root/src/x64/ic-x64.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. GenerateGlobalInstanceTypeCheck
  2. GenerateStringDictionaryReceiverCheck
  3. GenerateDictionaryLoad
  4. GenerateDictionaryStore
  5. GenerateArrayLength
  6. GenerateStringLength
  7. GenerateFunctionPrototype
  8. GenerateKeyedLoadReceiverCheck
  9. GenerateFastArrayLoad
  10. GenerateKeyStringCheck
  11. GenerateGeneric
  12. GenerateString
  13. GenerateIndexedInterceptor
  14. GenerateGeneric
  15. GenerateMonomorphicCacheProbe
  16. GenerateFunctionTailCall
  17. GenerateNormal
  18. GenerateMiss
  19. GenerateMegamorphic
  20. GenerateMegamorphic
  21. GenerateNormal
  22. GenerateMappedArgumentsLookup
  23. GenerateUnmappedArgumentsLookup
  24. GenerateNonStrictArguments
  25. GenerateNonStrictArguments
  26. GenerateNonStrictArguments
  27. GenerateMegamorphic
  28. GenerateNormal
  29. GenerateMiss
  30. GenerateMiss
  31. GenerateRuntimeGetProperty
  32. GenerateMegamorphic
  33. GenerateMiss
  34. GenerateArrayLength
  35. GenerateNormal
  36. GenerateGlobalProxy
  37. GenerateRuntimeSetProperty
  38. GenerateSlow
  39. GenerateMiss
  40. GenerateTransitionElementsSmiToDouble
  41. GenerateTransitionElementsDoubleToObject
  42. ComputeCondition
  43. HasInlinedSmiCode
  44. UpdateCaches
  45. PatchInlinedSmiCode

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_X64)

#include "codegen.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"

namespace v8 {
namespace internal {

// ----------------------------------------------------------------------------
// Static IC stub generators.
//

#define __ ACCESS_MASM(masm)


static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm,
                                            Register type,
                                            Label* global_object) {
  // Register usage:
  //   type: holds the receiver instance type on entry.
  __ cmpb(type, Immediate(JS_GLOBAL_OBJECT_TYPE));
  __ j(equal, global_object);
  __ cmpb(type, Immediate(JS_BUILTINS_OBJECT_TYPE));
  __ j(equal, global_object);
  __ cmpb(type, Immediate(JS_GLOBAL_PROXY_TYPE));
  __ j(equal, global_object);
}


// Generated code falls through if the receiver is a regular non-global
// JS object with slow properties and no interceptors.
static void GenerateStringDictionaryReceiverCheck(MacroAssembler* masm,
                                                  Register receiver,
                                                  Register r0,
                                                  Register r1,
                                                  Label* miss) {
  // Register usage:
  //   receiver: holds the receiver on entry and is unchanged.
  //   r0: used to hold receiver instance type.
  //       Holds the property dictionary on fall through.
  //   r1: used to hold receivers map.

  __ JumpIfSmi(receiver, miss);

  // Check that the receiver is a valid JS object.
  __ movq(r1, FieldOperand(receiver, HeapObject::kMapOffset));
  __ movb(r0, FieldOperand(r1, Map::kInstanceTypeOffset));
  __ cmpb(r0, Immediate(FIRST_SPEC_OBJECT_TYPE));
  __ j(below, miss);

  // If this assert fails, we have to check upper bound too.
  STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);

  GenerateGlobalInstanceTypeCheck(masm, r0, miss);

  // Check for non-global object that requires access check.
  __ testb(FieldOperand(r1, Map::kBitFieldOffset),
           Immediate((1 << Map::kIsAccessCheckNeeded) |
                     (1 << Map::kHasNamedInterceptor)));
  __ j(not_zero, miss);

  __ movq(r0, FieldOperand(receiver, JSObject::kPropertiesOffset));
  __ CompareRoot(FieldOperand(r0, HeapObject::kMapOffset),
                 Heap::kHashTableMapRootIndex);
  __ j(not_equal, miss);
}



// Helper function used to load a property from a dictionary backing storage.
// This function may return false negatives, so miss_label
// must always call a backup property load that is complete.
// This function is safe to call if name is not a symbol, and will jump to
// the miss_label in that case.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm,
                                   Label* miss_label,
                                   Register elements,
                                   Register name,
                                   Register r0,
                                   Register r1,
                                   Register result) {
  // Register use:
  //
  // elements - holds the property dictionary on entry and is unchanged.
  //
  // name - holds the name of the property on entry and is unchanged.
  //
  // r0   - used to hold the capacity of the property dictionary.
  //
  // r1   - used to hold the index into the property dictionary.
  //
  // result - holds the result on exit if the load succeeded.

  Label done;

  // Probe the dictionary.
  StringDictionaryLookupStub::GeneratePositiveLookup(masm,
                                                     miss_label,
                                                     &done,
                                                     elements,
                                                     name,
                                                     r0,
                                                     r1);

  // If probing finds an entry in the dictionary, r0 contains the
  // index into the dictionary. Check that the value is a normal
  // property.
  __ bind(&done);
  const int kElementsStartOffset =
      StringDictionary::kHeaderSize +
      StringDictionary::kElementsStartIndex * kPointerSize;
  const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
  __ Test(Operand(elements, r1, times_pointer_size,
                  kDetailsOffset - kHeapObjectTag),
          Smi::FromInt(PropertyDetails::TypeField::kMask));
  __ j(not_zero, miss_label);

  // Get the value at the masked, scaled index.
  const int kValueOffset = kElementsStartOffset + kPointerSize;
  __ movq(result,
          Operand(elements, r1, times_pointer_size,
                  kValueOffset - kHeapObjectTag));
}


// Helper function used to store a property to a dictionary backing
// storage. This function may fail to store a property even though it
// is in the dictionary, so code at miss_label must always call a
// backup property store that is complete. This function is safe to
// call if name is not a symbol, and will jump to the miss_label in
// that case. The generated code assumes that the receiver has slow
// properties, is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm,
                                    Label* miss_label,
                                    Register elements,
                                    Register name,
                                    Register value,
                                    Register scratch0,
                                    Register scratch1) {
  // Register use:
  //
  // elements - holds the property dictionary on entry and is clobbered.
  //
  // name - holds the name of the property on entry and is unchanged.
  //
  // value - holds the value to store and is unchanged.
  //
  // scratch0 - used for index into the property dictionary and is clobbered.
  //
  // scratch1 - used to hold the capacity of the property dictionary and is
  //            clobbered.
  Label done;

  // Probe the dictionary.
  StringDictionaryLookupStub::GeneratePositiveLookup(masm,
                                                     miss_label,
                                                     &done,
                                                     elements,
                                                     name,
                                                     scratch0,
                                                     scratch1);

  // If probing finds an entry in the dictionary, scratch0 contains the
  // index into the dictionary. Check that the value is a normal
  // property that is not read only.
  __ bind(&done);
  const int kElementsStartOffset =
      StringDictionary::kHeaderSize +
      StringDictionary::kElementsStartIndex * kPointerSize;
  const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
  const int kTypeAndReadOnlyMask =
      (PropertyDetails::TypeField::kMask |
       PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize;
  __ Test(Operand(elements,
                  scratch1,
                  times_pointer_size,
                  kDetailsOffset - kHeapObjectTag),
          Smi::FromInt(kTypeAndReadOnlyMask));
  __ j(not_zero, miss_label);

