root/python_bindings/numpy/ndarray.hpp

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. get_struct
  2. shape
  3. strides
  4. get_data
  5. get_shape
  6. get_strides
  7. get_nd
  8. from_data_impl
  9. from_data
  10. from_data
  11. from_object
  12. from_object
  13. from_object
  14. from_object

// Copyright Jim Bosch 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
#ifndef HALIDE_NUMPY_NDARRAY_HPP_INCLUDED
#define HALIDE_NUMPY_NDARRAY_HPP_INCLUDED

/**
 *  @file numpy/ndarray.hpp
 *  @brief Object manager and various utilities for numpy.ndarray.
 */

#include "dtype.hpp"
#include "numpy_object_mgr_traits.hpp"
#include <boost/python.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/utility/enable_if.hpp>

#include <vector>

namespace Halide {
namespace numpy {

/**
 *  @brief A boost.python "object manager" (subclass of object) for numpy.ndarray.
 *
 *  @todo This could have a lot more functionality (like boost::python::numeric::array).
 *        Right now all that exists is what was needed to move raw data between C++ and Python.
 */
class ndarray : public python::object {

    /**
   *  @brief An internal struct that's byte-compatible with PyArrayObject.
   *
   *  This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
   *  from the user.
   */
    struct array_struct {
        PyObject_HEAD char *data;
        int nd;
        Py_intptr_t *shape;
        Py_intptr_t *strides;
        PyObject *base;
        PyObject *descr;
        int flags;
        PyObject *weakreflist;
    };

    /// @brief Return the held Python object as an array_struct.
    array_struct *get_struct() const { return reinterpret_cast<array_struct *>(this->ptr()); }

public:
    /**
   *  @brief Enum to represent (some) of Numpy's internal flags.
   *
   *  These don't match the actual Numpy flag values; we can't get those without including 
   *  numpy/arrayobject.h or copying them directly.  That's very unfortunate.
   *
   *  @todo I'm torn about whether this should be an enum.  It's very convenient to not
   *        make these simple integer values for overloading purposes, but the need to
   *        define every possible combination and custom bitwise operators is ugly.
   */
    enum bitflag {
        NONE = 0x0,
        C_CONTIGUOUS = 0x1,
        F_CONTIGUOUS = 0x2,
        V_CONTIGUOUS = 0x1 | 0x2,
        ALIGNED = 0x4,
        WRITEABLE = 0x8,
        BEHAVED = 0x4 | 0x8,
        CARRAY_RO = 0x1 | 0x4,
        CARRAY = 0x1 | 0x4 | 0x8,
        CARRAY_MIS = 0x1 | 0x8,
        FARRAY_RO = 0x2 | 0x4,
        FARRAY = 0x2 | 0x4 | 0x8,
        FARRAY_MIS = 0x2 | 0x8,
        UPDATE_ALL = 0x1 | 0x2 | 0x4,
        VARRAY = 0x1 | 0x2 | 0x8,
        ALL = 0x1 | 0x2 | 0x4 | 0x8
    };

    BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);

    /// @brief Return a view of the scalar with the given dtype.
    ndarray view(dtype const &dt) const;

    /// @brief Copy the array, cast to a specified type.
    ndarray astype(dtype const &dt) const;

    /// @brief Copy the scalar (deep for all non-object fields).
    ndarray copy() const;

    /// @brief Return the size of the nth dimension.
    Py_intptr_t const shape(int n) const { return get_shape()[n]; }

    /// @brief Return the stride of the nth dimension.
    Py_intptr_t const strides(int n) const { return get_strides()[n]; }

    /**
   *  @brief Return the array's raw data pointer.
   *
   *  This returns char so stride math works properly on it.  It's pretty much
   *  expected that the user will have to reinterpret_cast it.
   */
    char *get_data() const { return get_struct()->data; }

    /// @brief Return the array's data-type descriptor object.
    dtype get_dtype() const;

    /// @brief Return the object that owns the array's data, or None if the array owns its own data.
    python::object get_base() const;

    /// @brief Set the object that owns the array's data.  Use with care.
    void set_base(object const &base);

    /// @brief Return the shape of the array as an array of integers (length == get_nd()).
    Py_intptr_t const *get_shape() const { return get_struct()->shape; }

    /// @brief Return the stride of the array as an array of integers (length == get_nd()).
    Py_intptr_t const *get_strides() const { return get_struct()->strides; }

    /// @brief Return the number of array dimensions.
    int const get_nd() const { return get_struct()->nd; }

    /// @brief Return the array flags.
    bitflag const get_flags() const;

    /// @brief Reverse the dimensions of the array.
    ndarray transpose() const;

    /// @brief Eliminate any unit-sized dimensions.
    ndarray squeeze() const;

    /// @brief Equivalent to self.reshape(*shape) in Python.
    ndarray reshape(python::tuple const &shape) const;

    /**
   *  @brief If the array contains only a single element, return it as an array scalar; otherwise return
   *         the array.
   *
   *  @internal This is simply a call to PyArray_Return();
   */
    python::object scalarize() const;
};

