root/src/deoptimizer.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Iterate
  2. New
  3. Grab
  4. ConvertJSFrameIndexToFrameIndex
  5. DebuggerInspectableFrame
  6. DeleteDebuggerInspectableFrame
  7. GenerateDeoptimizationEntries
  8. EnterContext
  9. VisitFunction
  10. LeaveContext
  11. DeoptimizeAll
  12. DeoptimizeGlobalObject
  13. VisitAllOptimizedFunctionsForContext
  14. VisitAllOptimizedFunctionsForGlobalObject
  15. VisitAllOptimizedFunctions
  16. HandleWeakDeoptimizedCode
  17. ComputeOutputFrames
  18. deferred_heap_numbers_
  19. DeleteFrameDescriptions
  20. GetDeoptimizationEntry
  21. GetDeoptimizationId
  22. GetOutputInfo
  23. GetDeoptimizedCodeCount
  24. DoComputeOutputFrames
  25. MaterializeHeapNumbers
  26. MaterializeHeapNumbersForDebuggerInspectableFrame
  27. DoTranslateCommand
  28. DoOsrTranslateCommand
  29. PatchStackCheckCode
  30. RevertStackCheckCode
  31. ComputeInputFrameSize
  32. ComputeFixedSize
  33. ComputeIncomingArgumentSize
  34. ComputeOutgoingArgumentSize
  35. ComputeLiteral
  36. AddDoubleValue
  37. CreateCode
  38. FindDeoptimizingCodeFromAddress
  39. RemoveDeoptimizingCode
  40. context_
  41. ComputeFixedSize
  42. GetOffsetFromSlotIndex
  43. ComputeParametersCount
  44. GetParameter
  45. GetExpressionCount
  46. GetExpression
  47. Add
  48. Next
  49. CreateByteArray
  50. BeginConstructStubFrame
  51. BeginArgumentsAdaptorFrame
  52. BeginJSFrame
  53. StoreRegister
  54. StoreInt32Register
  55. StoreDoubleRegister
  56. StoreStackSlot
  57. StoreInt32StackSlot
  58. StoreDoubleStackSlot
  59. StoreLiteral
  60. StoreArgumentsObject
  61. MarkDuplicate
  62. NumberOfOperandsFor
  63. StringFor
  64. ComputeSlotForNextArgument
  65. ComputeSlotsForArguments
  66. ComputeSlotMappingForArguments
  67. Iterate

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "codegen.h"
#include "deoptimizer.h"
#include "disasm.h"
#include "full-codegen.h"
#include "global-handles.h"
#include "macro-assembler.h"
#include "prettyprinter.h"


namespace v8 {
namespace internal {

DeoptimizerData::DeoptimizerData() {
  eager_deoptimization_entry_code_ = NULL;
  lazy_deoptimization_entry_code_ = NULL;
  current_ = NULL;
  deoptimizing_code_list_ = NULL;
#ifdef ENABLE_DEBUGGER_SUPPORT
  deoptimized_frame_info_ = NULL;
#endif
}


DeoptimizerData::~DeoptimizerData() {
  if (eager_deoptimization_entry_code_ != NULL) {
    Isolate::Current()->memory_allocator()->Free(
        eager_deoptimization_entry_code_);
    eager_deoptimization_entry_code_ = NULL;
  }
  if (lazy_deoptimization_entry_code_ != NULL) {
    Isolate::Current()->memory_allocator()->Free(
        lazy_deoptimization_entry_code_);
    lazy_deoptimization_entry_code_ = NULL;
  }
}


#ifdef ENABLE_DEBUGGER_SUPPORT
void DeoptimizerData::Iterate(ObjectVisitor* v) {
  if (deoptimized_frame_info_ != NULL) {
    deoptimized_frame_info_->Iterate(v);
  }
}
#endif


// We rely on this function not causing a GC.  It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(JSFunction* function,
                              BailoutType type,
                              unsigned bailout_id,
                              Address from,
                              int fp_to_sp_delta,
                              Isolate* isolate) {
  ASSERT(isolate == Isolate::Current());
  Deoptimizer* deoptimizer = new Deoptimizer(isolate,
                                             function,
                                             type,
                                             bailout_id,
                                             from,
                                             fp_to_sp_delta,
                                             NULL);
  ASSERT(isolate->deoptimizer_data()->current_ == NULL);
  isolate->deoptimizer_data()->current_ = deoptimizer;
  return deoptimizer;
}


Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
  ASSERT(isolate == Isolate::Current());
  Deoptimizer* result = isolate->deoptimizer_data()->current_;
  ASSERT(result != NULL);
  result->DeleteFrameDescriptions();
  isolate->deoptimizer_data()->current_ = NULL;
  return result;
}


int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
  if (jsframe_index == 0) return 0;

  int frame_index = 0;
  while (jsframe_index >= 0) {
    FrameDescription* frame = output_[frame_index];
    if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
      jsframe_index--;
    }
    frame_index++;
  }

  return frame_index - 1;
}


#ifdef ENABLE_DEBUGGER_SUPPORT
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
    JavaScriptFrame* frame,
    int jsframe_index,
    Isolate* isolate) {
  ASSERT(isolate == Isolate::Current());
  ASSERT(frame->is_optimized());
  ASSERT(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL);

  // Get the function and code from the frame.
  JSFunction* function = JSFunction::cast(frame->function());
  Code* code = frame->LookupCode();

  // Locate the deoptimization point in the code. As we are at a call the
  // return address must be at a place in the code with deoptimization support.
  SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc());
  int deoptimization_index = safepoint_entry.deoptimization_index();
  ASSERT(deoptimization_index != Safepoint::kNoDeoptimizationIndex);

  // Always use the actual stack slots when calculating the fp to sp
  // delta adding two for the function and context.
  unsigned stack_slots = code->stack_slots();
  unsigned fp_to_sp_delta = ((stack_slots + 2) * kPointerSize);

  Deoptimizer* deoptimizer = new Deoptimizer(isolate,
                                             function,
                                             Deoptimizer::DEBUGGER,
                                             deoptimization_index,
                                             frame->pc(),
                                             fp_to_sp_delta,
                                             code);
  Address tos = frame->fp() - fp_to_sp_delta;
  deoptimizer->FillInputFrame(tos, frame);

  // Calculate the output frames.
  Deoptimizer::ComputeOutputFrames(deoptimizer);

  // Create the GC safe output frame information and register it for GC
  // handling.
  ASSERT_LT(jsframe_index, deoptimizer->jsframe_count());

  // Convert JS frame index into frame index.
  int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index);

  bool has_arguments_adaptor =
      frame_index > 0 &&
      deoptimizer->output_[frame_index - 1]->GetFrameType() ==
      StackFrame::ARGUMENTS_ADAPTOR;

  int construct_offset = has_arguments_adaptor ? 2 : 1;
  bool has_construct_stub =
      frame_index >= construct_offset &&
      deoptimizer->output_[frame_index - construct_offset]->GetFrameType() ==
      StackFrame::CONSTRUCT;

  DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer,
                                                        frame_index,
                                                        has_arguments_adaptor,
                                                        has_construct_stub);
  isolate->deoptimizer_data()->deoptimized_frame_info_ = info;