  // Store the value at the masked, scaled index.
  const int kValueOffset = kElementsStartOffset + kPointerSize;
  __ lea(scratch1, Operand(elements,
                           scratch1,
                           times_pointer_size,
                           kValueOffset - kHeapObjectTag));
  __ movq(Operand(scratch1, 0), value);

  // Update write barrier. Make sure not to clobber the value.
  __ movq(scratch0, value);
  __ RecordWrite(elements, scratch1, scratch0, kDontSaveFPRegs);
}


void LoadIC::GenerateArrayLength(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : receiver
  //  -- rcx    : name
  //  -- rsp[0] : return address
  // -----------------------------------
  Label miss;

  StubCompiler::GenerateLoadArrayLength(masm, rax, rdx, &miss);
  __ bind(&miss);
  StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}


void LoadIC::GenerateStringLength(MacroAssembler* masm, bool support_wrappers) {
  // ----------- S t a t e -------------
  //  -- rax    : receiver
  //  -- rcx    : name
  //  -- rsp[0] : return address
  // -----------------------------------
  Label miss;

  StubCompiler::GenerateLoadStringLength(masm, rax, rdx, rbx, &miss,
                                         support_wrappers);
  __ bind(&miss);
  StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}


void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : receiver
  //  -- rcx    : name
  //  -- rsp[0] : return address
  // -----------------------------------
  Label miss;

  StubCompiler::GenerateLoadFunctionPrototype(masm, rax, rdx, rbx, &miss);
  __ bind(&miss);
  StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}


// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
                                           Register receiver,
                                           Register map,
                                           int interceptor_bit,
                                           Label* slow) {
  // Register use:
  //   receiver - holds the receiver and is unchanged.
  // Scratch registers:
  //   map - used to hold the map of the receiver.

  // Check that the object isn't a smi.
  __ JumpIfSmi(receiver, slow);

  // Check that the object is some kind of JS object EXCEPT JS Value type.
  // In the case that the object is a value-wrapper object,
  // we enter the runtime system to make sure that indexing
  // into string objects work as intended.
  ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
  __ CmpObjectType(receiver, JS_OBJECT_TYPE, map);
  __ j(below, slow);

  // Check bit field.
  __ testb(FieldOperand(map, Map::kBitFieldOffset),
           Immediate((1 << Map::kIsAccessCheckNeeded) |
                     (1 << interceptor_bit)));
  __ j(not_zero, slow);
}


// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
static void GenerateFastArrayLoad(MacroAssembler* masm,
                                  Register receiver,
                                  Register key,
                                  Register elements,
                                  Register scratch,
                                  Register result,
                                  Label* not_fast_array,
                                  Label* out_of_range) {
  // Register use:
  //
  // receiver - holds the receiver on entry.
  //            Unchanged unless 'result' is the same register.
  //
  // key      - holds the smi key on entry.
  //            Unchanged unless 'result' is the same register.
  //
  // elements - holds the elements of the receiver on exit.
  //
  // result   - holds the result on exit if the load succeeded.
  //            Allowed to be the the same as 'receiver' or 'key'.
  //            Unchanged on bailout so 'receiver' and 'key' can be safely
  //            used by further computation.
  //
  // Scratch registers:
  //
  //   scratch - used to hold elements of the receiver and the loaded value.

  __ movq(elements, FieldOperand(receiver, JSObject::kElementsOffset));
  if (not_fast_array != NULL) {
    // Check that the object is in fast mode and writable.
    __ CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
                   Heap::kFixedArrayMapRootIndex);
    __ j(not_equal, not_fast_array);
  } else {
    __ AssertFastElements(elements);
  }
  // Check that the key (index) is within bounds.
  __ SmiCompare(key, FieldOperand(elements, FixedArray::kLengthOffset));
  // Unsigned comparison rejects negative indices.
  __ j(above_equal, out_of_range);
  // Fast case: Do the load.
  SmiIndex index = masm->SmiToIndex(scratch, key, kPointerSizeLog2);
  __ movq(scratch, FieldOperand(elements,
                                index.reg,
                                index.scale,
                                FixedArray::kHeaderSize));
  __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex);
  // In case the loaded value is the_hole we have to consult GetProperty
  // to ensure the prototype chain is searched.
  __ j(equal, out_of_range);
  if (!result.is(scratch)) {
    __ movq(result, scratch);
  }
}


// Checks whether a key is an array index string or a symbol string.
// Falls through if the key is a symbol.
static void GenerateKeyStringCheck(MacroAssembler* masm,
                                   Register key,
                                   Register map,
                                   Register hash,
                                   Label* index_string,
                                   Label* not_symbol) {
  // Register use:
  //   key - holds the key and is unchanged. Assumed to be non-smi.
  // Scratch registers:
  //   map - used to hold the map of the key.
  //   hash - used to hold the hash of the key.
  __ CmpObjectType(key, FIRST_NONSTRING_TYPE, map);
  __ j(above_equal, not_symbol);
  // Is the string an array index, with cached numeric value?
  __ movl(hash, FieldOperand(key, String::kHashFieldOffset));
  __ testl(hash, Immediate(String::kContainsCachedArrayIndexMask));
  __ j(zero, index_string);  // The value in hash is used at jump target.

  // Is the string a symbol?
  STATIC_ASSERT(kSymbolTag != 0);
  __ testb(FieldOperand(map, Map::kInstanceTypeOffset),
           Immediate(kIsSymbolMask));
  __ j(zero, not_symbol);
}



void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : key
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------
  Label slow, check_string, index_smi, index_string, property_array_property;
  Label probe_dictionary, check_number_dictionary;

  // Check that the key is a smi.
  __ JumpIfNotSmi(rax, &check_string);
  __ bind(&index_smi);
  // Now the key is known to be a smi. This place is also jumped to from below
  // where a numeric string is converted to a smi.

  GenerateKeyedLoadReceiverCheck(
      masm, rdx, rcx, Map::kHasIndexedInterceptor, &slow);

  // Check the receiver's map to see if it has fast elements.
  __ CheckFastElements(rcx, &check_number_dictionary);

  GenerateFastArrayLoad(masm,
                        rdx,
                        rax,
                        rcx,
                        rbx,
                        rax,
                        NULL,
                        &slow);
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->keyed_load_generic_smi(), 1);
  __ ret(0);

  __ bind(&check_number_dictionary);
  __ SmiToInteger32(rbx, rax);
  __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset));

  // Check whether the elements is a number dictionary.
  // rdx: receiver
  // rax: key
  // rbx: key as untagged int32
  // rcx: elements
  __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
                 Heap::kHashTableMapRootIndex);
  __ j(not_equal, &slow);
  __ LoadFromNumberDictionary(&slow, rcx, rax, rbx, r9, rdi, rax);
  __ ret(0);

  __ bind(&slow);
  // Slow case: Jump to runtime.
  // rdx: receiver
  // rax: key
  __ IncrementCounter(counters->keyed_load_generic_slow(), 1);
  GenerateRuntimeGetProperty(masm);