/**
 *  @brief Construct a new array with the given shape and data type, with data initialized to zero.
 */
ndarray zeros(python::tuple const &shape, dtype const &dt);
ndarray zeros(int nd, Py_intptr_t const *shape, dtype const &dt);

/**
 *  @brief Construct a new array with the given shape and data type, with data left uninitialized.
 */
ndarray empty(python::tuple const &shape, dtype const &dt);
ndarray empty(int nd, Py_intptr_t const *shape, dtype const &dt);

/**
 *  @brief Construct a new array from an arbitrary Python sequence.
 *
 *  @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python.
 */
ndarray array(python::object const &obj);
ndarray array(python::object const &obj, dtype const &dt);

namespace detail {

ndarray from_data_impl(void *data,
                       dtype const &dt,
                       std::vector<Py_intptr_t> const &shape,
                       std::vector<Py_intptr_t> const &strides,
                       python::object const &owner,
                       bool writeable);

template <typename Container>
ndarray from_data_impl(void *data,
                       dtype const &dt,
                       Container shape,
                       Container strides,
                       python::object const &owner,
                       bool writeable,
                       typename boost::enable_if<boost::is_integral<typename Container::value_type>>::type *enabled = NULL) {
    std::vector<Py_intptr_t> shape_(shape.begin(), shape.end());
    std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
    return from_data_impl(data, dt, shape_, strides_, owner, writeable);
}

ndarray from_data_impl(void *data,
                       dtype const &dt,
                       python::object const &shape,
                       python::object const &strides,
                       python::object const &owner,
                       bool writeable);

}  // namespace Halide::numpy::detail

/**
 *  @brief Construct a new ndarray object from a raw pointer.
 *
 *  @param[in] data    Raw pointer to the first element of the array.
 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
 *  @param[in] shape   Shape of the array as STL container of integers; must have begin() and end().
 *  @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
 *  @param[in] owner   An arbitray Python object that owns that data pointer.  The array object will
 *                     keep a reference to the object, and decrement it's reference count when the
 *                     array goes out of scope.  Pass None at your own peril.
 *
 *  @todo Should probably take ranges of iterators rather than actual container objects.
 */
template <typename Container>
inline ndarray from_data(void *data,
                         dtype const &dt,
                         Container shape,
                         Container strides,
                         python::object const &owner) {
    return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
}

/**
 *  @brief Construct a new ndarray object from a raw pointer.
 *
 *  @param[in] data    Raw pointer to the first element of the array.
 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
 *  @param[in] shape   Shape of the array as STL container of integers; must have begin() and end().
 *  @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
 *  @param[in] owner   An arbitray Python object that owns that data pointer.  The array object will
 *                     keep a reference to the object, and decrement it's reference count when the
 *                     array goes out of scope.  Pass None at your own peril.
 *
 *  This overload takes a const void pointer and sets the "writeable" flag of the array to false.
 *
 *  @todo Should probably take ranges of iterators rather than actual container objects.
 */
template <typename Container>
inline ndarray from_data(void const *data,
                         dtype const &dt,
                         Container shape,
                         Container strides,
                         python::object const &owner) {
    return numpy::detail::from_data_impl(const_cast<void *>(data), dt, shape, strides, owner, false);
}

/**
 *  @brief Transform an arbitrary object into a numpy array with the given requirements.
 *
 *  @param[in] obj     An arbitrary python object to convert.  Arrays that meet the requirements
 *                     will be passed through directly.
 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
 *  @param[in] nd_min  Minimum number of dimensions.
 *  @param[in] nd_max  Maximum number of dimensions.
 *  @param[in] flags   Bitwise OR of flags specifying additional requirements.
 */
ndarray from_object(python::object const &obj, dtype const &dt,
                    int nd_min, int nd_max, ndarray::bitflag flags = ndarray::NONE);

inline ndarray from_object(python::object const &obj, dtype const &dt,
                           int nd, ndarray::bitflag flags = ndarray::NONE) {
    return from_object(obj, dt, nd, nd, flags);
}

inline ndarray from_object(python::object const &obj, dtype const &dt, ndarray::bitflag flags = ndarray::NONE) {
    return from_object(obj, dt, 0, 0, flags);
}

ndarray from_object(python::object const &obj, int nd_min, int nd_max,
                    ndarray::bitflag flags = ndarray::NONE);

inline ndarray from_object(python::object const &obj, int nd, ndarray::bitflag flags = ndarray::NONE) {
    return from_object(obj, nd, nd, flags);
}

inline ndarray from_object(python::object const &obj, ndarray::bitflag flags = ndarray::NONE) {
    return from_object(obj, 0, 0, flags);
}

inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b) {
    return ndarray::bitflag(int(a) | int(b));
}

inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b) {
    return ndarray::bitflag(int(a) & int(b));
}

}  // namespace Halide::numpy
}  // namespace Halide

namespace boost {
namespace python {
namespace converter {

NUMPY_OBJECT_MANAGER_TRAITS(Halide::numpy::ndarray);

}  // namespace boost::python::converter
}  // namespace boost::python
}  // namespace boost

#endif  // !HALIDE_NUMPY_NDARRAY_HPP_INCLUDED

/* [<][>][^][v][top][bottom][index][help] */