  // Get the "simulated" top and size for the requested frame.
  FrameDescription* parameters_frame =
      deoptimizer->output_[
          has_arguments_adaptor ? (frame_index - 1) : frame_index];

  uint32_t parameters_size = (info->parameters_count() + 1) * kPointerSize;
  Address parameters_top = reinterpret_cast<Address>(
      parameters_frame->GetTop() + (parameters_frame->GetFrameSize() -
                                    parameters_size));

  uint32_t expressions_size = info->expression_count() * kPointerSize;
  Address expressions_top = reinterpret_cast<Address>(
      deoptimizer->output_[frame_index]->GetTop());

  // Done with the GC-unsafe frame descriptions. This re-enables allocation.
  deoptimizer->DeleteFrameDescriptions();

  // Allocate a heap number for the doubles belonging to this frame.
  deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame(
      parameters_top, parameters_size, expressions_top, expressions_size, info);

  // Finished using the deoptimizer instance.
  delete deoptimizer;

  return info;
}


void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
                                                 Isolate* isolate) {
  ASSERT(isolate == Isolate::Current());
  ASSERT(isolate->deoptimizer_data()->deoptimized_frame_info_ == info);
  delete info;
  isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL;
}
#endif

void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
                                                int count,
                                                BailoutType type) {
  TableEntryGenerator generator(masm, type, count);
  generator.Generate();
}


class DeoptimizingVisitor : public OptimizedFunctionVisitor {
 public:
  virtual void EnterContext(Context* context) {
    if (FLAG_trace_deopt) {
      PrintF("[deoptimize context: %" V8PRIxPTR "]\n",
             reinterpret_cast<intptr_t>(context));
    }
  }

  virtual void VisitFunction(JSFunction* function) {
    Deoptimizer::DeoptimizeFunction(function);
  }

  virtual void LeaveContext(Context* context) {
    context->ClearOptimizedFunctions();
  }
};


void Deoptimizer::DeoptimizeAll() {
  AssertNoAllocation no_allocation;

  if (FLAG_trace_deopt) {
    PrintF("[deoptimize all contexts]\n");
  }

  DeoptimizingVisitor visitor;
  VisitAllOptimizedFunctions(&visitor);
}


void Deoptimizer::DeoptimizeGlobalObject(JSObject* object) {
  AssertNoAllocation no_allocation;

  DeoptimizingVisitor visitor;
  VisitAllOptimizedFunctionsForGlobalObject(object, &visitor);
}


void Deoptimizer::VisitAllOptimizedFunctionsForContext(
    Context* context, OptimizedFunctionVisitor* visitor) {
  Isolate* isolate = context->GetIsolate();
  ZoneScope zone_scope(isolate->runtime_zone(), DELETE_ON_EXIT);
  AssertNoAllocation no_allocation;

  ASSERT(context->IsGlobalContext());

  visitor->EnterContext(context);

  // Create a snapshot of the optimized functions list. This is needed because
  // visitors might remove more than one link from the list at once.
  ZoneList<JSFunction*> snapshot(1, isolate->runtime_zone());
  Object* element = context->OptimizedFunctionsListHead();
  while (!element->IsUndefined()) {
    JSFunction* element_function = JSFunction::cast(element);
    snapshot.Add(element_function, isolate->runtime_zone());
    element = element_function->next_function_link();
  }

  // Run through the snapshot of optimized functions and visit them.
  for (int i = 0; i < snapshot.length(); ++i) {
    visitor->VisitFunction(snapshot.at(i));
  }

  visitor->LeaveContext(context);
}


void Deoptimizer::VisitAllOptimizedFunctionsForGlobalObject(
    JSObject* object, OptimizedFunctionVisitor* visitor) {
  AssertNoAllocation no_allocation;

  if (object->IsJSGlobalProxy()) {
    Object* proto = object->GetPrototype();
    ASSERT(proto->IsJSGlobalObject());
    VisitAllOptimizedFunctionsForContext(
        GlobalObject::cast(proto)->global_context(), visitor);
  } else if (object->IsGlobalObject()) {
    VisitAllOptimizedFunctionsForContext(
        GlobalObject::cast(object)->global_context(), visitor);
  }
}


void Deoptimizer::VisitAllOptimizedFunctions(
    OptimizedFunctionVisitor* visitor) {
  AssertNoAllocation no_allocation;

  // Run through the list of all global contexts and deoptimize.
  Object* context = Isolate::Current()->heap()->global_contexts_list();
  while (!context->IsUndefined()) {
    // GC can happen when the context is not fully initialized,
    // so the global field of the context can be undefined.
    Object* global = Context::cast(context)->get(Context::GLOBAL_INDEX);
    if (!global->IsUndefined()) {
      VisitAllOptimizedFunctionsForGlobalObject(JSObject::cast(global),
                                                visitor);
    }
    context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
  }
}


void Deoptimizer::HandleWeakDeoptimizedCode(
    v8::Persistent<v8::Value> obj, void* data) {
  DeoptimizingCodeListNode* node =
      reinterpret_cast<DeoptimizingCodeListNode*>(data);
  RemoveDeoptimizingCode(*node->code());
#ifdef DEBUG
  node = Isolate::Current()->deoptimizer_data()->deoptimizing_code_list_;
  while (node != NULL) {
    ASSERT(node != reinterpret_cast<DeoptimizingCodeListNode*>(data));
    node = node->next();
  }
#endif
}


void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
  deoptimizer->DoComputeOutputFrames();
}


Deoptimizer::Deoptimizer(Isolate* isolate,
                         JSFunction* function,
                         BailoutType type,
                         unsigned bailout_id,
                         Address from,
                         int fp_to_sp_delta,
                         Code* optimized_code)
    : isolate_(isolate),
      function_(function),
      bailout_id_(bailout_id),
      bailout_type_(type),
      from_(from),
      fp_to_sp_delta_(fp_to_sp_delta),
      has_alignment_padding_(0),
      input_(NULL),
      output_count_(0),
      jsframe_count_(0),
      output_(NULL),
      deferred_heap_numbers_(0) {
  if (FLAG_trace_deopt && type != OSR) {
    if (type == DEBUGGER) {
      PrintF("**** DEOPT FOR DEBUGGER: ");
    } else {
      PrintF("**** DEOPT: ");
    }
    function->PrintName();
    PrintF(" at bailout #%u, address 0x%" V8PRIxPTR ", frame size %d\n",
           bailout_id,
           reinterpret_cast<intptr_t>(from),
           fp_to_sp_delta - (2 * kPointerSize));
  } else if (FLAG_trace_osr && type == OSR) {
    PrintF("**** OSR: ");
    function->PrintName();
    PrintF(" at ast id #%u, address 0x%" V8PRIxPTR ", frame size %d\n",
           bailout_id,
           reinterpret_cast<intptr_t>(from),
           fp_to_sp_delta - (2 * kPointerSize));
  }
  function->shared()->increment_deopt_count();
  // Find the optimized code.
  if (type == EAGER) {
    ASSERT(from == NULL);
    optimized_code_ = function_->code();
    if (FLAG_trace_deopt && FLAG_code_comments) {
      // Print instruction associated with this bailout.
      const char* last_comment = NULL;
      int mask = RelocInfo::ModeMask(RelocInfo::COMMENT)
          | RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
      for (RelocIterator it(optimized_code_, mask); !it.done(); it.next()) {
        RelocInfo* info = it.rinfo();
        if (info->rmode() == RelocInfo::COMMENT) {
          last_comment = reinterpret_cast<const char*>(info->data());
        }
        if (info->rmode() == RelocInfo::RUNTIME_ENTRY) {
          unsigned id = Deoptimizer::GetDeoptimizationId(
              info->target_address(), Deoptimizer::EAGER);
          if (id == bailout_id && last_comment != NULL) {
            PrintF("            %s\n", last_comment);
            break;
          }
        }
      }
    }
  } else if (type == LAZY) {
    optimized_code_ = FindDeoptimizingCodeFromAddress(from);
    ASSERT(optimized_code_ != NULL);
  } else if (type == OSR) {
    // The function has already been optimized and we're transitioning
    // from the unoptimized shared version to the optimized one in the
    // function. The return address (from) points to unoptimized code.
    optimized_code_ = function_->code();
    ASSERT(optimized_code_->kind() == Code::OPTIMIZED_FUNCTION);
    ASSERT(!optimized_code_->contains(from));
  } else if (type == DEBUGGER) {
    optimized_code_ = optimized_code;
    ASSERT(optimized_code_->contains(from));
  }
  ASSERT(HEAP->allow_allocation(false));
  unsigned size = ComputeInputFrameSize();
  input_ = new(size) FrameDescription(size, function);
  input_->SetFrameType(StackFrame::JAVA_SCRIPT);
}