  __ bind(&check_string);
  GenerateKeyStringCheck(masm, rax, rcx, rbx, &index_string, &slow);

  GenerateKeyedLoadReceiverCheck(
      masm, rdx, rcx, Map::kHasNamedInterceptor, &slow);

  // If the receiver is a fast-case object, check the keyed lookup
  // cache. Otherwise probe the dictionary leaving result in rcx.
  __ movq(rbx, FieldOperand(rdx, JSObject::kPropertiesOffset));
  __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
                 Heap::kHashTableMapRootIndex);
  __ j(equal, &probe_dictionary);

  // Load the map of the receiver, compute the keyed lookup cache hash
  // based on 32 bits of the map pointer and the string hash.
  __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
  __ movl(rcx, rbx);
  __ shr(rcx, Immediate(KeyedLookupCache::kMapHashShift));
  __ movl(rdi, FieldOperand(rax, String::kHashFieldOffset));
  __ shr(rdi, Immediate(String::kHashShift));
  __ xor_(rcx, rdi);
  int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
  __ and_(rcx, Immediate(mask));

  // Load the key (consisting of map and symbol) from the cache and
  // check for match.
  Label load_in_object_property;
  static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
  Label hit_on_nth_entry[kEntriesPerBucket];
  ExternalReference cache_keys
      = ExternalReference::keyed_lookup_cache_keys(masm->isolate());

  for (int i = 0; i < kEntriesPerBucket - 1; i++) {
    Label try_next_entry;
    __ movq(rdi, rcx);
    __ shl(rdi, Immediate(kPointerSizeLog2 + 1));
    __ LoadAddress(kScratchRegister, cache_keys);
    int off = kPointerSize * i * 2;
    __ cmpq(rbx, Operand(kScratchRegister, rdi, times_1, off));
    __ j(not_equal, &try_next_entry);
    __ cmpq(rax, Operand(kScratchRegister, rdi, times_1, off + kPointerSize));
    __ j(equal, &hit_on_nth_entry[i]);
    __ bind(&try_next_entry);
  }

  int off = kPointerSize * (kEntriesPerBucket - 1) * 2;
  __ cmpq(rbx, Operand(kScratchRegister, rdi, times_1, off));
  __ j(not_equal, &slow);
  __ cmpq(rax, Operand(kScratchRegister, rdi, times_1, off + kPointerSize));
  __ j(not_equal, &slow);

  // Get field offset, which is a 32-bit integer.
  ExternalReference cache_field_offsets
      = ExternalReference::keyed_lookup_cache_field_offsets(masm->isolate());

  // Hit on nth entry.
  for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
    __ bind(&hit_on_nth_entry[i]);
    if (i != 0) {
      __ addl(rcx, Immediate(i));
    }
    __ LoadAddress(kScratchRegister, cache_field_offsets);
    __ movl(rdi, Operand(kScratchRegister, rcx, times_4, 0));
    __ movzxbq(rcx, FieldOperand(rbx, Map::kInObjectPropertiesOffset));
    __ subq(rdi, rcx);
    __ j(above_equal, &property_array_property);
    if (i != 0) {
      __ jmp(&load_in_object_property);
    }
  }

  // Load in-object property.
  __ bind(&load_in_object_property);
  __ movzxbq(rcx, FieldOperand(rbx, Map::kInstanceSizeOffset));
  __ addq(rcx, rdi);
  __ movq(rax, FieldOperand(rdx, rcx, times_pointer_size, 0));
  __ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1);
  __ ret(0);

  // Load property array property.
  __ bind(&property_array_property);
  __ movq(rax, FieldOperand(rdx, JSObject::kPropertiesOffset));
  __ movq(rax, FieldOperand(rax, rdi, times_pointer_size,
                            FixedArray::kHeaderSize));
  __ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1);
  __ ret(0);

  // Do a quick inline probe of the receiver's dictionary, if it
  // exists.
  __ bind(&probe_dictionary);
  // rdx: receiver
  // rax: key
  // rbx: elements

  __ movq(rcx, FieldOperand(rdx, JSObject::kMapOffset));
  __ movb(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset));
  GenerateGlobalInstanceTypeCheck(masm, rcx, &slow);

  GenerateDictionaryLoad(masm, &slow, rbx, rax, rcx, rdi, rax);
  __ IncrementCounter(counters->keyed_load_generic_symbol(), 1);
  __ ret(0);

  __ bind(&index_string);
  __ IndexFromHash(rbx, rax);
  __ jmp(&index_smi);
}


void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : key
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------
  Label miss;

  Register receiver = rdx;
  Register index = rax;
  Register scratch = rcx;
  Register result = rax;

  StringCharAtGenerator char_at_generator(receiver,
                                          index,
                                          scratch,
                                          result,
                                          &miss,  // When not a string.
                                          &miss,  // When not a number.
                                          &miss,  // When index out of range.
                                          STRING_INDEX_IS_ARRAY_INDEX);
  char_at_generator.GenerateFast(masm);
  __ ret(0);

  StubRuntimeCallHelper call_helper;
  char_at_generator.GenerateSlow(masm, call_helper);

  __ bind(&miss);
  GenerateMiss(masm, false);
}


void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : key
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------
  Label slow;

  // Check that the receiver isn't a smi.
  __ JumpIfSmi(rdx, &slow);

  // Check that the key is an array index, that is Uint32.
  STATIC_ASSERT(kSmiValueSize <= 32);
  __ JumpUnlessNonNegativeSmi(rax, &slow);

  // Get the map of the receiver.
  __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));

  // Check that it has indexed interceptor and access checks
  // are not enabled for this object.
  __ movb(rcx, FieldOperand(rcx, Map::kBitFieldOffset));
  __ andb(rcx, Immediate(kSlowCaseBitFieldMask));
  __ cmpb(rcx, Immediate(1 << Map::kHasIndexedInterceptor));
  __ j(not_zero, &slow);

  // Everything is fine, call runtime.
  __ pop(rcx);
  __ push(rdx);  // receiver
  __ push(rax);  // key
  __ push(rcx);  // return address

  // Perform tail call to the entry.
  __ TailCallExternalReference(
      ExternalReference(IC_Utility(kKeyedLoadPropertyWithInterceptor),
                        masm->isolate()),
      2,
      1);

  __ bind(&slow);
  GenerateMiss(masm, false);
}


void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
                                   StrictModeFlag strict_mode) {
  // ----------- S t a t e -------------
  //  -- rax     : value
  //  -- rcx     : key
  //  -- rdx     : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------
  Label slow, slow_with_tagged_index, fast, array, extra, check_extra_double;
  Label fast_object_with_map_check, fast_object_without_map_check;
  Label fast_double_with_map_check, fast_double_without_map_check;
  Label transition_smi_elements, finish_object_store, non_double_value;
  Label transition_double_elements;

  // Check that the object isn't a smi.
  __ JumpIfSmi(rdx, &slow_with_tagged_index);
  // Get the map from the receiver.
  __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
  // Check that the receiver does not require access checks.  We need
  // to do this because this generic stub does not perform map checks.
  __ testb(FieldOperand(r9, Map::kBitFieldOffset),
           Immediate(1 << Map::kIsAccessCheckNeeded));
  __ j(not_zero, &slow_with_tagged_index);
  // Check that the key is a smi.
  __ JumpIfNotSmi(rcx, &slow_with_tagged_index);
  __ SmiToInteger32(rcx, rcx);

  __ CmpInstanceType(r9, JS_ARRAY_TYPE);
  __ j(equal, &array);
  // Check that the object is some kind of JSObject.
  __ CmpInstanceType(r9, FIRST_JS_OBJECT_TYPE);
  __ j(below, &slow);

  // Object case: Check key against length in the elements array.
  // rax: value
  // rdx: JSObject
  // rcx: index
  __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
  // Check array bounds.
  __ SmiCompareInteger32(FieldOperand(rbx, FixedArray::kLengthOffset), rcx);
  // rax: value
  // rbx: FixedArray
  // rcx: index
  __ j(above, &fast_object_with_map_check);

  // Slow case: call runtime.
  __ bind(&slow);
  __ Integer32ToSmi(rcx, rcx);
  __ bind(&slow_with_tagged_index);
  GenerateRuntimeSetProperty(masm, strict_mode);
  // Never returns to here.

