegisterValueInt(n+1), \
        GetFPURegisterValueInt(n), \
                        GetFPURegisterValueDouble(n)

  PrintAllRegs();

  PrintF("\n\n");
  // f0, f1, f2, ... f31.
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(6) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(8) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(10));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(12));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(14));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(16));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(18));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(20));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(22));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(24));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(26));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(28));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(30));

#undef REG_INFO
#undef FPU_REG_INFO
}


void MipsDebugger::Debug() {
  intptr_t last_pc = -1;
  bool done = false;

#define COMMAND_SIZE 63
#define ARG_SIZE 255

#define STR(a) #a
#define XSTR(a) STR(a)

  char cmd[COMMAND_SIZE + 1];
  char arg1[ARG_SIZE + 1];
  char arg2[ARG_SIZE + 1];
  char* argv[3] = { cmd, arg1, arg2 };

  // Make sure to have a proper terminating character if reaching the limit.
  cmd[COMMAND_SIZE] = 0;
  arg1[ARG_SIZE] = 0;
  arg2[ARG_SIZE] = 0;

  // Undo all set breakpoints while running in the debugger shell. This will
  // make them invisible to all commands.
  UndoBreakpoints();

  while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
    if (last_pc != sim_->get_pc()) {
      disasm::NameConverter converter;
      disasm::Disassembler dasm(converter);
      // Use a reasonably large buffer.
      v8::internal::EmbeddedVector<char, 256> buffer;
      dasm.InstructionDecode(buffer,
                             reinterpret_cast<byte*>(sim_->get_pc()));
      PrintF("  0x%08x  %s\n", sim_->get_pc(), buffer.start());
      last_pc = sim_->get_pc();
    }
    char* line = ReadLine("sim> ");
    if (line == NULL) {
      break;
    } else {
      char* last_input = sim_->last_debugger_input();
      if (strcmp(line, "\n") == 0 && last_input != NULL) {
        line = last_input;
      } else {
        // Ownership is transferred to sim_;
        sim_->set_last_debugger_input(line);
      }
      // Use sscanf to parse the individual parts of the command line. At the
      // moment no command expects more than two parameters.
      int argc = SScanF(line,
                        "%" XSTR(COMMAND_SIZE) "s "
                        "%" XSTR(ARG_SIZE) "s "
                        "%" XSTR(ARG_SIZE) "s",
                        cmd, arg1, arg2);
      if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
        Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
        if (!(instr->IsTrap()) ||
            instr->InstructionBits() == rtCallRedirInstr) {
          sim_->InstructionDecode(
              reinterpret_cast<Instruction*>(sim_->get_pc()));
        } else {
          // Allow si to jump over generated breakpoints.
          PrintF("/!\\ Jumping over generated breakpoint.\n");
          sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
        }
      } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
        // Execute the one instruction we broke at with breakpoints disabled.
        sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
        // Leave the debugger shell.
        done = true;
      } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
        if (argc == 2) {
          int32_t value;
          float fvalue;
          if (strcmp(arg1, "all") == 0) {
            PrintAllRegs();
          } else if (strcmp(arg1, "allf") == 0) {
            PrintAllRegsIncludingFPU();
          } else {
            int regnum = Registers::Number(arg1);
            int fpuregnum = FPURegisters::Number(arg1);

            if (regnum != kInvalidRegister) {
              value = GetRegisterValue(regnum);
              PrintF("%s: 0x%08x %d \n", arg1, value, value);
            } else if (fpuregnum != kInvalidFPURegister) {
              if (fpuregnum % 2 == 1) {
                value = GetFPURegisterValueInt(fpuregnum);
                fvalue = GetFPURegisterValueFloat(fpuregnum);
                PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
              } else {
                double dfvalue;
                int32_t lvalue1 = GetFPURegisterValueInt(fpuregnum);
                int32_t lvalue2 = GetFPURegisterValueInt(fpuregnum + 1);
                dfvalue = GetFPURegisterValueDouble(fpuregnum);
                PrintF("%3s,%3s: 0x%08x%08x %16.4e\n",
                       FPURegisters::Name(fpuregnum+1),
                       FPURegisters::Name(fpuregnum),
                       lvalue1,
                       lvalue2,
                       dfvalue);
              }
            } else {
              PrintF("%s unrecognized\n", arg1);
            }
          }
        } else {
          if (argc == 3) {
            if (strcmp(arg2, "single") == 0) {
              int32_t value;
              float fvalue;
              int fpuregnum = FPURegisters::Number(arg1);

              if (fpuregnum != kInvalidFPURegister) {
                value = GetFPURegisterValueInt(fpuregnum);
                fvalue = GetFPURegisterValueFloat(fpuregnum);
                PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
              } else {
                PrintF("%s unrecognized\n", arg1);
              }
            } else {
              PrintF("print <fpu register> single\n");
            }
          } else {
            PrintF("print <register> or print <fpu register> single\n");
          }
        }
      } else if ((strcmp(cmd, "po") == 0)
                 || (strcmp(cmd, "printobject") == 0)) {
        if (argc == 2) {
          int32_t value;
          if (GetValue(arg1, &value)) {
            Object* obj = reinterpret_cast<Object*>(value);
            PrintF("%s: \n", arg1);
#ifdef DEBUG
            obj->PrintLn();
#else
            obj->ShortPrint();
            PrintF("\n");
#endif
          } else {
            PrintF("%s unrecognized\n", arg1);
          }
        } else {
          PrintF("printobject <value>\n");
        }
      } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
        int32_t* cur = NULL;
        int32_t* end = NULL;
        int next_arg = 1;

        if (strcmp(cmd, "stack") == 0) {
          cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
        } else {  // Command "mem".
          int32_t value;
          if (!GetValue(arg1, &value)) {
            PrintF("%s unrecognized\n", arg1);
            continue;
          }
          cur = reinterpret_cast<int32_t*>(value);
          next_arg++;
        }

        int32_t words;
        if (argc == next_arg) {
          words = 10;
        } else if (argc == next_arg + 1) {
          if (!GetValue(argv[next_arg], &words)) {
            words = 10;
          }
        }
        end = cur + words;

        while (cur < end) {
          PrintF("  0x%08x:  0x%08x %10d",
                 reinterpret_cast<intptr_t>(cur), *cur, *cur);
          HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
          int value = *cur;
          Heap* current_heap = v8::internal::Isolate::Current()->heap();
          if (current_heap->Contains(obj) || ((value & 1) == 0)) {
            PrintF(" (");
            if ((value & 1) == 0) {
              PrintF("smi %d", value / 2);
            } else {
              obj->ShortPrint();
            }
            PrintF(")");
          }
          PrintF("\n");
          cur++;
        }

      } else if ((strcmp(cmd, "disasm") == 0) ||
                 (strcmp(cmd, "dpc") == 0) ||
                 (strcmp(cmd, "di") == 0)) {
        disasm::NameConverter converter;
        disasm::Disassembler dasm(converter);
        // Use a reasonably large buffer.
        v8::internal::EmbeddedVector<char, 256> buffer;

        byte* cur = NULL;
        byte* end = NULL;

        if (argc == 1) {
          cur = reinterpret_cast<byte*>(sim_->get_pc());
          end = cur + (10 * Instruction::kInstrSize);
        } else if (argc == 2) {
          int regnum = Registers::Number(arg1);
          if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
            // The argument is an address or a register name.
            int32_t value;
            if (GetValue(arg1, &value)) {
              cur = reinterpret_cast<byte*>(value);
              // Disassemble 10 instructions at <arg1>.
              end = cur + (10 * Instruction::kInstrSize);
            }
          } else {
            // The argument is the number of instructions.
            int32_t value;
            if (GetValue(arg1, &value)) {
              cur = reinterpret_cast<byte*>(sim_->get_pc());
              // Disassemble <arg1> instructions.
              end = cur + (value * Instruction::kInstrSize);
            }
          }
        } else {
          int32_t value1;
          int32_t value2;
          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
            cur = reinterpret_cast<byte*>(value1);
            end = cur + (value2 * Instruction::kInstrSize);
          }
        }