Deoptimizer::~Deoptimizer() {
  ASSERT(input_ == NULL && output_ == NULL);
}


void Deoptimizer::DeleteFrameDescriptions() {
  delete input_;
  for (int i = 0; i < output_count_; ++i) {
    if (output_[i] != input_) delete output_[i];
  }
  delete[] output_;
  input_ = NULL;
  output_ = NULL;
  ASSERT(!HEAP->allow_allocation(true));
}


Address Deoptimizer::GetDeoptimizationEntry(int id, BailoutType type) {
  ASSERT(id >= 0);
  if (id >= kNumberOfEntries) return NULL;
  MemoryChunk* base = NULL;
  DeoptimizerData* data = Isolate::Current()->deoptimizer_data();
  if (type == EAGER) {
    if (data->eager_deoptimization_entry_code_ == NULL) {
      data->eager_deoptimization_entry_code_ = CreateCode(type);
    }
    base = data->eager_deoptimization_entry_code_;
  } else {
    if (data->lazy_deoptimization_entry_code_ == NULL) {
      data->lazy_deoptimization_entry_code_ = CreateCode(type);
    }
    base = data->lazy_deoptimization_entry_code_;
  }
  return
      static_cast<Address>(base->area_start()) + (id * table_entry_size_);
}


int Deoptimizer::GetDeoptimizationId(Address addr, BailoutType type) {
  MemoryChunk* base = NULL;
  DeoptimizerData* data = Isolate::Current()->deoptimizer_data();
  if (type == EAGER) {
    base = data->eager_deoptimization_entry_code_;
  } else {
    base = data->lazy_deoptimization_entry_code_;
  }
  if (base == NULL ||
      addr < base->area_start() ||
      addr >= base->area_start() +
          (kNumberOfEntries * table_entry_size_)) {
    return kNotDeoptimizationEntry;
  }
  ASSERT_EQ(0,
      static_cast<int>(addr - base->area_start()) % table_entry_size_);
  return static_cast<int>(addr - base->area_start()) / table_entry_size_;
}


int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
                               unsigned id,
                               SharedFunctionInfo* shared) {
  // TODO(kasperl): For now, we do a simple linear search for the PC
  // offset associated with the given node id. This should probably be
  // changed to a binary search.
  int length = data->DeoptPoints();
  Smi* smi_id = Smi::FromInt(id);
  for (int i = 0; i < length; i++) {
    if (data->AstId(i) == smi_id) {
      return data->PcAndState(i)->value();
    }
  }
  PrintF("[couldn't find pc offset for node=%u]\n", id);
  PrintF("[method: %s]\n", *shared->DebugName()->ToCString());
  // Print the source code if available.
  HeapStringAllocator string_allocator;
  StringStream stream(&string_allocator);
  shared->SourceCodePrint(&stream, -1);
  PrintF("[source:\n%s\n]", *stream.ToCString());

  UNREACHABLE();
  return -1;
}


int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
  int length = 0;
  DeoptimizingCodeListNode* node =
      isolate->deoptimizer_data()->deoptimizing_code_list_;
  while (node != NULL) {
    length++;
    node = node->next();
  }
  return length;
}


// We rely on this function not causing a GC.  It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
  if (bailout_type_ == OSR) {
    DoComputeOsrOutputFrame();
    return;
  }

  // Print some helpful diagnostic information.
  int64_t start = OS::Ticks();
  if (FLAG_trace_deopt) {
    PrintF("[deoptimizing%s: begin 0x%08" V8PRIxPTR " ",
           (bailout_type_ == LAZY ? " (lazy)" : ""),
           reinterpret_cast<intptr_t>(function_));
    function_->PrintName();
    PrintF(" @%d]\n", bailout_id_);
  }

  // Determine basic deoptimization information.  The optimized frame is
  // described by the input data.
  DeoptimizationInputData* input_data =
      DeoptimizationInputData::cast(optimized_code_->deoptimization_data());
  unsigned node_id = input_data->AstId(bailout_id_)->value();
  ByteArray* translations = input_data->TranslationByteArray();
  unsigned translation_index =
      input_data->TranslationIndex(bailout_id_)->value();

  // Do the input frame to output frame(s) translation.
  TranslationIterator iterator(translations, translation_index);
  Translation::Opcode opcode =
      static_cast<Translation::Opcode>(iterator.Next());
  ASSERT(Translation::BEGIN == opcode);
  USE(opcode);
  // Read the number of output frames and allocate an array for their
  // descriptions.
  int count = iterator.Next();
  iterator.Next();  // Drop JS frames count.
  ASSERT(output_ == NULL);
  output_ = new FrameDescription*[count];
  for (int i = 0; i < count; ++i) {
    output_[i] = NULL;
  }
  output_count_ = count;

  // Translate each output frame.
  for (int i = 0; i < count; ++i) {
    // Read the ast node id, function, and frame height for this output frame.
    Translation::Opcode opcode =
        static_cast<Translation::Opcode>(iterator.Next());
    switch (opcode) {
      case Translation::JS_FRAME:
        DoComputeJSFrame(&iterator, i);
        jsframe_count_++;
        break;
      case Translation::ARGUMENTS_ADAPTOR_FRAME:
        DoComputeArgumentsAdaptorFrame(&iterator, i);
        break;
      case Translation::CONSTRUCT_STUB_FRAME:
        DoComputeConstructStubFrame(&iterator, i);
        break;
      default:
        UNREACHABLE();
        break;
    }
  }

