This source file includes following definitions.
- check_dc_primitive
- check_planar_primitive
- check_angular_primitive
- check_allangs_primitive
- check_intra_filter_primitive
- testCorrectness
- measureSpeed
#include "common.h"
#include "predict.h"
#include "intrapredharness.h"
using namespace X265_NS;
IntraPredHarness::IntraPredHarness()
{
for (int i = 0; i < INPUT_SIZE; i++)
pixel_buff[i] = rand() % PIXEL_MAX;
for (int i = 0; i < BUFFSIZE; i++)
{
pixel_test_buff[0][i] = rand() % PIXEL_MAX;
pixel_test_buff[1][i] = PIXEL_MIN;
pixel_test_buff[2][i] = PIXEL_MAX;
}
}
bool IntraPredHarness::check_dc_primitive(intra_pred_t ref, intra_pred_t opt, int width)
{
int j = Predict::ADI_BUF_STRIDE;
intptr_t stride = FENC_STRIDE;
#if _DEBUG
memset(pixel_out_vec, 0xCD, OUTPUT_SIZE);
memset(pixel_out_c, 0xCD, OUTPUT_SIZE);
#endif
for (int i = 0; i <= 100; i++)
{
int rand_filter = rand() & 1;
if (width > 16)
rand_filter = 0;
ref(pixel_out_c, stride, pixel_buff + j - Predict::ADI_BUF_STRIDE, 0, rand_filter);
checked(opt, pixel_out_vec, stride, pixel_buff + j - Predict::ADI_BUF_STRIDE, 0, rand_filter);
for (int k = 0; k < width; k++)
{
if (memcmp(pixel_out_vec + k * FENC_STRIDE, pixel_out_c + k * FENC_STRIDE, width * sizeof(pixel)))
return false;
}
reportfail();
j += FENC_STRIDE;
}
return true;
}
bool IntraPredHarness::check_planar_primitive(intra_pred_t ref, intra_pred_t opt, int width)
{
int j = Predict::ADI_BUF_STRIDE;
intptr_t stride = FENC_STRIDE;
#if _DEBUG
memset(pixel_out_vec, 0xCD, OUTPUT_SIZE);
memset(pixel_out_c, 0xCD, OUTPUT_SIZE);
#endif
for (int i = 0; i <= 100; i++)
{
ref(pixel_out_c, stride, pixel_buff + j - Predict::ADI_BUF_STRIDE, 0, 0);
checked(opt, pixel_out_vec, stride, pixel_buff + j - Predict::ADI_BUF_STRIDE, 0, 0);
for (int k = 0; k < width; k++)
{
if (memcmp(pixel_out_vec + k * FENC_STRIDE, pixel_out_c + k * FENC_STRIDE, width * sizeof(pixel)))
return false;
}
reportfail();
j += FENC_STRIDE;
}
return true;
}
bool IntraPredHarness::check_angular_primitive(const intra_pred_t ref[], const intra_pred_t opt[], int sizeIdx)
{
int j = Predict::ADI_BUF_STRIDE;
intptr_t stride = FENC_STRIDE;
#if _DEBUG
memset(pixel_out_vec, 0xCD, OUTPUT_SIZE);
memset(pixel_out_c, 0xCD, OUTPUT_SIZE);
#endif
int width = 1 << (sizeIdx + 2);
for (int i = 0; i <= 100; i++)
{
int bFilter = (width <= 16) && (rand() % 2);
for (int pmode = 2; pmode <= 34; pmode++)
{
if (!opt[pmode])
continue;
checked(opt[pmode], pixel_out_vec, stride, pixel_buff + j, pmode, bFilter);
ref[pmode](pixel_out_c, stride, pixel_buff + j, pmode, bFilter);
for (int k = 0; k < width; k++)
{
if (memcmp(pixel_out_vec + k * FENC_STRIDE, pixel_out_c + k * FENC_STRIDE, width * sizeof(pixel)))
{
printf("ang_%dx%d, Mode = %d, Row = %d failed !!\n", width, width, pmode, k);
ref[pmode](pixel_out_c, stride, pixel_buff + j, pmode, bFilter);
opt[pmode](pixel_out_vec, stride, pixel_buff + j, pmode, bFilter);
return false;
}
}
reportfail();
}
j += FENC_STRIDE;
}
return true;
}
bool IntraPredHarness::check_allangs_primitive(const intra_allangs_t ref, const intra_allangs_t opt, int sizeIdx)
{
int j = Predict::ADI_BUF_STRIDE;
int isLuma;
#if _DEBUG
memset(pixel_out_33_vec, 0xCD, OUTPUT_SIZE_33);
memset(pixel_out_33_c, 0xCD, OUTPUT_SIZE_33);
#endif
const int width = 1 << (sizeIdx + 2);
for (int i = 0; i <= 100; i++)
{
isLuma = (width <= 16) ? true : false;
pixel * refAbove0 = pixel_buff + j + 3 * FENC_STRIDE;
pixel * refLeft0 = refAbove0 + 3 * width + FENC_STRIDE;
refLeft0[0] = refAbove0[0];
ref(pixel_out_33_c, refAbove0, refLeft0, isLuma);
checked(opt, pixel_out_33_vec, refAbove0, refLeft0, isLuma);
for (int p = 2 - 2; p <= 34 - 2; p++)
{
for (int k = 0; k < width; k++)
{