        while (cur < end) {
          dasm.InstructionDecode(buffer, cur);
          PrintF("  0x%08x  %s\n",
              reinterpret_cast<intptr_t>(cur), buffer.start());
          cur += Instruction::kInstrSize;
        }
      } else if (strcmp(cmd, "gdb") == 0) {
        PrintF("relinquishing control to gdb\n");
        v8::internal::OS::DebugBreak();
        PrintF("regaining control from gdb\n");
      } else if (strcmp(cmd, "break") == 0) {
        if (argc == 2) {
          int32_t value;
          if (GetValue(arg1, &value)) {
            if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
              PrintF("setting breakpoint failed\n");
            }
          } else {
            PrintF("%s unrecognized\n", arg1);
          }
        } else {
          PrintF("break <address>\n");
        }
      } else if (strcmp(cmd, "del") == 0) {
        if (!DeleteBreakpoint(NULL)) {
          PrintF("deleting breakpoint failed\n");
        }
      } else if (strcmp(cmd, "flags") == 0) {
        PrintF("No flags on MIPS !\n");
      } else if (strcmp(cmd, "stop") == 0) {
        int32_t value;
        intptr_t stop_pc = sim_->get_pc() -
            2 * Instruction::kInstrSize;
        Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
        Instruction* msg_address =
          reinterpret_cast<Instruction*>(stop_pc +
              Instruction::kInstrSize);
        if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
          // Remove the current stop.
          if (sim_->IsStopInstruction(stop_instr)) {
            stop_instr->SetInstructionBits(kNopInstr);
            msg_address->SetInstructionBits(kNopInstr);
          } else {
            PrintF("Not at debugger stop.\n");
          }
        } else if (argc == 3) {
          // Print information about all/the specified breakpoint(s).
          if (strcmp(arg1, "info") == 0) {
            if (strcmp(arg2, "all") == 0) {
              PrintF("Stop information:\n");
              for (uint32_t i = kMaxWatchpointCode + 1;
                   i <= kMaxStopCode;
                   i++) {
                sim_->PrintStopInfo(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->PrintStopInfo(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          } else if (strcmp(arg1, "enable") == 0) {
            // Enable all/the specified breakpoint(s).
            if (strcmp(arg2, "all") == 0) {
              for (uint32_t i = kMaxWatchpointCode + 1;
                   i <= kMaxStopCode;
                   i++) {
                sim_->EnableStop(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->EnableStop(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          } else if (strcmp(arg1, "disable") == 0) {
            // Disable all/the specified breakpoint(s).
            if (strcmp(arg2, "all") == 0) {
              for (uint32_t i = kMaxWatchpointCode + 1;
                   i <= kMaxStopCode;
                   i++) {
                sim_->DisableStop(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->DisableStop(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          }
        } else {
          PrintF("Wrong usage. Use help command for more information.\n");
        }
      } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
        // Print registers and disassemble.
        PrintAllRegs();
        PrintF("\n");

        disasm::NameConverter converter;
        disasm::Disassembler dasm(converter);
        // Use a reasonably large buffer.
        v8::internal::EmbeddedVector<char, 256> buffer;

        byte* cur = NULL;
        byte* end = NULL;

        if (argc == 1) {
          cur = reinterpret_cast<byte*>(sim_->get_pc());
          end = cur + (10 * Instruction::kInstrSize);
        } else if (argc == 2) {
          int32_t value;
          if (GetValue(arg1, &value)) {
            cur = reinterpret_cast<byte*>(value);
            // no length parameter passed, assume 10 instructions
            end = cur + (10 * Instruction::kInstrSize);
          }
        } else {
          int32_t value1;
          int32_t value2;
          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
            cur = reinterpret_cast<byte*>(value1);
            end = cur + (value2 * Instruction::kInstrSize);
          }
        }

        while (cur < end) {
          dasm.InstructionDecode(buffer, cur);
          PrintF("  0x%08x  %s\n",
                 reinterpret_cast<intptr_t>(cur), buffer.start());
          cur += Instruction::kInstrSize;
        }
      } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
        PrintF("cont\n");
        PrintF("  continue execution (alias 'c')\n");
        PrintF("stepi\n");
        PrintF("  step one instruction (alias 'si')\n");
        PrintF("print <register>\n");
        PrintF("  print register content (alias 'p')\n");
        PrintF("  use register name 'all' to print all registers\n");
        PrintF("printobject <register>\n");
        PrintF("  print an object from a register (alias 'po')\n");
        PrintF("stack [<words>]\n");
        PrintF("  dump stack content, default dump 10 words)\n");
        PrintF("mem <address> [<words>]\n");
        PrintF("  dump memory content, default dump 10 words)\n");
        PrintF("flags\n");
        PrintF("  print flags\n");
        PrintF("disasm [<instructions>]\n");
        PrintF("disasm [<address/register>]\n");
        PrintF("disasm [[<address/register>] <instructions>]\n");
        PrintF("  disassemble code, default is 10 instructions\n");
        PrintF("  from pc (alias 'di')\n");
        PrintF("gdb\n");
        PrintF("  enter gdb\n");
        PrintF("break <address>\n");
        PrintF("  set a break point on the address\n");
        PrintF("del\n");
        PrintF("  delete the breakpoint\n");
        PrintF("stop feature:\n");
        PrintF("  Description:\n");
        PrintF("    Stops are debug instructions inserted by\n");
        PrintF("    the Assembler::stop() function.\n");
        PrintF("    When hitting a stop, the Simulator will\n");
        PrintF("    stop and and give control to the Debugger.\n");
        PrintF("    All stop codes are watched:\n");
        PrintF("    - They can be enabled / disabled: the Simulator\n");
        PrintF("       will / won't stop when hitting them.\n");
        PrintF("    - The Simulator keeps track of how many times they \n");
        PrintF("      are met. (See the info command.) Going over a\n");
        PrintF("      disabled stop still increases its counter. \n");
        PrintF("  Commands:\n");
        PrintF("    stop info all/<code> : print infos about number <code>\n");
        PrintF("      or all stop(s).\n");
        PrintF("    stop enable/disable all/<code> : enables / disables\n");
        PrintF("      all or number <code> stop(s)\n");
        PrintF("    stop unstop\n");
        PrintF("      ignore the stop instruction at the current location\n");
        PrintF("      from now on\n");
      } else {
        PrintF("Unknown command: %s\n", cmd);
      }
    }
  }

  // Add all the breakpoints back to stop execution and enter the debugger
  // shell when hit.
  RedoBreakpoints();

#undef COMMAND_SIZE
#undef ARG_SIZE

#undef STR
#undef XSTR
}


static bool ICacheMatch(void* one, void* two) {
  ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
  ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
  return one == two;
}


static uint32_t ICacheHash(void* key) {
  return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}


static bool AllOnOnePage(uintptr_t start, int size) {
  intptr_t start_page = (start & ~CachePage::kPageMask);
  intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
  return start_page == end_page;
}


void Simulator::set_last_debugger_input(char* input) {
  DeleteArray(last_debugger_input_);
  last_debugger_input_ = input;
}


void Simulator::FlushICache(v8::internal::HashMap* i_cache,
                            void* start_addr,
                            size_t size) {
  intptr_t start = reinterpret_cast<intptr_t>(start_addr);
  int intra_line = (start & CachePage::kLineMask);
  start -= intra_line;
  size += intra_line;
  size = ((size - 1) | CachePage::kLineMask) + 1;
  int offset = (start & CachePage::kPageMask);
  while (!AllOnOnePage(start, size - 1)) {
    int bytes_to_flush = CachePage::kPageSize - offset;
    FlushOnePage(i_cache, start, bytes_to_flush);
    start += bytes_to_flush;
    size -= bytes_to_flush;
    ASSERT_EQ(0, start & CachePage::kPageMask);
    offset = 0;
  }
  if (size != 0) {
    FlushOnePage(i_cache, start, size);
  }
}


CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
  v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
                                                        ICacheHash(page),
                                                        true);
  if (entry->value == NULL) {
    CachePage* new_page = new CachePage();
    entry->value = new_page;
  }
  return reinterpret_cast<CachePage*>(entry->value);
}


// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
                             intptr_t start,
                             int size) {
  ASSERT(size <= CachePage::kPageSize);
  ASSERT(AllOnOnePage(start, size - 1));
  ASSERT((start & CachePage::kLineMask) == 0);
  ASSERT((size & CachePage::kLineMask) == 0);
  void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
  int offset = (start & CachePage::kPageMask);
  CachePage* cache_page = GetCachePage(i_cache, page);
  char* valid_bytemap = cache_page->ValidityByte(offset);
  memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}


void Simulator::CheckICache(v8::internal::HashMap* i_cache,
                            Instruction* instr) {
  intptr_t address = reinterpret_cast<intptr_t>(instr);
  void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
  void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
  int offset = (address & CachePage::kPageMask);
  CachePage* cache_page = GetCachePage(i_cache, page);
  char* cache_valid_byte = cache_page->ValidityByte(offset);
  bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
  char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
  if (cache_hit) {
    // Check that the data in memory matches the contents of the I-cache.
    CHECK(memcmp(reinterpret_cast<void*>(instr),
                 cache_page->CachedData(offset),
                 Instruction::kInstrSize) == 0);
  } else {
    // Cache miss.  Load memory into the cache.
    memcpy(cached_line, line, CachePage::kLineLength);
    *cache_valid_byte = CachePage::LINE_VALID;
  }
}


void Simulator::Initialize(Isolate* isolate) {
  if (isolate->simulator_initialized()) return;
  isolate->set_simulator_initialized(true);
  ::v8::internal::ExternalReference::set_redirector(isolate,
                                                    &RedirectExternalReference);
}


Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
  i_cache_ = isolate_->simulator_i_cache();
  if (i_cache_ == NULL) {
    i_cache_ = new v8::internal::HashMap(&ICacheMatch);
    isolate_->set_simulator_i_cache(i_cache_);
  }
  Initialize(isolate);
  // Set up simulator support first. Some of this information is needed to
  // setup the architecture state.
  stack_ = reinterpret_cast<char*>(malloc(stack_size_));
  pc_modified_ = false;
  icount_ = 0;
  break_count_ = 0;
  break_pc_ = NULL;
  break_instr_ = 0;