  // Print some helpful diagnostic information.
  if (FLAG_trace_deopt) {
    double ms = static_cast<double>(OS::Ticks() - start) / 1000;
    int index = output_count_ - 1;  // Index of the topmost frame.
    JSFunction* function = output_[index]->GetFunction();
    PrintF("[deoptimizing: end 0x%08" V8PRIxPTR " ",
           reinterpret_cast<intptr_t>(function));
    function->PrintName();
    PrintF(" => node=%u, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
           " took %0.3f ms]\n",
           node_id,
           output_[index]->GetPc(),
           FullCodeGenerator::State2String(
               static_cast<FullCodeGenerator::State>(
                   output_[index]->GetState()->value())),
           has_alignment_padding_ ? "with padding" : "no padding",
           ms);
  }
}


void Deoptimizer::MaterializeHeapNumbers() {
  ASSERT_NE(DEBUGGER, bailout_type_);
  for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
    HeapNumberMaterializationDescriptor d = deferred_heap_numbers_[i];
    Handle<Object> num = isolate_->factory()->NewNumber(d.value());
    if (FLAG_trace_deopt) {
      PrintF("Materializing a new heap number %p [%e] in slot %p\n",
             reinterpret_cast<void*>(*num),
             d.value(),
             d.slot_address());
    }

    Memory::Object_at(d.slot_address()) = *num;
  }
}


#ifdef ENABLE_DEBUGGER_SUPPORT
void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
    Address parameters_top,
    uint32_t parameters_size,
    Address expressions_top,
    uint32_t expressions_size,
    DeoptimizedFrameInfo* info) {
  ASSERT_EQ(DEBUGGER, bailout_type_);
  Address parameters_bottom = parameters_top + parameters_size;
  Address expressions_bottom = expressions_top + expressions_size;
  for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
    HeapNumberMaterializationDescriptor d = deferred_heap_numbers_[i];

    // Check of the heap number to materialize actually belong to the frame
    // being extracted.
    Address slot = d.slot_address();
    if (parameters_top <= slot && slot < parameters_bottom) {
      Handle<Object> num = isolate_->factory()->NewNumber(d.value());

      int index = (info->parameters_count() - 1) -
          static_cast<int>(slot - parameters_top) / kPointerSize;

      if (FLAG_trace_deopt) {
        PrintF("Materializing a new heap number %p [%e] in slot %p"
               "for parameter slot #%d\n",
               reinterpret_cast<void*>(*num),
               d.value(),
               d.slot_address(),
               index);
      }

      info->SetParameter(index, *num);
    } else if (expressions_top <= slot && slot < expressions_bottom) {
      Handle<Object> num = isolate_->factory()->NewNumber(d.value());

      int index = info->expression_count() - 1 -
          static_cast<int>(slot - expressions_top) / kPointerSize;

      if (FLAG_trace_deopt) {
        PrintF("Materializing a new heap number %p [%e] in slot %p"
               "for expression slot #%d\n",
               reinterpret_cast<void*>(*num),
               d.value(),
               d.slot_address(),
               index);
      }

      info->SetExpression(index, *num);
    }
  }
}
#endif


void Deoptimizer::DoTranslateCommand(TranslationIterator* iterator,
                                     int frame_index,
                                     unsigned output_offset) {
  disasm::NameConverter converter;
  // A GC-safe temporary placeholder that we can put in the output frame.
  const intptr_t kPlaceholder = reinterpret_cast<intptr_t>(Smi::FromInt(0));

  // Ignore commands marked as duplicate and act on the first non-duplicate.
  Translation::Opcode opcode =
      static_cast<Translation::Opcode>(iterator->Next());
  while (opcode == Translation::DUPLICATE) {
    opcode = static_cast<Translation::Opcode>(iterator->Next());
    iterator->Skip(Translation::NumberOfOperandsFor(opcode));
    opcode = static_cast<Translation::Opcode>(iterator->Next());
  }

  switch (opcode) {
    case Translation::BEGIN:
    case Translation::JS_FRAME:
    case Translation::ARGUMENTS_ADAPTOR_FRAME:
    case Translation::CONSTRUCT_STUB_FRAME:
    case Translation::DUPLICATE:
      UNREACHABLE();
      return;

    case Translation::REGISTER: {
      int input_reg = iterator->Next();
      intptr_t input_value = input_->GetRegister(input_reg);
      if (FLAG_trace_deopt) {
        PrintF(
            "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s ",
            output_[frame_index]->GetTop() + output_offset,
            output_offset,
            input_value,
            converter.NameOfCPURegister(input_reg));
        reinterpret_cast<Object*>(input_value)->ShortPrint();
        PrintF("\n");
      }
      output_[frame_index]->SetFrameSlot(output_offset, input_value);
      return;
    }

    case Translation::INT32_REGISTER: {
      int input_reg = iterator->Next();
      intptr_t value = input_->GetRegister(input_reg);
      bool is_smi = Smi::IsValid(value);
      if (FLAG_trace_deopt) {
        PrintF(
            "    0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIdPTR " ; %s (%s)\n",
            output_[frame_index]->GetTop() + output_offset,
            output_offset,
            value,
            converter.NameOfCPURegister(input_reg),
            is_smi ? "smi" : "heap number");
      }
      if (is_smi) {
        intptr_t tagged_value =
            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
        output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
      } else {
        // We save the untagged value on the side and store a GC-safe
        // temporary placeholder in the frame.
        AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
                       static_cast<double>(static_cast<int32_t>(value)));
        output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
      }
      return;
    }

    case Translation::DOUBLE_REGISTER: {
      int input_reg = iterator->Next();
      double value = input_->GetDoubleRegister(input_reg);
      if (FLAG_trace_deopt) {
        PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- %e ; %s\n",
               output_[frame_index]->GetTop() + output_offset,
               output_offset,
               value,
               DoubleRegister::AllocationIndexToString(input_reg));
      }
      // We save the untagged value on the side and store a GC-safe
      // temporary placeholder in the frame.
      AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
      output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
      return;
    }

    case Translation::STACK_SLOT: {
      int input_slot_index = iterator->Next();
      unsigned input_offset =
          input_->GetOffsetFromSlotIndex(input_slot_index);
      intptr_t input_value = input_->GetFrameSlot(input_offset);
      if (FLAG_trace_deopt) {
        PrintF("    0x%08" V8PRIxPTR ": ",
               output_[frame_index]->GetTop() + output_offset);
        PrintF("[top + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
               output_offset,
               input_value,
               input_offset);
        reinterpret_cast<Object*>(input_value)->ShortPrint();
        PrintF("\n");
      }
      output_[frame_index]->SetFrameSlot(output_offset, input_value);
      return;
    }

    case Translation::INT32_STACK_SLOT: {
      int input_slot_index = iterator->Next();
      unsigned input_offset =
          input_->GetOffsetFromSlotIndex(input_slot_index);
      intptr_t value = input_->GetFrameSlot(input_offset);
      bool is_smi = Smi::IsValid(value);
      if (FLAG_trace_deopt) {
        PrintF("    0x%08" V8PRIxPTR ": ",
               output_[frame_index]->GetTop() + output_offset);
        PrintF("[top + %d] <- %" V8PRIdPTR " ; [sp + %d] (%s)\n",
               output_offset,
               value,
               input_offset,
               is_smi ? "smi" : "heap number");
      }
      if (is_smi) {
        intptr_t tagged_value =
            reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
        output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
      } else {
        // We save the untagged value on the side and store a GC-safe
        // temporary placeholder in the frame.
        AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
                       static_cast<double>(static_cast<int32_t>(value)));
        output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
      }
      return;
    }