  // Extra capacity case: Check if there is extra capacity to
  // perform the store and update the length. Used for adding one
  // element to the array by writing to array[array.length].
  __ bind(&extra);
  // rax: value
  // rdx: receiver (a JSArray)
  // rbx: receiver's elements array (a FixedArray)
  // rcx: index
  // flags: smicompare (rdx.length(), rbx)
  __ j(not_equal, &slow);  // do not leave holes in the array
  __ SmiCompareInteger32(FieldOperand(rbx, FixedArray::kLengthOffset), rcx);
  __ j(below_equal, &slow);
  // Increment index to get new length.
  __ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset));
  __ CompareRoot(rdi, Heap::kFixedArrayMapRootIndex);
  __ j(not_equal, &check_extra_double);
  __ leal(rdi, Operand(rcx, 1));
  __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rdi);
  __ jmp(&fast_object_without_map_check);

  __ bind(&check_extra_double);
  // rdi: elements array's map
  __ CompareRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex);
  __ j(not_equal, &slow);
  __ leal(rdi, Operand(rcx, 1));
  __ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rdi);
  __ jmp(&fast_double_without_map_check);

  // Array case: Get the length and the elements array from the JS
  // array. Check that the array is in fast mode (and writable); if it
  // is the length is always a smi.
  __ bind(&array);
  // rax: value
  // rdx: receiver (a JSArray)
  // rcx: index
  __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));

  // Check the key against the length in the array, compute the
  // address to store into and fall through to fast case.
  __ SmiCompareInteger32(FieldOperand(rdx, JSArray::kLengthOffset), rcx);
  __ j(below_equal, &extra);

  // Fast case: Do the store.
  __ bind(&fast_object_with_map_check);
  // rax: value
  // rbx: receiver's elements array (a FixedArray)
  // rcx: index
  // rdx: receiver (a JSArray)
  __ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset));
  __ CompareRoot(rdi, Heap::kFixedArrayMapRootIndex);
  __ j(not_equal, &fast_double_with_map_check);
  __ bind(&fast_object_without_map_check);
  // Smi stores don't require further checks.
  Label non_smi_value;
  __ JumpIfNotSmi(rax, &non_smi_value);
  // It's irrelevant whether array is smi-only or not when writing a smi.
  __ movq(FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize),
          rax);
  __ ret(0);

  __ bind(&non_smi_value);
  // Writing a non-smi, check whether array allows non-smi elements.
  // r9: receiver's map
  __ CheckFastObjectElements(r9, &transition_smi_elements);
  __ bind(&finish_object_store);
  __ movq(FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize),
          rax);
  __ movq(rdx, rax);  // Preserve the value which is returned.
  __ RecordWriteArray(
      rbx, rdx, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
  __ ret(0);

  __ bind(&fast_double_with_map_check);
  // Check for fast double array case. If this fails, call through to the
  // runtime.
  // rdi: elements array's map
  __ CompareRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex);
  __ j(not_equal, &slow);
  __ bind(&fast_double_without_map_check);
  // If the value is a number, store it as a double in the FastDoubleElements
  // array.
  __ StoreNumberToDoubleElements(rax, rbx, rcx, xmm0,
                                 &transition_double_elements);
  __ ret(0);

  __ bind(&transition_smi_elements);
  __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));

  // Transition the array appropriately depending on the value type.
  __ movq(r9, FieldOperand(rax, HeapObject::kMapOffset));
  __ CompareRoot(r9, Heap::kHeapNumberMapRootIndex);
  __ j(not_equal, &non_double_value);

  // Value is a double. Transition FAST_SMI_ELEMENTS ->
  // FAST_DOUBLE_ELEMENTS and complete the store.
  __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
                                         FAST_DOUBLE_ELEMENTS,
                                         rbx,
                                         rdi,
                                         &slow);
  ElementsTransitionGenerator::GenerateSmiToDouble(masm, &slow);
  __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
  __ jmp(&fast_double_without_map_check);

  __ bind(&non_double_value);
  // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
  __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
                                         FAST_ELEMENTS,
                                         rbx,
                                         rdi,
                                         &slow);
  ElementsTransitionGenerator::GenerateMapChangeElementsTransition(masm);
  __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
  __ jmp(&finish_object_store);

  __ bind(&transition_double_elements);
  // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
  // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
  // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
  __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
  __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS,
                                         FAST_ELEMENTS,
                                         rbx,
                                         rdi,
                                         &slow);
  ElementsTransitionGenerator::GenerateDoubleToObject(masm, &slow);
  __ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
  __ jmp(&finish_object_store);
}


// The generated code does not accept smi keys.
// The generated code falls through if both probes miss.
void CallICBase::GenerateMonomorphicCacheProbe(MacroAssembler* masm,
                                               int argc,
                                               Code::Kind kind,
                                               Code::ExtraICState extra_state) {
  // ----------- S t a t e -------------
  // rcx                      : function name
  // rdx                      : receiver
  // -----------------------------------
  Label number, non_number, non_string, boolean, probe, miss;

  // Probe the stub cache.
  Code::Flags flags = Code::ComputeFlags(kind,
                                         MONOMORPHIC,
                                         extra_state,
                                         Code::NORMAL,
                                         argc);
  Isolate::Current()->stub_cache()->GenerateProbe(masm, flags, rdx, rcx, rbx,
                                                  rax);

  // If the stub cache probing failed, the receiver might be a value.
  // For value objects, we use the map of the prototype objects for
  // the corresponding JSValue for the cache and that is what we need
  // to probe.
  //
  // Check for number.
  __ JumpIfSmi(rdx, &number);
  __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rbx);
  __ j(not_equal, &non_number);
  __ bind(&number);
  StubCompiler::GenerateLoadGlobalFunctionPrototype(
      masm, Context::NUMBER_FUNCTION_INDEX, rdx);
  __ jmp(&probe);

  // Check for string.
  __ bind(&non_number);
  __ CmpInstanceType(rbx, FIRST_NONSTRING_TYPE);
  __ j(above_equal, &non_string);
  StubCompiler::GenerateLoadGlobalFunctionPrototype(
      masm, Context::STRING_FUNCTION_INDEX, rdx);
  __ jmp(&probe);