  // Set up architecture state.
  // All registers are initialized to zero to start with.
  for (int i = 0; i < kNumSimuRegisters; i++) {
    registers_[i] = 0;
  }
  for (int i = 0; i < kNumFPURegisters; i++) {
    FPUregisters_[i] = 0;
  }
  FCSR_ = 0;

  // The sp is initialized to point to the bottom (high address) of the
  // allocated stack area. To be safe in potential stack underflows we leave
  // some buffer below.
  registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
  // The ra and pc are initialized to a known bad value that will cause an
  // access violation if the simulator ever tries to execute it.
  registers_[pc] = bad_ra;
  registers_[ra] = bad_ra;
  InitializeCoverage();
  for (int i = 0; i < kNumExceptions; i++) {
    exceptions[i] = 0;
  }

  last_debugger_input_ = NULL;
}


// When the generated code calls an external reference we need to catch that in
// the simulator.  The external reference will be a function compiled for the
// host architecture.  We need to call that function instead of trying to
// execute it with the simulator.  We do that by redirecting the external
// reference to a swi (software-interrupt) instruction that is handled by
// the simulator.  We write the original destination of the jump just at a known
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
 public:
  Redirection(void* external_function, ExternalReference::Type type)
      : external_function_(external_function),
        swi_instruction_(rtCallRedirInstr),
        type_(type),
        next_(NULL) {
    Isolate* isolate = Isolate::Current();
    next_ = isolate->simulator_redirection();
    Simulator::current(isolate)->
        FlushICache(isolate->simulator_i_cache(),
                    reinterpret_cast<void*>(&swi_instruction_),
                    Instruction::kInstrSize);
    isolate->set_simulator_redirection(this);
  }

  void* address_of_swi_instruction() {
    return reinterpret_cast<void*>(&swi_instruction_);
  }

  void* external_function() { return external_function_; }
  ExternalReference::Type type() { return type_; }

  static Redirection* Get(void* external_function,
                          ExternalReference::Type type) {
    Isolate* isolate = Isolate::Current();
    Redirection* current = isolate->simulator_redirection();
    for (; current != NULL; current = current->next_) {
      if (current->external_function_ == external_function) return current;
    }
    return new Redirection(external_function, type);
  }

  static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
    char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
    char* addr_of_redirection =
        addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
    return reinterpret_cast<Redirection*>(addr_of_redirection);
  }

 private:
  void* external_function_;
  uint32_t swi_instruction_;
  ExternalReference::Type type_;
  Redirection* next_;
};


void* Simulator::RedirectExternalReference(void* external_function,
                                           ExternalReference::Type type) {
  Redirection* redirection = Redirection::Get(external_function, type);
  return redirection->address_of_swi_instruction();
}


// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
  v8::internal::Isolate::PerIsolateThreadData* isolate_data =
       isolate->FindOrAllocatePerThreadDataForThisThread();
  ASSERT(isolate_data != NULL);
  ASSERT(isolate_data != NULL);

  Simulator* sim = isolate_data->simulator();
  if (sim == NULL) {
    // TODO(146): delete the simulator object when a thread/isolate goes away.
    sim = new Simulator(isolate);
    isolate_data->set_simulator(sim);
  }
  return sim;
}


// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
  ASSERT((reg >= 0) && (reg < kNumSimuRegisters));
  if (reg == pc) {
    pc_modified_ = true;
  }

  // Zero register always holds 0.
  registers_[reg] = (reg == 0) ? 0 : value;
}


void Simulator::set_fpu_register(int fpureg, int32_t value) {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
  FPUregisters_[fpureg] = value;
}


void Simulator::set_fpu_register_float(int fpureg, float value) {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
  *BitCast<float*>(&FPUregisters_[fpureg]) = value;
}


void Simulator::set_fpu_register_double(int fpureg, double value) {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
  *BitCast<double*>(&FPUregisters_[fpureg]) = value;
}


// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
  ASSERT((reg >= 0) && (reg < kNumSimuRegisters));
  if (reg == 0)
    return 0;
  else
    return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
}


int32_t Simulator::get_fpu_register(int fpureg) const {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
  return FPUregisters_[fpureg];
}


int64_t Simulator::get_fpu_register_long(int fpureg) const {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
  return *BitCast<int64_t*>(
      const_cast<int32_t*>(&FPUregisters_[fpureg]));
}


float Simulator::get_fpu_register_float(int fpureg) const {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
  return *BitCast<float*>(
      const_cast<int32_t*>(&FPUregisters_[fpureg]));
}


double Simulator::get_fpu_register_double(int fpureg) const {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
  return *BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg]));
}


// For use in calls that take two double values, constructed either
// from a0-a3 or f12 and f14.
void Simulator::GetFpArgs(double* x, double* y) {
  if (!IsMipsSoftFloatABI) {
    *x = get_fpu_register_double(12);
    *y = get_fpu_register_double(14);
  } else {
    // We use a char buffer to get around the strict-aliasing rules which
    // otherwise allow the compiler to optimize away the copy.
    char buffer[sizeof(*x)];
    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);

    // Registers a0 and a1 -> x.
    reg_buffer[0] = get_register(a0);
    reg_buffer[1] = get_register(a1);
    memcpy(x, buffer, sizeof(buffer));

    // Registers a2 and a3 -> y.
    reg_buffer[0] = get_register(a2);
    reg_buffer[1] = get_register(a3);
    memcpy(y, buffer, sizeof(buffer));
  }
}


// For use in calls that take one double value, constructed either
// from a0 and a1 or f12.
void Simulator::GetFpArgs(double* x) {
  if (!IsMipsSoftFloatABI) {
    *x = get_fpu_register_double(12);
  } else {
    // We use a char buffer to get around the strict-aliasing rules which
    // otherwise allow the compiler to optimize away the copy.
    char buffer[sizeof(*x)];
    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
    // Registers a0 and a1 -> x.
    reg_buffer[0] = get_register(a0);
    reg_buffer[1] = get_register(a1);
    memcpy(x, buffer, sizeof(buffer));
  }
}


// For use in calls that take one double value constructed either
// from a0 and a1 or f12 and one integer value.
void Simulator::GetFpArgs(double* x, int32_t* y) {
  if (!IsMipsSoftFloatABI) {
    *x = get_fpu_register_double(12);
    *y = get_register(a2);
  } else {
    // We use a char buffer to get around the strict-aliasing rules which
    // otherwise allow the compiler to optimize away the copy.
    char buffer[sizeof(*x)];
    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
    // Registers 0 and 1 -> x.
    reg_buffer[0] = get_register(a0);
    reg_buffer[1] = get_register(a1);
    memcpy(x, buffer, sizeof(buffer));

    // Register 2 -> y.
    reg_buffer[0] = get_register(a2);
    memcpy(y, buffer, sizeof(*y));
  }
}


// The return value is either in v0/v1 or f0.
void Simulator::SetFpResult(const double& result) {
  if (!IsMipsSoftFloatABI) {
    set_fpu_register_double(0, result);
  } else {
    char buffer[2 * sizeof(registers_[0])];
    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
    memcpy(buffer, &result, sizeof(buffer));
    // Copy result to v0 and v1.
    set_register(v0, reg_buffer[0]);
    set_register(v1, reg_buffer[1]);
  }
}


// Helper functions for setting and testing the FCSR register's bits.
void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
  if (value) {
    FCSR_ |= (1 << cc);
  } else {
    FCSR_ &= ~(1 << cc);
  }
}


bool Simulator::test_fcsr_bit(uint32_t cc) {
  return FCSR_ & (1 << cc);
}


// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(double original, double rounded) {
  bool ret = false;

  if (!isfinite(original) || !isfinite(rounded)) {
    set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
    ret = true;
  }

  if (original != rounded) {
    set_fcsr_bit(kFCSRInexactFlagBit, true);
  }

  if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
    set_fcsr_bit(kFCSRUnderflowFlagBit, true);
    ret = true;
  }

  if (rounded > INT_MAX || rounded < INT_MIN) {
    set_fcsr_bit(kFCSROverflowFlagBit, true);
    // The reference is not really clear but it seems this is required:
    set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
    ret = true;
  }

  return ret;
}


// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
  pc_modified_ = true;
  registers_[pc] = value;
}


bool Simulator::has_bad_pc() const {
  return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
}


// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const {
  return registers_[pc];
}


// The MIPS cannot do unaligned reads and writes.  On some MIPS platforms an
// interrupt is caused.  On others it does a funky rotation thing.  For now we
// simply disallow unaligned reads, but at some point we may want to move to
// emulating the rotate behaviour.  Note that simulator runs have the runtime
// system running directly on the host system and only generated code is
// executed in the simulator.  Since the host is typically IA32 we will not
// get the correct MIPS-like behaviour on unaligned accesses.