    case Translation::DOUBLE_STACK_SLOT: {
      int input_slot_index = iterator->Next();
      unsigned input_offset =
          input_->GetOffsetFromSlotIndex(input_slot_index);
      double value = input_->GetDoubleFrameSlot(input_offset);
      if (FLAG_trace_deopt) {
        PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- %e ; [sp + %d]\n",
               output_[frame_index]->GetTop() + output_offset,
               output_offset,
               value,
               input_offset);
      }
      // We save the untagged value on the side and store a GC-safe
      // temporary placeholder in the frame.
      AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
      output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
      return;
    }

    case Translation::LITERAL: {
      Object* literal = ComputeLiteral(iterator->Next());
      if (FLAG_trace_deopt) {
        PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- ",
               output_[frame_index]->GetTop() + output_offset,
               output_offset);
        literal->ShortPrint();
        PrintF(" ; literal\n");
      }
      intptr_t value = reinterpret_cast<intptr_t>(literal);
      output_[frame_index]->SetFrameSlot(output_offset, value);
      return;
    }

    case Translation::ARGUMENTS_OBJECT: {
      // Use the arguments marker value as a sentinel and fill in the arguments
      // object after the deoptimized frame is built.
      if (FLAG_trace_deopt) {
        PrintF("    0x%08" V8PRIxPTR ": [top + %d] <- ",
               output_[frame_index]->GetTop() + output_offset,
               output_offset);
        isolate_->heap()->arguments_marker()->ShortPrint();
        PrintF(" ; arguments object\n");
      }
      intptr_t value = reinterpret_cast<intptr_t>(
          isolate_->heap()->arguments_marker());
      output_[frame_index]->SetFrameSlot(output_offset, value);
      return;
    }
  }
}


bool Deoptimizer::DoOsrTranslateCommand(TranslationIterator* iterator,
                                        int* input_offset) {
  disasm::NameConverter converter;
  FrameDescription* output = output_[0];

  // The input values are all part of the unoptimized frame so they
  // are all tagged pointers.
  uintptr_t input_value = input_->GetFrameSlot(*input_offset);
  Object* input_object = reinterpret_cast<Object*>(input_value);

  Translation::Opcode opcode =
      static_cast<Translation::Opcode>(iterator->Next());
  bool duplicate = (opcode == Translation::DUPLICATE);
  if (duplicate) {
    opcode = static_cast<Translation::Opcode>(iterator->Next());
  }

  switch (opcode) {
    case Translation::BEGIN:
    case Translation::JS_FRAME:
    case Translation::ARGUMENTS_ADAPTOR_FRAME:
    case Translation::CONSTRUCT_STUB_FRAME:
    case Translation::DUPLICATE:
      UNREACHABLE();  // Malformed input.
       return false;

     case Translation::REGISTER: {
       int output_reg = iterator->Next();
       if (FLAG_trace_osr) {
         PrintF("    %s <- 0x%08" V8PRIxPTR " ; [sp + %d]\n",
                converter.NameOfCPURegister(output_reg),
                input_value,
                *input_offset);
       }
       output->SetRegister(output_reg, input_value);
       break;
     }

    case Translation::INT32_REGISTER: {
      // Abort OSR if we don't have a number.
      if (!input_object->IsNumber()) return false;

      int output_reg = iterator->Next();
      int int32_value = input_object->IsSmi()
          ? Smi::cast(input_object)->value()
          : FastD2I(input_object->Number());
      // Abort the translation if the conversion lost information.
      if (!input_object->IsSmi() &&
          FastI2D(int32_value) != input_object->Number()) {
        if (FLAG_trace_osr) {
          PrintF("**** %g could not be converted to int32 ****\n",
                 input_object->Number());
        }
        return false;
      }
      if (FLAG_trace_osr) {
        PrintF("    %s <- %d (int32) ; [sp + %d]\n",
               converter.NameOfCPURegister(output_reg),
               int32_value,
               *input_offset);
      }
      output->SetRegister(output_reg, int32_value);
      break;
    }

    case Translation::DOUBLE_REGISTER: {
      // Abort OSR if we don't have a number.
      if (!input_object->IsNumber()) return false;

      int output_reg = iterator->Next();
      double double_value = input_object->Number();
      if (FLAG_trace_osr) {
        PrintF("    %s <- %g (double) ; [sp + %d]\n",
               DoubleRegister::AllocationIndexToString(output_reg),
               double_value,
               *input_offset);
      }
      output->SetDoubleRegister(output_reg, double_value);
      break;
    }

    case Translation::STACK_SLOT: {
      int output_index = iterator->Next();
      unsigned output_offset =
          output->GetOffsetFromSlotIndex(output_index);
      if (FLAG_trace_osr) {
        PrintF("    [sp + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
               output_offset,
               input_value,
               *input_offset);
        reinterpret_cast<Object*>(input_value)->ShortPrint();
        PrintF("\n");
      }
      output->SetFrameSlot(output_offset, input_value);
      break;
    }

    case Translation::INT32_STACK_SLOT: {
      // Abort OSR if we don't have a number.
      if (!input_object->IsNumber()) return false;

      int output_index = iterator->Next();
      unsigned output_offset =
          output->GetOffsetFromSlotIndex(output_index);
      int int32_value = input_object->IsSmi()
          ? Smi::cast(input_object)->value()
          : DoubleToInt32(input_object->Number());
      // Abort the translation if the conversion lost information.
      if (!input_object->IsSmi() &&
          FastI2D(int32_value) != input_object->Number()) {
        if (FLAG_trace_osr) {
          PrintF("**** %g could not be converted to int32 ****\n",
                 input_object->Number());
        }
        return false;
      }
      if (FLAG_trace_osr) {
        PrintF("    [sp + %d] <- %d (int32) ; [sp + %d]\n",
               output_offset,
               int32_value,
               *input_offset);
      }
      output->SetFrameSlot(output_offset, int32_value);
      break;
    }

    case Translation::DOUBLE_STACK_SLOT: {
      static const int kLowerOffset = 0 * kPointerSize;
      static const int kUpperOffset = 1 * kPointerSize;