if (memcmp(pixel_out_33_c + p * (width * width) + k * width, pixel_out_33_vec + p * (width * width) + k * width, width * sizeof(pixel)))
{
printf("\nFailed: (%dx%d) Mode(%2d), Line[%2d], bfilter=%d\n", width, width, p + 2, k, isLuma);
opt(pixel_out_33_vec, refAbove0, refLeft0, isLuma);
return false;
}
}
}
reportfail();
j += FENC_STRIDE;
}
return true;
}
bool IntraPredHarness::check_intra_filter_primitive(const intra_filter_t ref, const intra_filter_t opt)
{
memset(pixel_out_c, 0, 64 * 64 * sizeof(pixel));
memset(pixel_out_vec, 0, 64 * 64 * sizeof(pixel));
int j = 0;
for (int i = 0; i < 100; i++)
{
int index = rand() % TEST_CASES;
ref(pixel_test_buff[index] + j, pixel_out_c);
checked(opt, pixel_test_buff[index] + j, pixel_out_vec);
if (memcmp(pixel_out_c, pixel_out_vec, 64 * 64 * sizeof(pixel)))
return false;
reportfail();
j += FENC_STRIDE;
}
return true;
}
bool IntraPredHarness::testCorrectness(const EncoderPrimitives& ref, const EncoderPrimitives& opt)
{
for (int i = BLOCK_4x4; i <= BLOCK_32x32; i++)
{
const int size = (1 << (i + 2));
if (opt.cu[i].intra_pred[PLANAR_IDX])
{
if (!check_planar_primitive(ref.cu[i].intra_pred[PLANAR_IDX], opt.cu[i].intra_pred[PLANAR_IDX], size))
{
printf("intra_planar %dx%d failed\n", size, size);
return false;
}
}
if (opt.cu[i].intra_pred[DC_IDX])
{
if (!check_dc_primitive(ref.cu[i].intra_pred[DC_IDX], opt.cu[i].intra_pred[DC_IDX], size))
{
printf("intra_dc %dx%d failed\n", size, size);
return false;
}
}
if (!check_angular_primitive(ref.cu[i].intra_pred, opt.cu[i].intra_pred, i))
{
printf("intra_angular failed\n");
return false;
}
if (opt.cu[i].intra_pred_allangs)
{
if (!check_allangs_primitive(ref.cu[i].intra_pred_allangs, opt.cu[i].intra_pred_allangs, i))
{
printf("intra_allangs failed\n");
return false;
}
}
if (opt.cu[i].intra_filter)
{
if (!check_intra_filter_primitive(ref.cu[i].intra_filter, opt.cu[i].intra_filter))
{
printf("intra_filter_%dx%d failed\n", size, size);
return false;
}
}
}
return true;
}
void IntraPredHarness::measureSpeed(const EncoderPrimitives& ref, const EncoderPrimitives& opt)
{
int width = 64;
uint16_t srcStride = 96;
for (int i = BLOCK_4x4; i <= BLOCK_32x32; i++)
{
const int size = (1 << (i + 2));
if (opt.cu[i].intra_pred[PLANAR_IDX])
{
printf("intra_planar_%dx%d", size, size);
REPORT_SPEEDUP(opt.cu[i].intra_pred[PLANAR_IDX], ref.cu[i].intra_pred[PLANAR_IDX],
pixel_out_vec, FENC_STRIDE, pixel_buff + srcStride, 0, 0);
}
if (opt.cu[i].intra_pred[DC_IDX])
{
printf("intra_dc_%dx%d[f=0]", size, size);
REPORT_SPEEDUP(opt.cu[i].intra_pred[DC_IDX], ref.cu[i].intra_pred[DC_IDX],
pixel_out_vec, FENC_STRIDE, pixel_buff + srcStride, 0, 0);
if (size <= 16)
{
printf("intra_dc_%dx%d[f=1]", size, size);
REPORT_SPEEDUP(opt.cu[i].intra_pred[DC_IDX], ref.cu[i].intra_pred[DC_IDX],
pixel_out_vec, FENC_STRIDE, pixel_buff + srcStride, 0, 1);
}
}
if (opt.cu[i].intra_pred_allangs)
{
bool bFilter = (size <= 16);
pixel * refAbove = pixel_buff + srcStride;
pixel * refLeft = refAbove + 3 * size;
refLeft[0] = refAbove[0];
printf("intra_allangs%dx%d", size, size);
REPORT_SPEEDUP(opt.cu[i].intra_pred_allangs, ref.cu[i].intra_pred_allangs,
pixel_out_33_vec, refAbove, refLeft, bFilter);
}
for (int mode = 2; mode <= 34; mode += 1)
{
if (opt.cu[i].intra_pred[mode])
{
width = 1 << (i + 2);
bool bFilter = (width <= 16);
pixel * refAbove = pixel_buff + srcStride;
pixel * refLeft = refAbove + 3 * width;
refLeft[0] = refAbove[0];
printf("intra_ang_%dx%d[%2d]", width, width, mode);
REPORT_SPEEDUP(opt.cu[i].intra_pred[mode], ref.cu[i].intra_pred[mode],
pixel_out_vec, FENC_STRIDE, pixel_buff + srcStride, mode, bFilter);
}
}
if (opt.cu[i].intra_filter)
{
printf("intra_filter_%dx%d", size, size);
REPORT_SPEEDUP(opt.cu[i].intra_filter, ref.cu[i].intra_filter, pixel_buff, pixel_out_c);
}
}
}