int Simulator::ReadW(int32_t addr, Instruction* instr) {
  if (addr >=0 && addr < 0x400) {
    // This has to be a NULL-dereference, drop into debugger.
    PrintF("Memory read from bad address: 0x%08x, pc=0x%08x\n",
           addr, reinterpret_cast<intptr_t>(instr));
    MipsDebugger dbg(this);
    dbg.Debug();
  }
  if ((addr & kPointerAlignmentMask) == 0) {
    intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  MipsDebugger dbg(this);
  dbg.Debug();
  return 0;
}


void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
  if (addr >= 0 && addr < 0x400) {
    // This has to be a NULL-dereference, drop into debugger.
    PrintF("Memory write to bad address: 0x%08x, pc=0x%08x\n",
           addr, reinterpret_cast<intptr_t>(instr));
    MipsDebugger dbg(this);
    dbg.Debug();
  }
  if ((addr & kPointerAlignmentMask) == 0) {
    intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  MipsDebugger dbg(this);
  dbg.Debug();
}


double Simulator::ReadD(int32_t addr, Instruction* instr) {
  if ((addr & kDoubleAlignmentMask) == 0) {
    double* ptr = reinterpret_cast<double*>(addr);
    return *ptr;
  }
  PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
  return 0;
}


void Simulator::WriteD(int32_t addr, double value, Instruction* instr) {
  if ((addr & kDoubleAlignmentMask) == 0) {
    double* ptr = reinterpret_cast<double*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
}


uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
  if ((addr & 1) == 0) {
    uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
  return 0;
}


int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
  if ((addr & 1) == 0) {
    int16_t* ptr = reinterpret_cast<int16_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
  return 0;
}


void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
  if ((addr & 1) == 0) {
    uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
}


void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
  if ((addr & 1) == 0) {
    int16_t* ptr = reinterpret_cast<int16_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
}


uint32_t Simulator::ReadBU(int32_t addr) {
  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
  return *ptr & 0xff;
}


int32_t Simulator::ReadB(int32_t addr) {
  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
  return *ptr;
}


void Simulator::WriteB(int32_t addr, uint8_t value) {
  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
  *ptr = value;
}


void Simulator::WriteB(int32_t addr, int8_t value) {
  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
  *ptr = value;
}


// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit() const {
  // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
  // pushing values.
  return reinterpret_cast<uintptr_t>(stack_) + 1024;
}


// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
  PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
         reinterpret_cast<intptr_t>(instr), format);
  UNIMPLEMENTED_MIPS();
}


// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the v1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
                                        int32_t arg1,
                                        int32_t arg2,
                                        int32_t arg3,
                                        int32_t arg4,
                                        int32_t arg5);
typedef double (*SimulatorRuntimeFPCall)(int32_t arg0,
                                         int32_t arg1,
                                         int32_t arg2,
                                         int32_t arg3);

// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectApiCall)(int32_t arg0);

// This signature supports direct call to accessor getter callback.
typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectGetterCall)(int32_t arg0,
                                                                  int32_t arg1);

// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime. They are also used for debugging with simulator.
void Simulator::SoftwareInterrupt(Instruction* instr) {
  // There are several instructions that could get us here,
  // the break_ instruction, or several variants of traps. All
  // Are "SPECIAL" class opcode, and are distinuished by function.
  int32_t func = instr->FunctionFieldRaw();
  uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;

  // We first check if we met a call_rt_redirected.
  if (instr->InstructionBits() == rtCallRedirInstr) {
    Redirection* redirection = Redirection::FromSwiInstruction(instr);
    int32_t arg0 = get_register(a0);
    int32_t arg1 = get_register(a1);
    int32_t arg2 = get_register(a2);
    int32_t arg3 = get_register(a3);

    int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
    // Args 4 and 5 are on the stack after the reserved space for args 0..3.
    int32_t arg4 = stack_pointer[4];
    int32_t arg5 = stack_pointer[5];

    bool fp_call =
         (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);

    if (!IsMipsSoftFloatABI) {
      // With the hard floating point calling convention, double
      // arguments are passed in FPU registers. Fetch the arguments
      // from there and call the builtin using soft floating point
      // convention.
      switch (redirection->type()) {
      case ExternalReference::BUILTIN_FP_FP_CALL:
      case ExternalReference::BUILTIN_COMPARE_CALL:
        arg0 = get_fpu_register(f12);
        arg1 = get_fpu_register(f13);
        arg2 = get_fpu_register(f14);
        arg3 = get_fpu_register(f15);
        break;
      case ExternalReference::BUILTIN_FP_CALL:
        arg0 = get_fpu_register(f12);
        arg1 = get_fpu_register(f13);
        break;
      case ExternalReference::BUILTIN_FP_INT_CALL:
        arg0 = get_fpu_register(f12);
        arg1 = get_fpu_register(f13);
        arg2 = get_register(a2);
        break;
      default:
        break;
      }
    }

    // This is dodgy but it works because the C entry stubs are never moved.
    // See comment in codegen-arm.cc and bug 1242173.
    int32_t saved_ra = get_register(ra);

    intptr_t external =
          reinterpret_cast<intptr_t>(redirection->external_function());

    // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
    // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
    // simulator. Soft-float has additional abstraction of ExternalReference,
    // to support serialization.
    if (fp_call) {
      SimulatorRuntimeFPCall target =
                  reinterpret_cast<SimulatorRuntimeFPCall>(external);
      if (::v8::internal::FLAG_trace_sim) {
        double dval0, dval1;
        int32_t ival;
        switch (redirection->type()) {
          case ExternalReference::BUILTIN_FP_FP_CALL:
          case ExternalReference::BUILTIN_COMPARE_CALL:
            GetFpArgs(&dval0, &dval1);
            PrintF("Call to host function at %p with args %f, %f",
                FUNCTION_ADDR(target), dval0, dval1);
            break;
          case ExternalReference::BUILTIN_FP_CALL:
            GetFpArgs(&dval0);
            PrintF("Call to host function at %p with arg %f",
                FUNCTION_ADDR(target), dval0);
            break;
          case ExternalReference::BUILTIN_FP_INT_CALL:
            GetFpArgs(&dval0, &ival);
            PrintF("Call to host function at %p with args %f, %d",
                FUNCTION_ADDR(target), dval0, ival);
            break;
          default:
            UNREACHABLE();
            break;
        }
      }
      if (redirection->type() != ExternalReference::BUILTIN_COMPARE_CALL) {
        SimulatorRuntimeFPCall target =
            reinterpret_cast<SimulatorRuntimeFPCall>(external);
        double result = target(arg0, arg1, arg2, arg3);
        SetFpResult(result);
      } else {
        SimulatorRuntimeCall target =
            reinterpret_cast<SimulatorRuntimeCall>(external);
        uint64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
        int32_t gpreg_pair[2];
        memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t));
        set_register(v0, gpreg_pair[0]);
        set_register(v1, gpreg_pair[1]);
      }
    } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
      // See DirectCEntryStub::GenerateCall for explanation of register usage.
      SimulatorRuntimeDirectApiCall target =
                  reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
      if (::v8::internal::FLAG_trace_sim) {
        PrintF("Call to host function at %p args %08x\n",
               FUNCTION_ADDR(target), arg1);
      }
      v8::Handle<v8::Value> result = target(arg1);
      *(reinterpret_cast<int*>(arg0)) = (int32_t) *result;
      set_register(v0, arg0);
    } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
      // See DirectCEntryStub::GenerateCall for explanation of register usage.
      SimulatorRuntimeDirectGetterCall target =
                  reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
      if (::v8::internal::FLAG_trace_sim) {
        PrintF("Call to host function at %p args %08x %08x\n",
               FUNCTION_ADDR(target), arg1, arg2);
      }
      v8::Handle<v8::Value> result = target(arg1, arg2);
      *(reinterpret_cast<int*>(arg0)) = (int32_t) *result;
      set_register(v0, arg0);
    } else {
      SimulatorRuntimeCall target =
                  reinterpret_cast<SimulatorRuntimeCall>(external);
      if (::v8::internal::FLAG_trace_sim) {
        PrintF(
            "Call to host function at %p "
            "args %08x, %08x, %08x, %08x, %08x, %08x\n",
            FUNCTION_ADDR(target),
            arg0,
            arg1,
            arg2,
            arg3,
            arg4,
            arg5);
      }
      int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
      set_register(v0, static_cast<int32_t>(result));
      set_register(v1, static_cast<int32_t>(result >> 32));
    }
    if (::v8::internal::FLAG_trace_sim) {
      PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0));
    }
    set_register(ra, saved_ra);
    set_pc(get_register(ra));

  } else if (func == BREAK && code <= kMaxStopCode) {
    if (IsWatchpoint(code)) {
      PrintWatchpoint(code);
    } else {
      IncreaseStopCounter(code);
      HandleStop(code, instr);
    }
  } else {
    // All remaining break_ codes, and all traps are handled here.
    MipsDebugger dbg(this);
    dbg.Debug();
  }
}