  // Check for boolean.
  __ bind(&non_string);
  __ CompareRoot(rdx, Heap::kTrueValueRootIndex);
  __ j(equal, &boolean);
  __ CompareRoot(rdx, Heap::kFalseValueRootIndex);
  __ j(not_equal, &miss);
  __ bind(&boolean);
  StubCompiler::GenerateLoadGlobalFunctionPrototype(
      masm, Context::BOOLEAN_FUNCTION_INDEX, rdx);

  // Probe the stub cache for the value object.
  __ bind(&probe);
  Isolate::Current()->stub_cache()->GenerateProbe(masm, flags, rdx, rcx, rbx,
                                                  no_reg);

  __ bind(&miss);
}


static void GenerateFunctionTailCall(MacroAssembler* masm,
                                     int argc,
                                     Label* miss) {
  // ----------- S t a t e -------------
  // rcx                    : function name
  // rdi                    : function
  // rsp[0]                 : return address
  // rsp[8]                 : argument argc
  // rsp[16]                : argument argc - 1
  // ...
  // rsp[argc * 8]          : argument 1
  // rsp[(argc + 1) * 8]    : argument 0 = receiver
  // -----------------------------------
  __ JumpIfSmi(rdi, miss);
  // Check that the value is a JavaScript function.
  __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rdx);
  __ j(not_equal, miss);

  // Invoke the function.
  ParameterCount actual(argc);
  __ InvokeFunction(rdi, actual, JUMP_FUNCTION,
                    NullCallWrapper(), CALL_AS_METHOD);
}


// The generated code falls through if the call should be handled by runtime.
void CallICBase::GenerateNormal(MacroAssembler* masm, int argc) {
  // ----------- S t a t e -------------
  // rcx                    : function name
  // rsp[0]                 : return address
  // rsp[8]                 : argument argc
  // rsp[16]                : argument argc - 1
  // ...
  // rsp[argc * 8]          : argument 1
  // rsp[(argc + 1) * 8]    : argument 0 = receiver
  // -----------------------------------
  Label miss;

  // Get the receiver of the function from the stack.
  __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));

  GenerateStringDictionaryReceiverCheck(masm, rdx, rax, rbx, &miss);

  // rax: elements
  // Search the dictionary placing the result in rdi.
  GenerateDictionaryLoad(masm, &miss, rax, rcx, rbx, rdi, rdi);

  GenerateFunctionTailCall(masm, argc, &miss);

  __ bind(&miss);
}


void CallICBase::GenerateMiss(MacroAssembler* masm,
                              int argc,
                              IC::UtilityId id,
                              Code::ExtraICState extra_state) {
  // ----------- S t a t e -------------
  // rcx                      : function name
  // rsp[0]                   : return address
  // rsp[8]                   : argument argc
  // rsp[16]                  : argument argc - 1
  // ...
  // rsp[argc * 8]            : argument 1
  // rsp[(argc + 1) * 8]      : argument 0 = receiver
  // -----------------------------------

  Counters* counters = masm->isolate()->counters();
  if (id == IC::kCallIC_Miss) {
    __ IncrementCounter(counters->call_miss(), 1);
  } else {
    __ IncrementCounter(counters->keyed_call_miss(), 1);
  }

  // Get the receiver of the function from the stack; 1 ~ return address.
  __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));

  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Push the receiver and the name of the function.
    __ push(rdx);
    __ push(rcx);

    // Call the entry.
    CEntryStub stub(1);
    __ Set(rax, 2);
    __ LoadAddress(rbx, ExternalReference(IC_Utility(id), masm->isolate()));
    __ CallStub(&stub);

    // Move result to rdi and exit the internal frame.
    __ movq(rdi, rax);
  }

  // Check if the receiver is a global object of some sort.
  // This can happen only for regular CallIC but not KeyedCallIC.
  if (id == IC::kCallIC_Miss) {
    Label invoke, global;
    __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));  // receiver
    __ JumpIfSmi(rdx, &invoke);
    __ CmpObjectType(rdx, JS_GLOBAL_OBJECT_TYPE, rcx);
    __ j(equal, &global);
    __ CmpInstanceType(rcx, JS_BUILTINS_OBJECT_TYPE);
    __ j(not_equal, &invoke);

    // Patch the receiver on the stack.
    __ bind(&global);
    __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
    __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
    __ bind(&invoke);
  }

  // Invoke the function.
  CallKind call_kind = CallICBase::Contextual::decode(extra_state)
      ? CALL_AS_FUNCTION
      : CALL_AS_METHOD;
  ParameterCount actual(argc);
  __ InvokeFunction(rdi,
                    actual,
                    JUMP_FUNCTION,
                    NullCallWrapper(),
                    call_kind);
}


void CallIC::GenerateMegamorphic(MacroAssembler* masm,
                                 int argc,
                                 Code::ExtraICState extra_ic_state) {
  // ----------- S t a t e -------------
  // rcx                      : function name
  // rsp[0]                   : return address
  // rsp[8]                   : argument argc
  // rsp[16]                  : argument argc - 1
  // ...
  // rsp[argc * 8]            : argument 1
  // rsp[(argc + 1) * 8]      : argument 0 = receiver
  // -----------------------------------

  // Get the receiver of the function from the stack; 1 ~ return address.
  __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
  GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC, extra_ic_state);
  GenerateMiss(masm, argc, extra_ic_state);
}


void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
  // ----------- S t a t e -------------
  // rcx                      : function name
  // rsp[0]                   : return address
  // rsp[8]                   : argument argc
  // rsp[16]                  : argument argc - 1
  // ...
  // rsp[argc * 8]            : argument 1
  // rsp[(argc + 1) * 8]      : argument 0 = receiver
  // -----------------------------------

  // Get the receiver of the function from the stack; 1 ~ return address.
  __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));

  Label do_call, slow_call, slow_load;
  Label check_number_dictionary, check_string, lookup_monomorphic_cache;
  Label index_smi, index_string;

  // Check that the key is a smi.
  __ JumpIfNotSmi(rcx, &check_string);

  __ bind(&index_smi);
  // Now the key is known to be a smi. This place is also jumped to from below
  // where a numeric string is converted to a smi.

  GenerateKeyedLoadReceiverCheck(
      masm, rdx, rax, Map::kHasIndexedInterceptor, &slow_call);

  GenerateFastArrayLoad(
      masm, rdx, rcx, rax, rbx, rdi, &check_number_dictionary, &slow_load);
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->keyed_call_generic_smi_fast(), 1);

  __ bind(&do_call);
  // receiver in rdx is not used after this point.
  // rcx: key
  // rdi: function
  GenerateFunctionTailCall(masm, argc, &slow_call);

  __ bind(&check_number_dictionary);
  // rax: elements
  // rcx: smi key
  // Check whether the elements is a number dictionary.
  __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
                 Heap::kHashTableMapRootIndex);
  __ j(not_equal, &slow_load);
  __ SmiToInteger32(rbx, rcx);
  // ebx: untagged index
  __ LoadFromNumberDictionary(&slow_load, rax, rcx, rbx, r9, rdi, rdi);
  __ IncrementCounter(counters->keyed_call_generic_smi_dict(), 1);
  __ jmp(&do_call);