      // Abort OSR if we don't have a number.
      if (!input_object->IsNumber()) return false;

      int output_index = iterator->Next();
      unsigned output_offset =
          output->GetOffsetFromSlotIndex(output_index);
      double double_value = input_object->Number();
      uint64_t int_value = BitCast<uint64_t, double>(double_value);
      int32_t lower = static_cast<int32_t>(int_value);
      int32_t upper = static_cast<int32_t>(int_value >> kBitsPerInt);
      if (FLAG_trace_osr) {
        PrintF("    [sp + %d] <- 0x%08x (upper bits of %g) ; [sp + %d]\n",
               output_offset + kUpperOffset,
               upper,
               double_value,
               *input_offset);
        PrintF("    [sp + %d] <- 0x%08x (lower bits of %g) ; [sp + %d]\n",
               output_offset + kLowerOffset,
               lower,
               double_value,
               *input_offset);
      }
      output->SetFrameSlot(output_offset + kLowerOffset, lower);
      output->SetFrameSlot(output_offset + kUpperOffset, upper);
      break;
    }

    case Translation::LITERAL: {
      // Just ignore non-materialized literals.
      iterator->Next();
      break;
    }

    case Translation::ARGUMENTS_OBJECT: {
      // Optimized code assumes that the argument object has not been
      // materialized and so bypasses it when doing arguments access.
      // We should have bailed out before starting the frame
      // translation.
      UNREACHABLE();
      return false;
    }
  }

  if (!duplicate) *input_offset -= kPointerSize;
  return true;
}


void Deoptimizer::PatchStackCheckCode(Code* unoptimized_code,
                                      Code* check_code,
                                      Code* replacement_code) {
  // Iterate over the stack check table and patch every stack check
  // call to an unconditional call to the replacement code.
  ASSERT(unoptimized_code->kind() == Code::FUNCTION);
  Address stack_check_cursor = unoptimized_code->instruction_start() +
      unoptimized_code->stack_check_table_offset();
  uint32_t table_length = Memory::uint32_at(stack_check_cursor);
  stack_check_cursor += kIntSize;
  for (uint32_t i = 0; i < table_length; ++i) {
    uint32_t pc_offset = Memory::uint32_at(stack_check_cursor + kIntSize);
    Address pc_after = unoptimized_code->instruction_start() + pc_offset;
    PatchStackCheckCodeAt(unoptimized_code,
                          pc_after,
                          check_code,
                          replacement_code);
    stack_check_cursor += 2 * kIntSize;
  }
}


void Deoptimizer::RevertStackCheckCode(Code* unoptimized_code,
                                       Code* check_code,
                                       Code* replacement_code) {
  // Iterate over the stack check table and revert the patched
  // stack check calls.
  ASSERT(unoptimized_code->kind() == Code::FUNCTION);
  Address stack_check_cursor = unoptimized_code->instruction_start() +
      unoptimized_code->stack_check_table_offset();
  uint32_t table_length = Memory::uint32_at(stack_check_cursor);
  stack_check_cursor += kIntSize;
  for (uint32_t i = 0; i < table_length; ++i) {
    uint32_t pc_offset = Memory::uint32_at(stack_check_cursor + kIntSize);
    Address pc_after = unoptimized_code->instruction_start() + pc_offset;
    RevertStackCheckCodeAt(unoptimized_code,
                           pc_after,
                           check_code,
                           replacement_code);
    stack_check_cursor += 2 * kIntSize;
  }
}


unsigned Deoptimizer::ComputeInputFrameSize() const {
  unsigned fixed_size = ComputeFixedSize(function_);
  // The fp-to-sp delta already takes the context and the function
  // into account so we have to avoid double counting them (-2).
  unsigned result = fixed_size + fp_to_sp_delta_ - (2 * kPointerSize);
#ifdef DEBUG
  if (bailout_type_ == OSR) {
    // TODO(kasperl): It would be nice if we could verify that the
    // size matches with the stack height we can compute based on the
    // environment at the OSR entry. The code for that his built into
    // the DoComputeOsrOutputFrame function for now.
  } else {
    unsigned stack_slots = optimized_code_->stack_slots();
    unsigned outgoing_size = ComputeOutgoingArgumentSize();
    ASSERT(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size);
  }
#endif
  return result;
}


unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const {
  // The fixed part of the frame consists of the return address, frame
  // pointer, function, context, and all the incoming arguments.
  return ComputeIncomingArgumentSize(function) +
      StandardFrameConstants::kFixedFrameSize;
}


unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const {
  // The incoming arguments is the values for formal parameters and
  // the receiver. Every slot contains a pointer.
  unsigned arguments = function->shared()->formal_parameter_count() + 1;
  return arguments * kPointerSize;
}


unsigned Deoptimizer::ComputeOutgoingArgumentSize() const {
  DeoptimizationInputData* data = DeoptimizationInputData::cast(
      optimized_code_->deoptimization_data());
  unsigned height = data->ArgumentsStackHeight(bailout_id_)->value();
  return height * kPointerSize;
}


Object* Deoptimizer::ComputeLiteral(int index) const {
  DeoptimizationInputData* data = DeoptimizationInputData::cast(
      optimized_code_->deoptimization_data());
  FixedArray* literals = data->LiteralArray();
  return literals->get(index);
}


void Deoptimizer::AddDoubleValue(intptr_t slot_address,
                                 double value) {
  HeapNumberMaterializationDescriptor value_desc(
      reinterpret_cast<Address>(slot_address), value);
  deferred_heap_numbers_.Add(value_desc);
}


MemoryChunk* Deoptimizer::CreateCode(BailoutType type) {
  // We cannot run this if the serializer is enabled because this will
  // cause us to emit relocation information for the external
  // references. This is fine because the deoptimizer's code section
  // isn't meant to be serialized at all.
  ASSERT(!Serializer::enabled());

  MacroAssembler masm(Isolate::Current(), NULL, 16 * KB);
  masm.set_emit_debug_code(false);
  GenerateDeoptimizationEntries(&masm, kNumberOfEntries, type);
  CodeDesc desc;
  masm.GetCode(&desc);
  ASSERT(desc.reloc_size == 0);

  MemoryChunk* chunk =
      Isolate::Current()->memory_allocator()->AllocateChunk(desc.instr_size,
                                                            EXECUTABLE,
                                                            NULL);
  ASSERT(chunk->area_size() >= desc.instr_size);
  if (chunk == NULL) {
    V8::FatalProcessOutOfMemory("Not enough memory for deoptimization table");
  }
  memcpy(chunk->area_start(), desc.buffer, desc.instr_size);
  CPU::FlushICache(chunk->area_start(), desc.instr_size);
  return chunk;
}


Code* Deoptimizer::FindDeoptimizingCodeFromAddress(Address addr) {
  DeoptimizingCodeListNode* node =
      Isolate::Current()->deoptimizer_data()->deoptimizing_code_list_;
  while (node != NULL) {
    if (node->code()->contains(addr)) return *node->code();
    node = node->next();
  }
  return NULL;
}


void Deoptimizer::RemoveDeoptimizingCode(Code* code) {
  DeoptimizerData* data = Isolate::Current()->deoptimizer_data();
  ASSERT(data->deoptimizing_code_list_ != NULL);
  // Run through the code objects to find this one and remove it.
  DeoptimizingCodeListNode* prev = NULL;
  DeoptimizingCodeListNode* current = data->deoptimizing_code_list_;
  while (current != NULL) {
    if (*current->code() == code) {
      // Unlink from list. If prev is NULL we are looking at the first element.
      if (prev == NULL) {
        data->deoptimizing_code_list_ = current->next();
      } else {
        prev->set_next(current->next());
      }
      delete current;
      return;
    }
    // Move to next in list.
    prev = current;
    current = current->next();
  }
  // Deoptimizing code is removed through weak callback. Each object is expected
  // to be removed once and only once.
  UNREACHABLE();
}