// Stop helper functions.
bool Simulator::IsWatchpoint(uint32_t code) {
  return (code <= kMaxWatchpointCode);
}


void Simulator::PrintWatchpoint(uint32_t code) {
  MipsDebugger dbg(this);
  ++break_count_;
  PrintF("\n---- break %d marker: %3d  (instr count: %8d) ----------"
         "----------------------------------",
         code, break_count_, icount_);
  dbg.PrintAllRegs();  // Print registers and continue running.
}


void Simulator::HandleStop(uint32_t code, Instruction* instr) {
  // Stop if it is enabled, otherwise go on jumping over the stop
  // and the message address.
  if (IsEnabledStop(code)) {
    MipsDebugger dbg(this);
    dbg.Stop(instr);
  } else {
    set_pc(get_pc() + 2 * Instruction::kInstrSize);
  }
}


bool Simulator::IsStopInstruction(Instruction* instr) {
  int32_t func = instr->FunctionFieldRaw();
  uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
  return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
}


bool Simulator::IsEnabledStop(uint32_t code) {
  ASSERT(code <= kMaxStopCode);
  ASSERT(code > kMaxWatchpointCode);
  return !(watched_stops[code].count & kStopDisabledBit);
}


void Simulator::EnableStop(uint32_t code) {
  if (!IsEnabledStop(code)) {
    watched_stops[code].count &= ~kStopDisabledBit;
  }
}


void Simulator::DisableStop(uint32_t code) {
  if (IsEnabledStop(code)) {
    watched_stops[code].count |= kStopDisabledBit;
  }
}


void Simulator::IncreaseStopCounter(uint32_t code) {
  ASSERT(code <= kMaxStopCode);
  if ((watched_stops[code].count & ~(1 << 31)) == 0x7fffffff) {
    PrintF("Stop counter for code %i has overflowed.\n"
           "Enabling this code and reseting the counter to 0.\n", code);
    watched_stops[code].count = 0;
    EnableStop(code);
  } else {
    watched_stops[code].count++;
  }
}


// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
  if (code <= kMaxWatchpointCode) {
    PrintF("That is a watchpoint, not a stop.\n");
    return;
  } else if (code > kMaxStopCode) {
    PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
    return;
  }
  const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
  int32_t count = watched_stops[code].count & ~kStopDisabledBit;
  // Don't print the state of unused breakpoints.
  if (count != 0) {
    if (watched_stops[code].desc) {
      PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
             code, code, state, count, watched_stops[code].desc);
    } else {
      PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
             code, code, state, count);
    }
  }
}


void Simulator::SignalExceptions() {
  for (int i = 1; i < kNumExceptions; i++) {
    if (exceptions[i] != 0) {
      V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i);
    }
  }
}


// Handle execution based on instruction types.

void Simulator::ConfigureTypeRegister(Instruction* instr,
                                      int32_t& alu_out,
                                      int64_t& i64hilo,
                                      uint64_t& u64hilo,
                                      int32_t& next_pc,
                                      bool& do_interrupt) {
  // Every local variable declared here needs to be const.
  // This is to make sure that changed values are sent back to
  // DecodeTypeRegister correctly.

  // Instruction fields.
  const Opcode   op     = instr->OpcodeFieldRaw();
  const int32_t  rs_reg = instr->RsValue();
  const int32_t  rs     = get_register(rs_reg);
  const uint32_t rs_u   = static_cast<uint32_t>(rs);
  const int32_t  rt_reg = instr->RtValue();
  const int32_t  rt     = get_register(rt_reg);
  const uint32_t rt_u   = static_cast<uint32_t>(rt);
  const int32_t  rd_reg = instr->RdValue();
  const uint32_t sa     = instr->SaValue();

  const int32_t  fs_reg = instr->FsValue();


  // ---------- Configuration.
  switch (op) {
    case COP1:    // Coprocessor instructions.
      switch (instr->RsFieldRaw()) {
        case BC1:   // Handled in DecodeTypeImmed, should never come here.
          UNREACHABLE();
          break;
        case CFC1:
          // At the moment only FCSR is supported.
          ASSERT(fs_reg == kFCSRRegister);
          alu_out = FCSR_;
          break;
        case MFC1:
          alu_out = get_fpu_register(fs_reg);
          break;
        case MFHC1:
          UNIMPLEMENTED_MIPS();
          break;
        case CTC1:
        case MTC1:
        case MTHC1:
          // Do the store in the execution step.
          break;
        case S:
        case D:
        case W:
        case L:
        case PS:
          // Do everything in the execution step.
          break;
        default:
          UNIMPLEMENTED_MIPS();
      };
      break;
    case SPECIAL:
      switch (instr->FunctionFieldRaw()) {
        case JR:
        case JALR:
          next_pc = get_register(instr->RsValue());
          break;
        case SLL:
          alu_out = rt << sa;
          break;
        case SRL:
          if (rs_reg == 0) {
            // Regular logical right shift of a word by a fixed number of
            // bits instruction. RS field is always equal to 0.
            alu_out = rt_u >> sa;
          } else {
            // Logical right-rotate of a word by a fixed number of bits. This
            // is special case of SRL instruction, added in MIPS32 Release 2.
            // RS field is equal to 00001.
            alu_out = (rt_u >> sa) | (rt_u << (32 - sa));
          }
          break;
        case SRA:
          alu_out = rt >> sa;
          break;
        case SLLV:
          alu_out = rt << rs;
          break;
        case SRLV:
          if (sa == 0) {
            // Regular logical right-shift of a word by a variable number of
            // bits instruction. SA field is always equal to 0.
            alu_out = rt_u >> rs;
          } else {
            // Logical right-rotate of a word by a variable number of bits.
            // This is special case od SRLV instruction, added in MIPS32
            // Release 2. SA field is equal to 00001.
            alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u));
          }
          break;
        case SRAV:
          alu_out = rt >> rs;
          break;
        case MFHI:
          alu_out = get_register(HI);
          break;
        case MFLO:
          alu_out = get_register(LO);
          break;
        case MULT:
          i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt);
          break;
        case MULTU:
          u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u);
          break;
        case ADD:
          if (HaveSameSign(rs, rt)) {
            if (rs > 0) {
              exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt);
            } else if (rs < 0) {
              exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt);
            }
          }
          alu_out = rs + rt;
          break;
        case ADDU:
          alu_out = rs + rt;
          break;
        case SUB:
          if (!HaveSameSign(rs, rt)) {
            if (rs > 0) {
              exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt);
            } else if (rs < 0) {
              exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt);
            }
          }
          alu_out = rs - rt;
          break;
        case SUBU:
          alu_out = rs - rt;
          break;
        case AND:
          alu_out = rs & rt;
          break;
        case OR:
          alu_out = rs | rt;
          break;
        case XOR:
          alu_out = rs ^ rt;
          break;
        case NOR:
          alu_out = ~(rs | rt);
          break;
        case SLT:
          alu_out = rs < rt ? 1 : 0;
          break;
        case SLTU:
          alu_out = rs_u < rt_u ? 1 : 0;
          break;
        // Break and trap instructions.
        case BREAK:

          do_interrupt = true;
          break;
        case TGE:
          do_interrupt = rs >= rt;
          break;
        case TGEU:
          do_interrupt = rs_u >= rt_u;
          break;
        case TLT:
          do_interrupt = rs < rt;
          break;
        case TLTU:
          do_interrupt = rs_u < rt_u;
          break;
        case TEQ:
          do_interrupt = rs == rt;
          break;
        case TNE:
          do_interrupt = rs != rt;
          break;
        case MOVN:
        case MOVZ:
        case MOVCI:
          // No action taken on decode.
          break;
        case DIV:
        case DIVU:
          // div and divu never raise exceptions.
          break;
        default:
          UNREACHABLE();
      };
      break;
    case SPECIAL2:
      switch (instr->FunctionFieldRaw()) {
        case MUL:
          alu_out = rs_u * rt_u;  // Only the lower 32 bits are kept.
          break;
        case CLZ:
          alu_out = __builtin_clz(rs_u);
          break;
        default:
          UNREACHABLE();
      };
      break;
    case SPECIAL3:
      switch (instr->FunctionFieldRaw()) {
        case INS: {   // Mips32r2 instruction.
          // Interpret rd field as 5-bit msb of insert.
          uint16_t msb = rd_reg;
          // Interpret sa field as 5-bit lsb of insert.
          uint16_t lsb = sa;
          uint16_t size = msb - lsb + 1;
          uint32_t mask = (1 << size) - 1;
          alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb);
          break;
        }
        case EXT: {   // Mips32r2 instruction.
          // Interpret rd field as 5-bit msb of extract.
          uint16_t msb = rd_reg;
          // Interpret sa field as 5-bit lsb of extract.
          uint16_t lsb = sa;
          uint16_t size = msb + 1;
          uint32_t mask = (1 << size) - 1;
          alu_out = (rs_u & (mask << lsb)) >> lsb;
          break;
        }
        default:
          UNREACHABLE();
      };
      break;
    default:
      UNREACHABLE();
  };
}


void Simulator::DecodeTypeRegister(Instruction* instr) {
  // Instruction fields.
  const Opcode   op     = instr->OpcodeFieldRaw();
  const int32_t  rs_reg = instr->RsValue();
  const int32_t  rs     = get_register(rs_reg);
  const uint32_t rs_u   = static_cast<uint32_t>(rs);
  const int32_t  rt_reg = instr->RtValue();
  const int32_t  rt     = get_register(rt_reg);
  const uint32_t rt_u   = static_cast<uint32_t>(rt);
  const int32_t  rd_reg = instr->RdValue();

  const int32_t  fs_reg = instr->FsValue();
  const int32_t  ft_reg = instr->FtValue();
  const int32_t  fd_reg = instr->FdValue();
  int64_t  i64hilo = 0;
  uint64_t u64hilo = 0;