  __ bind(&slow_load);
  // This branch is taken when calling KeyedCallIC_Miss is neither required
  // nor beneficial.
  __ IncrementCounter(counters->keyed_call_generic_slow_load(), 1);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(rcx);  // save the key
    __ push(rdx);  // pass the receiver
    __ push(rcx);  // pass the key
    __ CallRuntime(Runtime::kKeyedGetProperty, 2);
    __ pop(rcx);  // restore the key
  }
  __ movq(rdi, rax);
  __ jmp(&do_call);

  __ bind(&check_string);
  GenerateKeyStringCheck(masm, rcx, rax, rbx, &index_string, &slow_call);

  // The key is known to be a symbol.
  // If the receiver is a regular JS object with slow properties then do
  // a quick inline probe of the receiver's dictionary.
  // Otherwise do the monomorphic cache probe.
  GenerateKeyedLoadReceiverCheck(
      masm, rdx, rax, Map::kHasNamedInterceptor, &lookup_monomorphic_cache);

  __ movq(rbx, FieldOperand(rdx, JSObject::kPropertiesOffset));
  __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
                 Heap::kHashTableMapRootIndex);
  __ j(not_equal, &lookup_monomorphic_cache);

  GenerateDictionaryLoad(masm, &slow_load, rbx, rcx, rax, rdi, rdi);
  __ IncrementCounter(counters->keyed_call_generic_lookup_dict(), 1);
  __ jmp(&do_call);

  __ bind(&lookup_monomorphic_cache);
  __ IncrementCounter(counters->keyed_call_generic_lookup_cache(), 1);
  GenerateMonomorphicCacheProbe(masm,
                                argc,
                                Code::KEYED_CALL_IC,
                                Code::kNoExtraICState);
  // Fall through on miss.

  __ bind(&slow_call);
  // This branch is taken if:
  // - the receiver requires boxing or access check,
  // - the key is neither smi nor symbol,
  // - the value loaded is not a function,
  // - there is hope that the runtime will create a monomorphic call stub
  //   that will get fetched next time.
  __ IncrementCounter(counters->keyed_call_generic_slow(), 1);
  GenerateMiss(masm, argc);

  __ bind(&index_string);
  __ IndexFromHash(rbx, rcx);
  // Now jump to the place where smi keys are handled.
  __ jmp(&index_smi);
}


void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
  // ----------- S t a t e -------------
  // rcx                      : function name
  // rsp[0]                   : return address
  // rsp[8]                   : argument argc
  // rsp[16]                  : argument argc - 1
  // ...
  // rsp[argc * 8]            : argument 1
  // rsp[(argc + 1) * 8]      : argument 0 = receiver
  // -----------------------------------

  // Check if the name is a string.
  Label miss;
  __ JumpIfSmi(rcx, &miss);
  Condition cond = masm->IsObjectStringType(rcx, rax, rax);
  __ j(NegateCondition(cond), &miss);
  CallICBase::GenerateNormal(masm, argc);
  __ bind(&miss);
  GenerateMiss(masm, argc);
}


static Operand GenerateMappedArgumentsLookup(MacroAssembler* masm,
                                             Register object,
                                             Register key,
                                             Register scratch1,
                                             Register scratch2,
                                             Register scratch3,
                                             Label* unmapped_case,
                                             Label* slow_case) {
  Heap* heap = masm->isolate()->heap();

  // Check that the receiver is a JSObject. Because of the elements
  // map check later, we do not need to check for interceptors or
  // whether it requires access checks.
  __ JumpIfSmi(object, slow_case);
  // Check that the object is some kind of JSObject.
  __ CmpObjectType(object, FIRST_JS_RECEIVER_TYPE, scratch1);
  __ j(below, slow_case);

  // Check that the key is a positive smi.
  Condition check = masm->CheckNonNegativeSmi(key);
  __ j(NegateCondition(check), slow_case);

  // Load the elements into scratch1 and check its map. If not, jump
  // to the unmapped lookup with the parameter map in scratch1.
  Handle<Map> arguments_map(heap->non_strict_arguments_elements_map());
  __ movq(scratch1, FieldOperand(object, JSObject::kElementsOffset));
  __ CheckMap(scratch1, arguments_map, slow_case, DONT_DO_SMI_CHECK);

  // Check if element is in the range of mapped arguments.
  __ movq(scratch2, FieldOperand(scratch1, FixedArray::kLengthOffset));
  __ SmiSubConstant(scratch2, scratch2, Smi::FromInt(2));
  __ cmpq(key, scratch2);
  __ j(greater_equal, unmapped_case);

  // Load element index and check whether it is the hole.
  const int kHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize;
  __ SmiToInteger64(scratch3, key);
  __ movq(scratch2, FieldOperand(scratch1,
                                 scratch3,
                                 times_pointer_size,
                                 kHeaderSize));
  __ CompareRoot(scratch2, Heap::kTheHoleValueRootIndex);
  __ j(equal, unmapped_case);

  // Load value from context and return it. We can reuse scratch1 because
  // we do not jump to the unmapped lookup (which requires the parameter
  // map in scratch1).
  __ movq(scratch1, FieldOperand(scratch1, FixedArray::kHeaderSize));
  __ SmiToInteger64(scratch3, scratch2);
  return FieldOperand(scratch1,
                      scratch3,
                      times_pointer_size,
                      Context::kHeaderSize);
}


static Operand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
                                               Register key,
                                               Register parameter_map,
                                               Register scratch,
                                               Label* slow_case) {
  // Element is in arguments backing store, which is referenced by the
  // second element of the parameter_map. The parameter_map register
  // must be loaded with the parameter map of the arguments object and is
  // overwritten.
  const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
  Register backing_store = parameter_map;
  __ movq(backing_store, FieldOperand(parameter_map, kBackingStoreOffset));
  Handle<Map> fixed_array_map(masm->isolate()->heap()->fixed_array_map());
  __ CheckMap(backing_store, fixed_array_map, slow_case, DONT_DO_SMI_CHECK);
  __ movq(scratch, FieldOperand(backing_store, FixedArray::kLengthOffset));
  __ cmpq(key, scratch);
  __ j(greater_equal, slow_case);
  __ SmiToInteger64(scratch, key);
  return FieldOperand(backing_store,
                      scratch,
                      times_pointer_size,
                      FixedArray::kHeaderSize);
}


void KeyedLoadIC::GenerateNonStrictArguments(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : key
  //  -- rdx    : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------
  Label slow, notin;
  Operand mapped_location =
      GenerateMappedArgumentsLookup(
          masm, rdx, rax, rbx, rcx, rdi, &notin, &slow);
  __ movq(rax, mapped_location);
  __ Ret();
  __ bind(&notin);
  // The unmapped lookup expects that the parameter map is in rbx.
  Operand unmapped_location =
      GenerateUnmappedArgumentsLookup(masm, rax, rbx, rcx, &slow);
  __ CompareRoot(unmapped_location, Heap::kTheHoleValueRootIndex);
  __ j(equal, &slow);
  __ movq(rax, unmapped_location);
  __ Ret();
  __ bind(&slow);
  GenerateMiss(masm, false);
}