FrameDescription::FrameDescription(uint32_t frame_size,
                                   JSFunction* function)
    : frame_size_(frame_size),
      function_(function),
      top_(kZapUint32),
      pc_(kZapUint32),
      fp_(kZapUint32),
      context_(kZapUint32) {
  // Zap all the registers.
  for (int r = 0; r < Register::kNumRegisters; r++) {
    SetRegister(r, kZapUint32);
  }

  // Zap all the slots.
  for (unsigned o = 0; o < frame_size; o += kPointerSize) {
    SetFrameSlot(o, kZapUint32);
  }
}


int FrameDescription::ComputeFixedSize() {
  return StandardFrameConstants::kFixedFrameSize +
      (ComputeParametersCount() + 1) * kPointerSize;
}


unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
  if (slot_index >= 0) {
    // Local or spill slots. Skip the fixed part of the frame
    // including all arguments.
    unsigned base = GetFrameSize() - ComputeFixedSize();
    return base - ((slot_index + 1) * kPointerSize);
  } else {
    // Incoming parameter.
    int arg_size = (ComputeParametersCount() + 1) * kPointerSize;
    unsigned base = GetFrameSize() - arg_size;
    return base - ((slot_index + 1) * kPointerSize);
  }
}


int FrameDescription::ComputeParametersCount() {
  switch (type_) {
    case StackFrame::JAVA_SCRIPT:
      return function_->shared()->formal_parameter_count();
    case StackFrame::ARGUMENTS_ADAPTOR: {
      // Last slot contains number of incomming arguments as a smi.
      // Can't use GetExpression(0) because it would cause infinite recursion.
      return reinterpret_cast<Smi*>(*GetFrameSlotPointer(0))->value();
    }
    default:
      UNREACHABLE();
      return 0;
  }
}


Object* FrameDescription::GetParameter(int index) {
  ASSERT(index >= 0);
  ASSERT(index < ComputeParametersCount());
  // The slot indexes for incoming arguments are negative.
  unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount());
  return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}


unsigned FrameDescription::GetExpressionCount() {
  ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
  unsigned size = GetFrameSize() - ComputeFixedSize();
  return size / kPointerSize;
}


Object* FrameDescription::GetExpression(int index) {
  ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
  unsigned offset = GetOffsetFromSlotIndex(index);
  return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}


void TranslationBuffer::Add(int32_t value, Zone* zone) {
  // Encode the sign bit in the least significant bit.
  bool is_negative = (value < 0);
  uint32_t bits = ((is_negative ? -value : value) << 1) |
      static_cast<int32_t>(is_negative);
  // Encode the individual bytes using the least significant bit of
  // each byte to indicate whether or not more bytes follow.
  do {
    uint32_t next = bits >> 7;
    contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
    bits = next;
  } while (bits != 0);
}


int32_t TranslationIterator::Next() {
  // Run through the bytes until we reach one with a least significant
  // bit of zero (marks the end).
  uint32_t bits = 0;
  for (int i = 0; true; i += 7) {
    ASSERT(HasNext());
    uint8_t next = buffer_->get(index_++);
    bits |= (next >> 1) << i;
    if ((next & 1) == 0) break;
  }
  // The bits encode the sign in the least significant bit.
  bool is_negative = (bits & 1) == 1;
  int32_t result = bits >> 1;
  return is_negative ? -result : result;
}


Handle<ByteArray> TranslationBuffer::CreateByteArray() {
  int length = contents_.length();
  Handle<ByteArray> result =
      Isolate::Current()->factory()->NewByteArray(length, TENURED);
  memcpy(result->GetDataStartAddress(), contents_.ToVector().start(), length);
  return result;
}


void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
  buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
  buffer_->Add(literal_id, zone());
  buffer_->Add(height, zone());
}


void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
  buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
  buffer_->Add(literal_id, zone());
  buffer_->Add(height, zone());
}


void Translation::BeginJSFrame(int node_id, int literal_id, unsigned height) {
  buffer_->Add(JS_FRAME, zone());
  buffer_->Add(node_id, zone());
  buffer_->Add(literal_id, zone());
  buffer_->Add(height, zone());
}


void Translation::StoreRegister(Register reg) {
  buffer_->Add(REGISTER, zone());
  buffer_->Add(reg.code(), zone());
}


void Translation::StoreInt32Register(Register reg) {
  buffer_->Add(INT32_REGISTER, zone());
  buffer_->Add(reg.code(), zone());
}


void Translation::StoreDoubleRegister(DoubleRegister reg) {
  buffer_->Add(DOUBLE_REGISTER, zone());
  buffer_->Add(DoubleRegister::ToAllocationIndex(reg), zone());
}


void Translation::StoreStackSlot(int index) {
  buffer_->Add(STACK_SLOT, zone());
  buffer_->Add(index, zone());
}


void Translation::StoreInt32StackSlot(int index) {
  buffer_->Add(INT32_STACK_SLOT, zone());
  buffer_->Add(index, zone());
}


void Translation::StoreDoubleStackSlot(int index) {
  buffer_->Add(DOUBLE_STACK_SLOT, zone());
  buffer_->Add(index, zone());
}


void Translation::StoreLiteral(int literal_id) {
  buffer_->Add(LITERAL, zone());
  buffer_->Add(literal_id, zone());
}


void Translation::StoreArgumentsObject() {
  buffer_->Add(ARGUMENTS_OBJECT, zone());
}


void Translation::MarkDuplicate() {
  buffer_->Add(DUPLICATE, zone());
}


int Translation::NumberOfOperandsFor(Opcode opcode) {
  switch (opcode) {
    case ARGUMENTS_OBJECT:
    case DUPLICATE:
      return 0;
    case REGISTER:
    case INT32_REGISTER:
    case DOUBLE_REGISTER:
    case STACK_SLOT:
    case INT32_STACK_SLOT:
    case DOUBLE_STACK_SLOT:
    case LITERAL:
      return 1;
    case BEGIN:
    case ARGUMENTS_ADAPTOR_FRAME:
    case CONSTRUCT_STUB_FRAME:
      return 2;
    case JS_FRAME:
      return 3;
  }
  UNREACHABLE();
  return -1;
}


#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)

const char* Translation::StringFor(Opcode opcode) {
  switch (opcode) {
    case BEGIN:
      return "BEGIN";
    case JS_FRAME:
      return "JS_FRAME";
    case ARGUMENTS_ADAPTOR_FRAME:
      return "ARGUMENTS_ADAPTOR_FRAME";
    case CONSTRUCT_STUB_FRAME:
      return "CONSTRUCT_STUB_FRAME";
    case REGISTER:
      return "REGISTER";
    case INT32_REGISTER:
      return "INT32_REGISTER";
    case DOUBLE_REGISTER:
      return "DOUBLE_REGISTER";
    case STACK_SLOT:
      return "STACK_SLOT";
    case INT32_STACK_SLOT:
      return "INT32_STACK_SLOT";
    case DOUBLE_STACK_SLOT:
      return "DOUBLE_STACK_SLOT";
    case LITERAL:
      return "LITERAL";
    case ARGUMENTS_OBJECT:
      return "ARGUMENTS_OBJECT";
    case DUPLICATE:
      return "DUPLICATE";
  }
  UNREACHABLE();
  return "";
}