  // ALU output.
  // It should not be used as is. Instructions using it should always
  // initialize it first.
  int32_t alu_out = 0x12345678;

  // For break and trap instructions.
  bool do_interrupt = false;

  // For jr and jalr.
  // Get current pc.
  int32_t current_pc = get_pc();
  // Next pc
  int32_t next_pc = 0;

  // Set up the variables if needed before executing the instruction.
  ConfigureTypeRegister(instr,
                        alu_out,
                        i64hilo,
                        u64hilo,
                        next_pc,
                        do_interrupt);

  // ---------- Raise exceptions triggered.
  SignalExceptions();

  // ---------- Execution.
  switch (op) {
    case COP1:
      switch (instr->RsFieldRaw()) {
        case BC1:   // Branch on coprocessor condition.
          UNREACHABLE();
          break;
        case CFC1:
          set_register(rt_reg, alu_out);
        case MFC1:
          set_register(rt_reg, alu_out);
          break;
        case MFHC1:
          UNIMPLEMENTED_MIPS();
          break;
        case CTC1:
          // At the moment only FCSR is supported.
          ASSERT(fs_reg == kFCSRRegister);
          FCSR_ = registers_[rt_reg];
          break;
        case MTC1:
          FPUregisters_[fs_reg] = registers_[rt_reg];
          break;
        case MTHC1:
          UNIMPLEMENTED_MIPS();
          break;
        case S:
          float f;
          switch (instr->FunctionFieldRaw()) {
            case CVT_D_S:
              f = get_fpu_register_float(fs_reg);
              set_fpu_register_double(fd_reg, static_cast<double>(f));
              break;
            case CVT_W_S:
            case CVT_L_S:
            case TRUNC_W_S:
            case TRUNC_L_S:
            case ROUND_W_S:
            case ROUND_L_S:
            case FLOOR_W_S:
            case FLOOR_L_S:
            case CEIL_W_S:
            case CEIL_L_S:
            case CVT_PS_S:
              UNIMPLEMENTED_MIPS();
              break;
            default:
              UNREACHABLE();
          }
          break;
        case D:
          double ft, fs;
          uint32_t cc, fcsr_cc;
          int64_t  i64;
          fs = get_fpu_register_double(fs_reg);
          ft = get_fpu_register_double(ft_reg);
          cc = instr->FCccValue();
          fcsr_cc = get_fcsr_condition_bit(cc);
          switch (instr->FunctionFieldRaw()) {
            case ADD_D:
              set_fpu_register_double(fd_reg, fs + ft);
              break;
            case SUB_D:
              set_fpu_register_double(fd_reg, fs - ft);
              break;
            case MUL_D:
              set_fpu_register_double(fd_reg, fs * ft);
              break;
            case DIV_D:
              set_fpu_register_double(fd_reg, fs / ft);
              break;
            case ABS_D:
              set_fpu_register_double(fd_reg, fs < 0 ? -fs : fs);
              break;
            case MOV_D:
              set_fpu_register_double(fd_reg, fs);
              break;
            case NEG_D:
              set_fpu_register_double(fd_reg, -fs);
              break;
            case SQRT_D:
              set_fpu_register_double(fd_reg, sqrt(fs));
              break;
            case C_UN_D:
              set_fcsr_bit(fcsr_cc, isnan(fs) || isnan(ft));
              break;
            case C_EQ_D:
              set_fcsr_bit(fcsr_cc, (fs == ft));
              break;
            case C_UEQ_D:
              set_fcsr_bit(fcsr_cc, (fs == ft) || (isnan(fs) || isnan(ft)));
              break;
            case C_OLT_D:
              set_fcsr_bit(fcsr_cc, (fs < ft));
              break;
            case C_ULT_D:
              set_fcsr_bit(fcsr_cc, (fs < ft) || (isnan(fs) || isnan(ft)));
              break;
            case C_OLE_D:
              set_fcsr_bit(fcsr_cc, (fs <= ft));
              break;
            case C_ULE_D:
              set_fcsr_bit(fcsr_cc, (fs <= ft) || (isnan(fs) || isnan(ft)));
              break;
            case CVT_W_D:   // Convert double to word.
              // Rounding modes are not yet supported.
              ASSERT((FCSR_ & 3) == 0);
              // In rounding mode 0 it should behave like ROUND.
            case ROUND_W_D:  // Round double to word.
              {
                double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
                int32_t result = static_cast<int32_t>(rounded);
                set_fpu_register(fd_reg, result);
                if (set_fcsr_round_error(fs, rounded)) {
                  set_fpu_register(fd_reg, kFPUInvalidResult);
                }
              }
              break;
            case TRUNC_W_D:  // Truncate double to word (round towards 0).
              {
                double rounded = trunc(fs);
                int32_t result = static_cast<int32_t>(rounded);
                set_fpu_register(fd_reg, result);
                if (set_fcsr_round_error(fs, rounded)) {
                  set_fpu_register(fd_reg, kFPUInvalidResult);
                }
              }
              break;
            case FLOOR_W_D:  // Round double to word towards negative infinity.
              {
                double rounded = floor(fs);
                int32_t result = static_cast<int32_t>(rounded);
                set_fpu_register(fd_reg, result);
                if (set_fcsr_round_error(fs, rounded)) {
                  set_fpu_register(fd_reg, kFPUInvalidResult);
                }
              }
              break;
            case CEIL_W_D:  // Round double to word towards positive infinity.
              {
                double rounded = ceil(fs);
                int32_t result = static_cast<int32_t>(rounded);
                set_fpu_register(fd_reg, result);
                if (set_fcsr_round_error(fs, rounded)) {
                  set_fpu_register(fd_reg, kFPUInvalidResult);
                }
              }
              break;
            case CVT_S_D:  // Convert double to float (single).
              set_fpu_register_float(fd_reg, static_cast<float>(fs));
              break;
            case CVT_L_D: {  // Mips32r2: Truncate double to 64-bit long-word.
              double rounded = trunc(fs);
              i64 = static_cast<int64_t>(rounded);
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            }
            case TRUNC_L_D: {  // Mips32r2 instruction.
              double rounded = trunc(fs);
              i64 = static_cast<int64_t>(rounded);
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            }
            case ROUND_L_D: {  // Mips32r2 instruction.
              double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
              i64 = static_cast<int64_t>(rounded);
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            }
            case FLOOR_L_D:  // Mips32r2 instruction.
              i64 = static_cast<int64_t>(floor(fs));
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            case CEIL_L_D:  // Mips32r2 instruction.
              i64 = static_cast<int64_t>(ceil(fs));
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            case C_F_D:
              UNIMPLEMENTED_MIPS();
              break;
            default:
              UNREACHABLE();
          }
          break;
        case W:
          switch (instr->FunctionFieldRaw()) {
            case CVT_S_W:   // Convert word to float (single).
              alu_out = get_fpu_register(fs_reg);
              set_fpu_register_float(fd_reg, static_cast<float>(alu_out));
              break;
            case CVT_D_W:   // Convert word to double.
              alu_out = get_fpu_register(fs_reg);
              set_fpu_register_double(fd_reg, static_cast<double>(alu_out));
              break;
            default:
              UNREACHABLE();
          };
          break;
        case L:
          switch (instr->FunctionFieldRaw()) {
          case CVT_D_L:  // Mips32r2 instruction.
            // Watch the signs here, we want 2 32-bit vals
            // to make a sign-64.
            i64 = (uint32_t) get_fpu_register(fs_reg);
            i64 |= ((int64_t) get_fpu_register(fs_reg + 1) << 32);
            set_fpu_register_double(fd_reg, static_cast<double>(i64));
            break;
            case CVT_S_L:
              UNIMPLEMENTED_MIPS();
              break;
            default:
              UNREACHABLE();
          }
          break;
        case PS:
          break;
        default:
          UNREACHABLE();
      };
      break;
    case SPECIAL:
      switch (instr->FunctionFieldRaw()) {
        case JR: {
          Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
              current_pc+Instruction::kInstrSize);
          BranchDelayInstructionDecode(branch_delay_instr);
          set_pc(next_pc);
          pc_modified_ = true;
          break;
        }
        case JALR: {
          Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
              current_pc+Instruction::kInstrSize);
          BranchDelayInstructionDecode(branch_delay_instr);
          set_register(31, current_pc + 2 * Instruction::kInstrSize);
          set_pc(next_pc);
          pc_modified_ = true;
          break;
        }
        // Instructions using HI and LO registers.
        case MULT:
          set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
          set_register(HI, static_cast<int32_t>(i64hilo >> 32));
          break;
        case MULTU:
          set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
          set_register(HI, static_cast<int32_t>(u64hilo >> 32));
          break;
        case DIV:
          // Divide by zero was not checked in the configuration step - div and
          // divu do not raise exceptions. On division by 0, the result will
          // be UNPREDICTABLE.
          if (rt != 0) {
            set_register(LO, rs / rt);
            set_register(HI, rs % rt);
          }
          break;
        case DIVU:
          if (rt_u != 0) {
            set_register(LO, rs_u / rt_u);
            set_register(HI, rs_u % rt_u);
          }
          break;
        // Break and trap instructions.
        case BREAK:
        case TGE:
        case TGEU:
        case TLT:
        case TLTU:
        case TEQ:
        case TNE:
          if (do_interrupt) {
            SoftwareInterrupt(instr);
          }
          break;
        // Conditional moves.
        case MOVN:
          if (rt) set_register(rd_reg, rs);
          break;
        case MOVCI: {
          uint32_t cc = instr->FBccValue();
          uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
          if (instr->Bit(16)) {  // Read Tf bit.
            if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
          } else {
            if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
          }
          break;
        }
        case MOVZ:
          if (!rt) set_register(rd_reg, rs);
          break;
        default:  // For other special opcodes we do the default operation.
          set_register(rd_reg, alu_out);
      };
      break;
    case SPECIAL2:
      switch (instr->FunctionFieldRaw()) {
        case MUL:
          set_register(rd_reg, alu_out);
          // HI and LO are UNPREDICTABLE after the operation.
          set_register(LO, Unpredictable);
          set_register(HI, Unpredictable);
          break;
        default:  // For other special2 opcodes we do the default operation.
          set_register(rd_reg, alu_out);
      }
      break;
    case SPECIAL3:
      switch (instr->FunctionFieldRaw()) {
        case INS:
          // Ins instr leaves result in Rt, rather than Rd.
          set_register(rt_reg, alu_out);
          break;
        case EXT:
          // Ext instr leaves result in Rt, rather than Rd.
          set_register(rt_reg, alu_out);
          break;
        default:
          UNREACHABLE();
      };
      break;
    // Unimplemented opcodes raised an error in the configuration step before,
    // so we can use the default here to set the destination register in common
    // cases.
    default:
      set_register(rd_reg, alu_out);
  };
}