void KeyedStoreIC::GenerateNonStrictArguments(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax     : value
  //  -- rcx     : key
  //  -- rdx     : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------
  Label slow, notin;
  Operand mapped_location = GenerateMappedArgumentsLookup(
      masm, rdx, rcx, rbx, rdi, r8, &notin, &slow);
  __ movq(mapped_location, rax);
  __ lea(r9, mapped_location);
  __ movq(r8, rax);
  __ RecordWrite(rbx,
                 r9,
                 r8,
                 kDontSaveFPRegs,
                 EMIT_REMEMBERED_SET,
                 INLINE_SMI_CHECK);
  __ Ret();
  __ bind(&notin);
  // The unmapped lookup expects that the parameter map is in rbx.
  Operand unmapped_location =
      GenerateUnmappedArgumentsLookup(masm, rcx, rbx, rdi, &slow);
  __ movq(unmapped_location, rax);
  __ lea(r9, unmapped_location);
  __ movq(r8, rax);
  __ RecordWrite(rbx,
                 r9,
                 r8,
                 kDontSaveFPRegs,
                 EMIT_REMEMBERED_SET,
                 INLINE_SMI_CHECK);
  __ Ret();
  __ bind(&slow);
  GenerateMiss(masm, false);
}


void KeyedCallIC::GenerateNonStrictArguments(MacroAssembler* masm,
                                             int argc) {
  // ----------- S t a t e -------------
  // rcx                      : function name
  // rsp[0]                   : return address
  // rsp[8]                   : argument argc
  // rsp[16]                  : argument argc - 1
  // ...
  // rsp[argc * 8]            : argument 1
  // rsp[(argc + 1) * 8]      : argument 0 = receiver
  // -----------------------------------
  Label slow, notin;
  __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
  Operand mapped_location = GenerateMappedArgumentsLookup(
      masm, rdx, rcx, rbx, rax, r8, &notin, &slow);
  __ movq(rdi, mapped_location);
  GenerateFunctionTailCall(masm, argc, &slow);
  __ bind(&notin);
  // The unmapped lookup expects that the parameter map is in rbx.
  Operand unmapped_location =
      GenerateUnmappedArgumentsLookup(masm, rcx, rbx, rax, &slow);
  __ CompareRoot(unmapped_location, Heap::kTheHoleValueRootIndex);
  __ j(equal, &slow);
  __ movq(rdi, unmapped_location);
  GenerateFunctionTailCall(masm, argc, &slow);
  __ bind(&slow);
  GenerateMiss(masm, argc);
}


void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : receiver
  //  -- rcx    : name
  //  -- rsp[0] : return address
  // -----------------------------------

  // Probe the stub cache.
  Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, MONOMORPHIC);
  Isolate::Current()->stub_cache()->GenerateProbe(masm, flags, rax, rcx, rbx,
                                                  rdx);

  // Cache miss: Jump to runtime.
  StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}


void LoadIC::GenerateNormal(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : receiver
  //  -- rcx    : name
  //  -- rsp[0] : return address
  // -----------------------------------
  Label miss;

  GenerateStringDictionaryReceiverCheck(masm, rax, rdx, rbx, &miss);

  //  rdx: elements
  // Search the dictionary placing the result in rax.
  GenerateDictionaryLoad(masm, &miss, rdx, rcx, rbx, rdi, rax);
  __ ret(0);

  // Cache miss: Jump to runtime.
  __ bind(&miss);
  GenerateMiss(masm);
}


void LoadIC::GenerateMiss(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : receiver
  //  -- rcx    : name
  //  -- rsp[0] : return address
  // -----------------------------------

  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->load_miss(), 1);

  __ pop(rbx);
  __ push(rax);  // receiver
  __ push(rcx);  // name
  __ push(rbx);  // return address

  // Perform tail call to the entry.
  ExternalReference ref =
      ExternalReference(IC_Utility(kLoadIC_Miss), masm->isolate());
  __ TailCallExternalReference(ref, 2, 1);
}


void KeyedLoadIC::GenerateMiss(MacroAssembler* masm, bool force_generic) {
  // ----------- S t a t e -------------
  //  -- rax    : key
  //  -- rdx    : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------

  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->keyed_load_miss(), 1);

  __ pop(rbx);
  __ push(rdx);  // receiver
  __ push(rax);  // name
  __ push(rbx);  // return address

  // Perform tail call to the entry.
  ExternalReference ref = force_generic
      ? ExternalReference(IC_Utility(kKeyedLoadIC_MissForceGeneric),
                          masm->isolate())
      : ExternalReference(IC_Utility(kKeyedLoadIC_Miss), masm->isolate());
  __ TailCallExternalReference(ref, 2, 1);
}


void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : key
  //  -- rdx    : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------

  __ pop(rbx);
  __ push(rdx);  // receiver
  __ push(rax);  // name
  __ push(rbx);  // return address

  // Perform tail call to the entry.
  __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}


void StoreIC::GenerateMegamorphic(MacroAssembler* masm,
                                  StrictModeFlag strict_mode) {
  // ----------- S t a t e -------------
  //  -- rax    : value
  //  -- rcx    : name
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------

  // Get the receiver from the stack and probe the stub cache.
  Code::Flags flags =
      Code::ComputeFlags(Code::STORE_IC, MONOMORPHIC, strict_mode);
  Isolate::Current()->stub_cache()->GenerateProbe(masm, flags, rdx, rcx, rbx,
                                                  no_reg);

  // Cache miss: Jump to runtime.
  GenerateMiss(masm);
}


void StoreIC::GenerateMiss(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : value
  //  -- rcx    : name
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------

  __ pop(rbx);
  __ push(rdx);  // receiver
  __ push(rcx);  // name
  __ push(rax);  // value
  __ push(rbx);  // return address

  // Perform tail call to the entry.
  ExternalReference ref =
      ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
  __ TailCallExternalReference(ref, 3, 1);
}


void StoreIC::GenerateArrayLength(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : value
  //  -- rcx    : name
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------
  //
  // This accepts as a receiver anything JSArray::SetElementsLength accepts
  // (currently anything except for external arrays which means anything with
  // elements of FixedArray type).  Value must be a number, but only smis are
  // accepted as the most common case.

  Label miss;

  Register receiver = rdx;
  Register value = rax;
  Register scratch = rbx;

  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, &miss);

  // Check that the object is a JS array.
  __ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
  __ j(not_equal, &miss);

  // Check that elements are FixedArray.
  // We rely on StoreIC_ArrayLength below to deal with all types of
  // fast elements (including COW).
  __ movq(scratch, FieldOperand(receiver, JSArray::kElementsOffset));
  __ CmpObjectType(scratch, FIXED_ARRAY_TYPE, scratch);
  __ j(not_equal, &miss);

  // Check that the array has fast properties, otherwise the length
  // property might have been redefined.
  __ movq(scratch, FieldOperand(receiver, JSArray::kPropertiesOffset));
  __ CompareRoot(FieldOperand(scratch, FixedArray::kMapOffset),
                 Heap::kHashTableMapRootIndex);
  __ j(equal, &miss);

  // Check that value is a smi.
  __ JumpIfNotSmi(value, &miss);

  // Prepare tail call to StoreIC_ArrayLength.
  __ pop(scratch);
  __ push(receiver);
  __ push(value);
  __ push(scratch);  // return address

  ExternalReference ref =
      ExternalReference(IC_Utility(kStoreIC_ArrayLength), masm->isolate());
  __ TailCallExternalReference(ref, 2, 1);