#endif


DeoptimizingCodeListNode::DeoptimizingCodeListNode(Code* code): next_(NULL) {
  GlobalHandles* global_handles = Isolate::Current()->global_handles();
  // Globalize the code object and make it weak.
  code_ = Handle<Code>::cast(global_handles->Create(code));
  global_handles->MakeWeak(reinterpret_cast<Object**>(code_.location()),
                           this,
                           Deoptimizer::HandleWeakDeoptimizedCode);
}


DeoptimizingCodeListNode::~DeoptimizingCodeListNode() {
  GlobalHandles* global_handles = Isolate::Current()->global_handles();
  global_handles->Destroy(reinterpret_cast<Object**>(code_.location()));
}


// We can't intermix stack decoding and allocations because
// deoptimization infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
SlotRef SlotRef::ComputeSlotForNextArgument(TranslationIterator* iterator,
                                            DeoptimizationInputData* data,
                                            JavaScriptFrame* frame) {
  Translation::Opcode opcode =
      static_cast<Translation::Opcode>(iterator->Next());

  switch (opcode) {
    case Translation::BEGIN:
    case Translation::JS_FRAME:
    case Translation::ARGUMENTS_ADAPTOR_FRAME:
    case Translation::CONSTRUCT_STUB_FRAME:
      // Peeled off before getting here.
      break;

    case Translation::ARGUMENTS_OBJECT:
      // This can be only emitted for local slots not for argument slots.
      break;

    case Translation::REGISTER:
    case Translation::INT32_REGISTER:
    case Translation::DOUBLE_REGISTER:
    case Translation::DUPLICATE:
      // We are at safepoint which corresponds to call.  All registers are
      // saved by caller so there would be no live registers at this
      // point. Thus these translation commands should not be used.
      break;

    case Translation::STACK_SLOT: {
      int slot_index = iterator->Next();
      Address slot_addr = SlotAddress(frame, slot_index);
      return SlotRef(slot_addr, SlotRef::TAGGED);
    }

    case Translation::INT32_STACK_SLOT: {
      int slot_index = iterator->Next();
      Address slot_addr = SlotAddress(frame, slot_index);
      return SlotRef(slot_addr, SlotRef::INT32);
    }

    case Translation::DOUBLE_STACK_SLOT: {
      int slot_index = iterator->Next();
      Address slot_addr = SlotAddress(frame, slot_index);
      return SlotRef(slot_addr, SlotRef::DOUBLE);
    }

    case Translation::LITERAL: {
      int literal_index = iterator->Next();
      return SlotRef(data->LiteralArray()->get(literal_index));
    }
  }

  UNREACHABLE();
  return SlotRef();
}


void SlotRef::ComputeSlotsForArguments(Vector<SlotRef>* args_slots,
                                       TranslationIterator* it,
                                       DeoptimizationInputData* data,
                                       JavaScriptFrame* frame) {
  // Process the translation commands for the arguments.

  // Skip the translation command for the receiver.
  it->Skip(Translation::NumberOfOperandsFor(
      static_cast<Translation::Opcode>(it->Next())));

  // Compute slots for arguments.
  for (int i = 0; i < args_slots->length(); ++i) {
    (*args_slots)[i] = ComputeSlotForNextArgument(it, data, frame);
  }
}


Vector<SlotRef> SlotRef::ComputeSlotMappingForArguments(
    JavaScriptFrame* frame,
    int inlined_jsframe_index,
    int formal_parameter_count) {
  AssertNoAllocation no_gc;
  int deopt_index = AstNode::kNoNumber;
  DeoptimizationInputData* data =
      static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
  TranslationIterator it(data->TranslationByteArray(),
                         data->TranslationIndex(deopt_index)->value());
  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
  ASSERT(opcode == Translation::BEGIN);
  it.Next();  // Drop frame count.
  int jsframe_count = it.Next();
  USE(jsframe_count);
  ASSERT(jsframe_count > inlined_jsframe_index);
  int jsframes_to_skip = inlined_jsframe_index;
  while (true) {
    opcode = static_cast<Translation::Opcode>(it.Next());
    if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) {
      if (jsframes_to_skip == 0) {
        ASSERT(Translation::NumberOfOperandsFor(opcode) == 2);

        it.Skip(1);  // literal id
        int height = it.Next();

        // We reached the arguments adaptor frame corresponding to the
        // inlined function in question.  Number of arguments is height - 1.
        Vector<SlotRef> args_slots =
            Vector<SlotRef>::New(height - 1);  // Minus receiver.
        ComputeSlotsForArguments(&args_slots, &it, data, frame);
        return args_slots;
      }
    } else if (opcode == Translation::JS_FRAME) {
      if (jsframes_to_skip == 0) {
        // Skip over operands to advance to the next opcode.
        it.Skip(Translation::NumberOfOperandsFor(opcode));

        // We reached the frame corresponding to the inlined function
        // in question.  Process the translation commands for the
        // arguments.  Number of arguments is equal to the number of
        // format parameter count.
        Vector<SlotRef> args_slots =
            Vector<SlotRef>::New(formal_parameter_count);
        ComputeSlotsForArguments(&args_slots, &it, data, frame);
        return args_slots;
      }
      jsframes_to_skip--;
    }

    // Skip over operands to advance to the next opcode.
    it.Skip(Translation::NumberOfOperandsFor(opcode));
  }

  UNREACHABLE();
  return Vector<SlotRef>();
}

#ifdef ENABLE_DEBUGGER_SUPPORT

DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
                                           int frame_index,
                                           bool has_arguments_adaptor,
                                           bool has_construct_stub) {
  FrameDescription* output_frame = deoptimizer->output_[frame_index];
  function_ = output_frame->GetFunction();
  has_construct_stub_ = has_construct_stub;
  expression_count_ = output_frame->GetExpressionCount();
  expression_stack_ = new Object*[expression_count_];
  // Get the source position using the unoptimized code.
  Address pc = reinterpret_cast<Address>(output_frame->GetPc());
  Code* code = Code::cast(Isolate::Current()->heap()->FindCodeObject(pc));
  source_position_ = code->SourcePosition(pc);

  for (int i = 0; i < expression_count_; i++) {
    SetExpression(i, output_frame->GetExpression(i));
  }

  if (has_arguments_adaptor) {
    output_frame = deoptimizer->output_[frame_index - 1];
    ASSERT(output_frame->GetFrameType() == StackFrame::ARGUMENTS_ADAPTOR);
  }

  parameters_count_ = output_frame->ComputeParametersCount();
  parameters_ = new Object*[parameters_count_];
  for (int i = 0; i < parameters_count_; i++) {
    SetParameter(i, output_frame->GetParameter(i));
  }
}


DeoptimizedFrameInfo::~DeoptimizedFrameInfo() {
  delete[] expression_stack_;
  delete[] parameters_;
}


void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
  v->VisitPointer(BitCast<Object**>(&function_));
  v->VisitPointers(parameters_, parameters_ + parameters_count_);
  v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
}

#endif  // ENABLE_DEBUGGER_SUPPORT

} }  // namespace v8::internal

/* [<][>][^][v][top][bottom][index][help] */