// Type 2: instructions using a 16 bytes immediate. (e.g. addi, beq).
void Simulator::DecodeTypeImmediate(Instruction* instr) {
  // Instruction fields.
  Opcode   op     = instr->OpcodeFieldRaw();
  int32_t  rs     = get_register(instr->RsValue());
  uint32_t rs_u   = static_cast<uint32_t>(rs);
  int32_t  rt_reg = instr->RtValue();  // Destination register.
  int32_t  rt     = get_register(rt_reg);
  int16_t  imm16  = instr->Imm16Value();

  int32_t  ft_reg = instr->FtValue();  // Destination register.

  // Zero extended immediate.
  uint32_t  oe_imm16 = 0xffff & imm16;
  // Sign extended immediate.
  int32_t   se_imm16 = imm16;

  // Get current pc.
  int32_t current_pc = get_pc();
  // Next pc.
  int32_t next_pc = bad_ra;

  // Used for conditional branch instructions.
  bool do_branch = false;
  bool execute_branch_delay_instruction = false;

  // Used for arithmetic instructions.
  int32_t alu_out = 0;
  // Floating point.
  double fp_out = 0.0;
  uint32_t cc, cc_value, fcsr_cc;

  // Used for memory instructions.
  int32_t addr = 0x0;
  // Value to be written in memory.
  uint32_t mem_value = 0x0;

  // ---------- Configuration (and execution for REGIMM).
  switch (op) {
    // ------------- COP1. Coprocessor instructions.
    case COP1:
      switch (instr->RsFieldRaw()) {
        case BC1:   // Branch on coprocessor condition.
          cc = instr->FBccValue();
          fcsr_cc = get_fcsr_condition_bit(cc);
          cc_value = test_fcsr_bit(fcsr_cc);
          do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
          execute_branch_delay_instruction = true;
          // Set next_pc.
          if (do_branch) {
            next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
          } else {
            next_pc = current_pc + kBranchReturnOffset;
          }
          break;
        default:
          UNREACHABLE();
      };
      break;
    // ------------- REGIMM class.
    case REGIMM:
      switch (instr->RtFieldRaw()) {
        case BLTZ:
          do_branch = (rs  < 0);
          break;
        case BLTZAL:
          do_branch = rs  < 0;
          break;
        case BGEZ:
          do_branch = rs >= 0;
          break;
        case BGEZAL:
          do_branch = rs >= 0;
          break;
        default:
          UNREACHABLE();
      };
      switch (instr->RtFieldRaw()) {
        case BLTZ:
        case BLTZAL:
        case BGEZ:
        case BGEZAL:
          // Branch instructions common part.
          execute_branch_delay_instruction = true;
          // Set next_pc.
          if (do_branch) {
            next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
            if (instr->IsLinkingInstruction()) {
              set_register(31, current_pc + kBranchReturnOffset);
            }
          } else {
            next_pc = current_pc + kBranchReturnOffset;
          }
        default:
          break;
        };
    break;  // case REGIMM.
    // ------------- Branch instructions.
    // When comparing to zero, the encoding of rt field is always 0, so we don't
    // need to replace rt with zero.
    case BEQ:
      do_branch = (rs == rt);
      break;
    case BNE:
      do_branch = rs != rt;
      break;
    case BLEZ:
      do_branch = rs <= 0;
      break;
    case BGTZ:
      do_branch = rs  > 0;
      break;
    // ------------- Arithmetic instructions.
    case ADDI:
      if (HaveSameSign(rs, se_imm16)) {
        if (rs > 0) {
          exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16);
        } else if (rs < 0) {
          exceptions[kIntegerUnderflow] =
              rs < (Registers::kMinValue - se_imm16);
        }
      }
      alu_out = rs + se_imm16;
      break;
    case ADDIU:
      alu_out = rs + se_imm16;
      break;
    case SLTI:
      alu_out = (rs < se_imm16) ? 1 : 0;
      break;
    case SLTIU:
      alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0;
      break;
    case ANDI:
        alu_out = rs & oe_imm16;
      break;
    case ORI:
        alu_out = rs | oe_imm16;
      break;
    case XORI:
        alu_out = rs ^ oe_imm16;
      break;
    case LUI:
        alu_out = (oe_imm16 << 16);
      break;
    // ------------- Memory instructions.
    case LB:
      addr = rs + se_imm16;
      alu_out = ReadB(addr);
      break;
    case LH:
      addr = rs + se_imm16;
      alu_out = ReadH(addr, instr);
      break;
    case LWL: {
      // al_offset is offset of the effective address within an aligned word.
      uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
      uint8_t byte_shift = kPointerAlignmentMask - al_offset;
      uint32_t mask = (1 << byte_shift * 8) - 1;
      addr = rs + se_imm16 - al_offset;
      alu_out = ReadW(addr, instr);
      alu_out <<= byte_shift * 8;
      alu_out |= rt & mask;
      break;
    }
    case LW:
      addr = rs + se_imm16;
      alu_out = ReadW(addr, instr);
      break;
    case LBU:
      addr = rs + se_imm16;
      alu_out = ReadBU(addr);
      break;
    case LHU:
      addr = rs + se_imm16;
      alu_out = ReadHU(addr, instr);
      break;
    case LWR: {
      // al_offset is offset of the effective address within an aligned word.
      uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
      uint8_t byte_shift = kPointerAlignmentMask - al_offset;
      uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
      addr = rs + se_imm16 - al_offset;
      alu_out = ReadW(addr, instr);
      alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
      alu_out |= rt & mask;
      break;
    }
    case SB:
      addr = rs + se_imm16;
      break;
    case SH:
      addr = rs + se_imm16;
      break;
    case SWL: {
      uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
      uint8_t byte_shift = kPointerAlignmentMask - al_offset;
      uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
      addr = rs + se_imm16 - al_offset;
      mem_value = ReadW(addr, instr) & mask;
      mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
      break;
    }
    case SW:
      addr = rs + se_imm16;
      break;
    case SWR: {
      uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
      uint32_t mask = (1 << al_offset * 8) - 1;
      addr = rs + se_imm16 - al_offset;
      mem_value = ReadW(addr, instr);
      mem_value = (rt << al_offset * 8) | (mem_value & mask);
      break;
    }
    case LWC1:
      addr = rs + se_imm16;
      alu_out = ReadW(addr, instr);
      break;
    case LDC1:
      addr = rs + se_imm16;
      fp_out = ReadD(addr, instr);
      break;
    case SWC1:
    case SDC1:
      addr = rs + se_imm16;
      break;
    default:
      UNREACHABLE();
  };

  // ---------- Raise exceptions triggered.
  SignalExceptions();

