// Copyright Jim Bosch 2010-2012. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef HALIDE_NUMPY_NDARRAY_HPP_INCLUDED #define HALIDE_NUMPY_NDARRAY_HPP_INCLUDED /** * @file numpy/ndarray.hpp * @brief Object manager and various utilities for numpy.ndarray. */ #include "dtype.hpp" #include "numpy_object_mgr_traits.hpp" #include <boost/python.hpp> #include <boost/type_traits/is_integral.hpp> #include <boost/utility/enable_if.hpp> #include <vector> namespace Halide { namespace numpy { /** * @brief A boost.python "object manager" (subclass of object) for numpy.ndarray. * * @todo This could have a lot more functionality (like boost::python::numeric::array). * Right now all that exists is what was needed to move raw data between C++ and Python. */ class ndarray : public python::object { /** * @brief An internal struct that's byte-compatible with PyArrayObject. * * This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h * from the user. */ struct array_struct { PyObject_HEAD char *data; int nd; Py_intptr_t *shape; Py_intptr_t *strides; PyObject *base; PyObject *descr; int flags; PyObject *weakreflist; }; /// @brief Return the held Python object as an array_struct. array_struct *get_struct() const { return reinterpret_cast<array_struct *>(this->ptr()); } public: /** * @brief Enum to represent (some) of Numpy's internal flags. * * These don't match the actual Numpy flag values; we can't get those without including * numpy/arrayobject.h or copying them directly. That's very unfortunate. * * @todo I'm torn about whether this should be an enum. It's very convenient to not * make these simple integer values for overloading purposes, but the need to * define every possible combination and custom bitwise operators is ugly. */ enum bitflag { NONE = 0x0, C_CONTIGUOUS = 0x1, F_CONTIGUOUS = 0x2, V_CONTIGUOUS = 0x1 | 0x2, ALIGNED = 0x4, WRITEABLE = 0x8, BEHAVED = 0x4 | 0x8, CARRAY_RO = 0x1 | 0x4, CARRAY = 0x1 | 0x4 | 0x8, CARRAY_MIS = 0x1 | 0x8, FARRAY_RO = 0x2 | 0x4, FARRAY = 0x2 | 0x4 | 0x8, FARRAY_MIS = 0x2 | 0x8, UPDATE_ALL = 0x1 | 0x2 | 0x4, VARRAY = 0x1 | 0x2 | 0x8, ALL = 0x1 | 0x2 | 0x4 | 0x8 }; BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object); /// @brief Return a view of the scalar with the given dtype. ndarray view(dtype const &dt) const; /// @brief Copy the array, cast to a specified type. ndarray astype(dtype const &dt) const; /// @brief Copy the scalar (deep for all non-object fields). ndarray copy() const; /// @brief Return the size of the nth dimension. Py_intptr_t const shape(int n) const { return get_shape()[n]; } /// @brief Return the stride of the nth dimension. Py_intptr_t const strides(int n) const { return get_strides()[n]; } /** * @brief Return the array's raw data pointer. * * This returns char so stride math works properly on it. It's pretty much * expected that the user will have to reinterpret_cast it. */ char *get_data() const { return get_struct()->data; } /// @brief Return the array's data-type descriptor object. dtype get_dtype() const; /// @brief Return the object that owns the array's data, or None if the array owns its own data. python::object get_base() const; /// @brief Set the object that owns the array's data. Use with care. void set_base(object const &base); /// @brief Return the shape of the array as an array of integers (length == get_nd()). Py_intptr_t const *get_shape() const { return get_struct()->shape; } /// @brief Return the stride of the array as an array of integers (length == get_nd()). Py_intptr_t const *get_strides() const { return get_struct()->strides; } /// @brief Return the number of array dimensions. int const get_nd() const { return get_struct()->nd; } /// @brief Return the array flags. bitflag const get_flags() const; /// @brief Reverse the dimensions of the array. ndarray transpose() const; /// @brief Eliminate any unit-sized dimensions. ndarray squeeze() const; /// @brief Equivalent to self.reshape(*shape) in Python. ndarray reshape(python::tuple const &shape) const; /** * @brief If the array contains only a single element, return it as an array scalar; otherwise return * the array. * * @internal This is simply a call to PyArray_Return(); */ python::object scalarize() const; }; /** * @brief Construct a new array with the given shape and data type, with data initialized to zero. */ ndarray zeros(python::tuple const &shape, dtype const &dt); ndarray zeros(int nd, Py_intptr_t const *shape, dtype const &dt); /** * @brief Construct a new array with the given shape and data type, with data left uninitialized. */ ndarray empty(python::tuple const &shape, dtype const &dt); ndarray empty(int nd, Py_intptr_t const *shape, dtype const &dt); /** * @brief Construct a new array from an arbitrary Python sequence. * * @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python. */ ndarray array(python::object const &obj); ndarray array(python::object const &obj, dtype const &dt); namespace detail { ndarray from_data_impl(void *data, dtype const &dt, std::vector<Py_intptr_t> const &shape, std::vector<Py_intptr_t> const &strides, python::object const &owner, bool writeable); template <typename Container> ndarray from_data_impl(void *data, dtype const &dt, Container shape, Container strides, python::object const &owner, bool writeable, typename boost::enable_if<boost::is_integral<typename Container::value_type>>::type *enabled = NULL) { std::vector<Py_intptr_t> shape_(shape.begin(), shape.end()); std::vector<Py_intptr_t> strides_(strides.begin(), strides.end()); return from_data_impl(data, dt, shape_, strides_, owner, writeable); } ndarray from_data_impl(void *data, dtype const &dt, python::object const &shape, python::object const &strides, python::object const &owner, bool writeable); } // namespace Halide::numpy::detail /** * @brief Construct a new ndarray object from a raw pointer. * * @param[in] data Raw pointer to the first element of the array. * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin(). * @param[in] shape Shape of the array as STL container of integers; must have begin() and end(). * @param[in] strides Shape of the array as STL container of integers; must have begin() and end(). * @param[in] owner An arbitray Python object that owns that data pointer. The array object will * keep a reference to the object, and decrement it's reference count when the * array goes out of scope. Pass None at your own peril. * * @todo Should probably take ranges of iterators rather than actual container objects. */ template <typename Container> inline ndarray from_data(void *data, dtype const &dt, Container shape, Container strides, python::object const &owner) { return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true); } /** * @brief Construct a new ndarray object from a raw pointer. * * @param[in] data Raw pointer to the first element of the array. * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin(). * @param[in] shape Shape of the array as STL container of integers; must have begin() and end(). * @param[in] strides Shape of the array as STL container of integers; must have begin() and end(). * @param[in] owner An arbitray Python object that owns that data pointer. The array object will * keep a reference to the object, and decrement it's reference count when the * array goes out of scope. Pass None at your own peril. * * This overload takes a const void pointer and sets the "writeable" flag of the array to false. * * @todo Should probably take ranges of iterators rather than actual container objects. */ template <typename Container> inline ndarray from_data(void const *data, dtype const &dt, Container shape, Container strides, python::object const &owner) { return numpy::detail::from_data_impl(const_cast<void *>(data), dt, shape, strides, owner, false); } /** * @brief Transform an arbitrary object into a numpy array with the given requirements. * * @param[in] obj An arbitrary python object to convert. Arrays that meet the requirements * will be passed through directly. * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin(). * @param[in] nd_min Minimum number of dimensions. * @param[in] nd_max Maximum number of dimensions. * @param[in] flags Bitwise OR of flags specifying additional requirements. */ ndarray from_object(python::object const &obj, dtype const &dt, int nd_min, int nd_max, ndarray::bitflag flags = ndarray::NONE); inline ndarray from_object(python::object const &obj, dtype const &dt, int nd, ndarray::bitflag flags = ndarray::NONE) { return from_object(obj, dt, nd, nd, flags); } inline ndarray from_object(python::object const &obj, dtype const &dt, ndarray::bitflag flags = ndarray::NONE) { return from_object(obj, dt, 0, 0, flags); } ndarray from_object(python::object const &obj, int nd_min, int nd_max, ndarray::bitflag flags = ndarray::NONE); inline ndarray from_object(python::object const &obj, int nd, ndarray::bitflag flags = ndarray::NONE) { return from_object(obj, nd, nd, flags); } inline ndarray from_object(python::object const &obj, ndarray::bitflag flags = ndarray::NONE) { return from_object(obj, 0, 0, flags); } inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b) { return ndarray::bitflag(int(a) | int(b)); } inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b) { return ndarray::bitflag(int(a) & int(b)); } } // namespace Halide::numpy } // namespace Halide namespace boost { namespace python { namespace converter { NUMPY_OBJECT_MANAGER_TRAITS(Halide::numpy::ndarray); } // namespace boost::python::converter } // namespace boost::python } // namespace boost #endif // !HALIDE_NUMPY_NDARRAY_HPP_INCLUDED