  __ bind(&miss);

  GenerateMiss(masm);
}


void StoreIC::GenerateNormal(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : value
  //  -- rcx    : name
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------

  Label miss;

  GenerateStringDictionaryReceiverCheck(masm, rdx, rbx, rdi, &miss);

  GenerateDictionaryStore(masm, &miss, rbx, rcx, rax, r8, r9);
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->store_normal_hit(), 1);
  __ ret(0);

  __ bind(&miss);
  __ IncrementCounter(counters->store_normal_miss(), 1);
  GenerateMiss(masm);
}


void StoreIC::GenerateGlobalProxy(MacroAssembler* masm,
                                  StrictModeFlag strict_mode) {
  // ----------- S t a t e -------------
  //  -- rax    : value
  //  -- rcx    : name
  //  -- rdx    : receiver
  //  -- rsp[0] : return address
  // -----------------------------------
  __ pop(rbx);
  __ push(rdx);
  __ push(rcx);
  __ push(rax);
  __ Push(Smi::FromInt(NONE));  // PropertyAttributes
  __ Push(Smi::FromInt(strict_mode));
  __ push(rbx);  // return address

  // Do tail-call to runtime routine.
  __ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}


void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
                                              StrictModeFlag strict_mode) {
  // ----------- S t a t e -------------
  //  -- rax     : value
  //  -- rcx     : key
  //  -- rdx     : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------

  __ pop(rbx);
  __ push(rdx);  // receiver
  __ push(rcx);  // key
  __ push(rax);  // value
  __ Push(Smi::FromInt(NONE));          // PropertyAttributes
  __ Push(Smi::FromInt(strict_mode));   // Strict mode.
  __ push(rbx);  // return address

  // Do tail-call to runtime routine.
  __ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}


void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax     : value
  //  -- rcx     : key
  //  -- rdx     : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------

  __ pop(rbx);
  __ push(rdx);  // receiver
  __ push(rcx);  // key
  __ push(rax);  // value
  __ push(rbx);  // return address

  // Do tail-call to runtime routine.
  ExternalReference ref(IC_Utility(kKeyedStoreIC_Slow), masm->isolate());
  __ TailCallExternalReference(ref, 3, 1);
}


void KeyedStoreIC::GenerateMiss(MacroAssembler* masm, bool force_generic) {
  // ----------- S t a t e -------------
  //  -- rax     : value
  //  -- rcx     : key
  //  -- rdx     : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------

  __ pop(rbx);
  __ push(rdx);  // receiver
  __ push(rcx);  // key
  __ push(rax);  // value
  __ push(rbx);  // return address

  // Do tail-call to runtime routine.
  ExternalReference ref = force_generic
    ? ExternalReference(IC_Utility(kKeyedStoreIC_MissForceGeneric),
                        masm->isolate())
    : ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
  __ TailCallExternalReference(ref, 3, 1);
}


void KeyedStoreIC::GenerateTransitionElementsSmiToDouble(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rbx     : target map
  //  -- rdx     : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------
  // Must return the modified receiver in eax.
  if (!FLAG_trace_elements_transitions) {
    Label fail;
    ElementsTransitionGenerator::GenerateSmiToDouble(masm, &fail);
    __ movq(rax, rdx);
    __ Ret();
    __ bind(&fail);
  }

  __ pop(rbx);
  __ push(rdx);
  __ push(rbx);  // return address
  __ TailCallRuntime(Runtime::kTransitionElementsSmiToDouble, 1, 1);
}


void KeyedStoreIC::GenerateTransitionElementsDoubleToObject(
    MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rbx     : target map
  //  -- rdx     : receiver
  //  -- rsp[0]  : return address
  // -----------------------------------
  // Must return the modified receiver in eax.
  if (!FLAG_trace_elements_transitions) {
    Label fail;
    ElementsTransitionGenerator::GenerateDoubleToObject(masm, &fail);
    __ movq(rax, rdx);
    __ Ret();
    __ bind(&fail);
  }

  __ pop(rbx);
  __ push(rdx);
  __ push(rbx);  // return address
  __ TailCallRuntime(Runtime::kTransitionElementsDoubleToObject, 1, 1);
}


#undef __


Condition CompareIC::ComputeCondition(Token::Value op) {
  switch (op) {
    case Token::EQ_STRICT:
    case Token::EQ:
      return equal;
    case Token::LT:
      return less;
    case Token::GT:
      return greater;
    case Token::LTE:
      return less_equal;
    case Token::GTE:
      return greater_equal;
    default:
      UNREACHABLE();
      return no_condition;
  }
}


static bool HasInlinedSmiCode(Address address) {
  // The address of the instruction following the call.
  Address test_instruction_address =
      address + Assembler::kCallTargetAddressOffset;

  // If the instruction following the call is not a test al, nothing
  // was inlined.
  return *test_instruction_address == Assembler::kTestAlByte;
}


void CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
  HandleScope scope;
  Handle<Code> rewritten;
  State previous_state = GetState();

  State state = TargetState(previous_state, HasInlinedSmiCode(address()), x, y);
  if (state == GENERIC) {
    CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS);
    rewritten = stub.GetCode();
  } else {
    ICCompareStub stub(op_, state);
    if (state == KNOWN_OBJECTS) {
      stub.set_known_map(Handle<Map>(Handle<JSObject>::cast(x)->map()));
    }
    rewritten = stub.GetCode();
  }
  set_target(*rewritten);

#ifdef DEBUG
  if (FLAG_trace_ic) {
    PrintF("[CompareIC (%s->%s)#%s]\n",
           GetStateName(previous_state),
           GetStateName(state),
           Token::Name(op_));
  }
#endif

  // Activate inlined smi code.
  if (previous_state == UNINITIALIZED) {
    PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
  }
}

void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
  // The address of the instruction following the call.
  Address test_instruction_address =
      address + Assembler::kCallTargetAddressOffset;

  // If the instruction following the call is not a test al, nothing
  // was inlined.
  if (*test_instruction_address != Assembler::kTestAlByte) {
    ASSERT(*test_instruction_address == Assembler::kNopByte);
    return;
  }

  Address delta_address = test_instruction_address + 1;
  // The delta to the start of the map check instruction and the
  // condition code uses at the patched jump.
  int8_t delta = *reinterpret_cast<int8_t*>(delta_address);
  if (FLAG_trace_ic) {
    PrintF("[  patching ic at %p, test=%p, delta=%d\n",
           address, test_instruction_address, delta);
  }

  // Patch with a short conditional jump. Enabling means switching from a short
  // jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the
  // reverse operation of that.
  Address jmp_address = test_instruction_address - delta;
  ASSERT((check == ENABLE_INLINED_SMI_CHECK)
         ? (*jmp_address == Assembler::kJncShortOpcode ||
            *jmp_address == Assembler::kJcShortOpcode)
         : (*jmp_address == Assembler::kJnzShortOpcode ||
            *jmp_address == Assembler::kJzShortOpcode));
  Condition cc = (check == ENABLE_INLINED_SMI_CHECK)
      ? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero)
      : (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry);
  *jmp_address = static_cast<byte>(Assembler::kJccShortPrefix | cc);
}


} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_X64

/* [<][>][^][v][top][bottom][index][help] */