  // ---------- Execution.
  switch (op) {
    // ------------- Branch instructions.
    case BEQ:
    case BNE:
    case BLEZ:
    case BGTZ:
      // Branch instructions common part.
      execute_branch_delay_instruction = true;
      // Set next_pc.
      if (do_branch) {
        next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
        if (instr->IsLinkingInstruction()) {
          set_register(31, current_pc + 2* Instruction::kInstrSize);
        }
      } else {
        next_pc = current_pc + 2 * Instruction::kInstrSize;
      }
      break;
    // ------------- Arithmetic instructions.
    case ADDI:
    case ADDIU:
    case SLTI:
    case SLTIU:
    case ANDI:
    case ORI:
    case XORI:
    case LUI:
      set_register(rt_reg, alu_out);
      break;
    // ------------- Memory instructions.
    case LB:
    case LH:
    case LWL:
    case LW:
    case LBU:
    case LHU:
    case LWR:
      set_register(rt_reg, alu_out);
      break;
    case SB:
      WriteB(addr, static_cast<int8_t>(rt));
      break;
    case SH:
      WriteH(addr, static_cast<uint16_t>(rt), instr);
      break;
    case SWL:
      WriteW(addr, mem_value, instr);
      break;
    case SW:
      WriteW(addr, rt, instr);
      break;
    case SWR:
      WriteW(addr, mem_value, instr);
      break;
    case LWC1:
      set_fpu_register(ft_reg, alu_out);
      break;
    case LDC1:
      set_fpu_register_double(ft_reg, fp_out);
      break;
    case SWC1:
      addr = rs + se_imm16;
      WriteW(addr, get_fpu_register(ft_reg), instr);
      break;
    case SDC1:
      addr = rs + se_imm16;
      WriteD(addr, get_fpu_register_double(ft_reg), instr);
      break;
    default:
      break;
  };


  if (execute_branch_delay_instruction) {
    // Execute branch delay slot
    // We don't check for end_sim_pc. First it should not be met as the current
    // pc is valid. Secondly a jump should always execute its branch delay slot.
    Instruction* branch_delay_instr =
      reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
    BranchDelayInstructionDecode(branch_delay_instr);
  }

  // If needed update pc after the branch delay execution.
  if (next_pc != bad_ra) {
    set_pc(next_pc);
  }
}


// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
void Simulator::DecodeTypeJump(Instruction* instr) {
  // Get current pc.
  int32_t current_pc = get_pc();
  // Get unchanged bits of pc.
  int32_t pc_high_bits = current_pc & 0xf0000000;
  // Next pc.
  int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);

  // Execute branch delay slot.
  // We don't check for end_sim_pc. First it should not be met as the current pc
  // is valid. Secondly a jump should always execute its branch delay slot.
  Instruction* branch_delay_instr =
      reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
  BranchDelayInstructionDecode(branch_delay_instr);

  // Update pc and ra if necessary.
  // Do this after the branch delay execution.
  if (instr->IsLinkingInstruction()) {
    set_register(31, current_pc + 2 * Instruction::kInstrSize);
  }
  set_pc(next_pc);
  pc_modified_ = true;
}


// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
  if (v8::internal::FLAG_check_icache) {
    CheckICache(isolate_->simulator_i_cache(), instr);
  }
  pc_modified_ = false;
  if (::v8::internal::FLAG_trace_sim) {
    disasm::NameConverter converter;
    disasm::Disassembler dasm(converter);
    // Use a reasonably large buffer.
    v8::internal::EmbeddedVector<char, 256> buffer;
    dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
    PrintF("  0x%08x  %s\n", reinterpret_cast<intptr_t>(instr),
        buffer.start());
  }

  switch (instr->InstructionType()) {
    case Instruction::kRegisterType:
      DecodeTypeRegister(instr);
      break;
    case Instruction::kImmediateType:
      DecodeTypeImmediate(instr);
      break;
    case Instruction::kJumpType:
      DecodeTypeJump(instr);
      break;
    default:
      UNSUPPORTED();
  }
  if (!pc_modified_) {
    set_register(pc, reinterpret_cast<int32_t>(instr) +
                 Instruction::kInstrSize);
  }
}



void Simulator::Execute() {
  // Get the PC to simulate. Cannot use the accessor here as we need the
  // raw PC value and not the one used as input to arithmetic instructions.
  int program_counter = get_pc();
  if (::v8::internal::FLAG_stop_sim_at == 0) {
    // Fast version of the dispatch loop without checking whether the simulator
    // should be stopping at a particular executed instruction.
    while (program_counter != end_sim_pc) {
      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
      icount_++;
      InstructionDecode(instr);
      program_counter = get_pc();
    }
  } else {
    // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
    // we reach the particular instuction count.
    while (program_counter != end_sim_pc) {
      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
      icount_++;
      if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
        MipsDebugger dbg(this);
        dbg.Debug();
      } else {
        InstructionDecode(instr);
      }
      program_counter = get_pc();
    }
  }
}


int32_t Simulator::Call(byte* entry, int argument_count, ...) {
  va_list parameters;
  va_start(parameters, argument_count);
  // Set up arguments.

  // First four arguments passed in registers.
  ASSERT(argument_count >= 4);
  set_register(a0, va_arg(parameters, int32_t));
  set_register(a1, va_arg(parameters, int32_t));
  set_register(a2, va_arg(parameters, int32_t));
  set_register(a3, va_arg(parameters, int32_t));

  // Remaining arguments passed on stack.
  int original_stack = get_register(sp);
  // Compute position of stack on entry to generated code.
  int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)
                                    - kCArgsSlotsSize);
  if (OS::ActivationFrameAlignment() != 0) {
    entry_stack &= -OS::ActivationFrameAlignment();
  }
  // Store remaining arguments on stack, from low to high memory.
  intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
  for (int i = 4; i < argument_count; i++) {
    stack_argument[i - 4 + kCArgSlotCount] = va_arg(parameters, int32_t);
  }
  va_end(parameters);
  set_register(sp, entry_stack);

  // Prepare to execute the code at entry.
  set_register(pc, reinterpret_cast<int32_t>(entry));
  // Put down marker for end of simulation. The simulator will stop simulation
  // when the PC reaches this value. By saving the "end simulation" value into
  // the LR the simulation stops when returning to this call point.
  set_register(ra, end_sim_pc);

  // Remember the values of callee-saved registers.
  // The code below assumes that r9 is not used as sb (static base) in
  // simulator code and therefore is regarded as a callee-saved register.
  int32_t s0_val = get_register(s0);
  int32_t s1_val = get_register(s1);
  int32_t s2_val = get_register(s2);
  int32_t s3_val = get_register(s3);
  int32_t s4_val = get_register(s4);
  int32_t s5_val = get_register(s5);
  int32_t s6_val = get_register(s6);
  int32_t s7_val = get_register(s7);
  int32_t gp_val = get_register(gp);
  int32_t sp_val = get_register(sp);
  int32_t fp_val = get_register(fp);

  // Set up the callee-saved registers with a known value. To be able to check
  // that they are preserved properly across JS execution.
  int32_t callee_saved_value = icount_;
  set_register(s0, callee_saved_value);
  set_register(s1, callee_saved_value);
  set_register(s2, callee_saved_value);
  set_register(s3, callee_saved_value);
  set_register(s4, callee_saved_value);
  set_register(s5, callee_saved_value);
  set_register(s6, callee_saved_value);
  set_register(s7, callee_saved_value);
  set_register(gp, callee_saved_value);
  set_register(fp, callee_saved_value);

  // Start the simulation.
  Execute();

  // Check that the callee-saved registers have been preserved.
  CHECK_EQ(callee_saved_value, get_register(s0));
  CHECK_EQ(callee_saved_value, get_register(s1));
  CHECK_EQ(callee_saved_value, get_register(s2));
  CHECK_EQ(callee_saved_value, get_register(s3));
  CHECK_EQ(callee_saved_value, get_register(s4));
  CHECK_EQ(callee_saved_value, get_register(s5));
  CHECK_EQ(callee_saved_value, get_register(s6));
  CHECK_EQ(callee_saved_value, get_register(s7));
  CHECK_EQ(callee_saved_value, get_register(gp));
  CHECK_EQ(callee_saved_value, get_register(fp));

  // Restore callee-saved registers with the original value.
  set_register(s0, s0_val);
  set_register(s1, s1_val);
  set_register(s2, s2_val);
  set_register(s3, s3_val);
  set_register(s4, s4_val);
  set_register(s5, s5_val);
  set_register(s6, s6_val);
  set_register(s7, s7_val);
  set_register(gp, gp_val);
  set_register(sp, sp_val);
  set_register(fp, fp_val);

  // Pop stack passed arguments.
  CHECK_EQ(entry_stack, get_register(sp));
  set_register(sp, original_stack);

  int32_t result = get_register(v0);
  return result;
}


uintptr_t Simulator::PushAddress(uintptr_t address) {
  int new_sp = get_register(sp) - sizeof(uintptr_t);
  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
  *stack_slot = address;
  set_register(sp, new_sp);
  return new_sp;
}


uintptr_t Simulator::PopAddress() {
  int current_sp = get_register(sp);
  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
  uintptr_t address = *stack_slot;
  set_register(sp, current_sp + sizeof(uintptr_t));
  return address;
}


#undef UNSUPPORTED

} }  // namespace v8::internal

#endif  // USE_SIMULATOR

#endif  // V8_TARGET_ARCH_MIPS

/* [<][>][^][v][top][bottom][index][help] */