root/test/correctness/fuzz_simplify.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fuzz_var
  2. random_var
  3. random_type
  4. random_leaf
  5. random_condition
  6. random_expr
  7. test_simplification
  8. test_expression
  9. ramp
  10. x1
  11. x2
  12. x4
  13. uint1
  14. uint8
  15. uint16
  16. uint32
  17. int8
  18. int16
  19. int32
  20. uint1x2
  21. uint8x2
  22. uint16x2
  23. uint32x2
  24. int8x2
  25. int16x2
  26. int32x2
  27. main

#include <stdio.h>
#include "Halide.h"
#include <time.h>
#include <random>

// Test the simplifier in Halide by testing for equivalence of randomly generated expressions.

using namespace std;
using namespace Halide;
using namespace Halide::Internal;

const int fuzz_var_count = 5;

// use std::mt19937 instead of rand() to ensure consistent behavior on all systems
std::mt19937 rng(0);

Type fuzz_types[] = { UInt(1), UInt(8), UInt(16), UInt(32), Int(8), Int(16), Int(32) };
const int fuzz_type_count = sizeof(fuzz_types)/sizeof(fuzz_types[0]);

std::string fuzz_var(int i) {
    return std::string(1, 'a' + i);
}

Expr random_var() {
    int fuzz_count = rng()%fuzz_var_count;
    return Variable::make(Int(0), fuzz_var(fuzz_count));
}

Type random_type(int width) {
    Type T = fuzz_types[rng()%fuzz_type_count];
    if (width > 1) {
        T = T.with_lanes(width);
    }
    return T;
}

Expr random_leaf(Type T, bool overflow_undef = false, bool imm_only = false) {
    if (T.is_int() && T.bits() == 32) {
        overflow_undef = true;
    }
    if (T.is_scalar()) {
        int var = rng()%fuzz_var_count + 1;
        if (!imm_only && var < fuzz_var_count) {
            auto v1 = random_var();
            return cast(T, v1);
        } else {
            if (overflow_undef) {
                // For Int(32), we don't care about correctness during
                // overflow, so just use numbers that are unlikely to
                // overflow.
                return cast(T, (int)(rng()%256 - 128));
            } else {
                return cast(T, (int)(rng() - RAND_MAX/2));
            }
        }
    } else {
        if (rng() % 2 == 0) {
            auto e1 = random_leaf(T.element_of(), overflow_undef);
            auto e2 = random_leaf(T.element_of(), overflow_undef);
            return Ramp::make(e1, e2, T.lanes());
        } else {
            auto e1 = random_leaf(T.element_of(), overflow_undef);
            return Broadcast::make(e1, T.lanes());
        }
    }
}

Expr random_expr(Type T, int depth, bool overflow_undef = false);

Expr random_condition(Type T, int depth, bool maybe_scalar) {
    typedef Expr (*make_bin_op_fn)(const Expr &, const Expr &);
    static make_bin_op_fn make_bin_op[] = {
        EQ::make,
        NE::make,
        LT::make,
        LE::make,
        GT::make,
        GE::make,
    };
    const int op_count = sizeof(make_bin_op)/sizeof(make_bin_op[0]);

    if (maybe_scalar && rng() % T.lanes() == 0) {
        T = T.element_of();
    }

    Expr a = random_expr(T, depth);
    Expr b = random_expr(T, depth);
    int op = rng()%op_count;
    return make_bin_op[op](a, b);
}

Expr random_expr(Type T, int depth, bool overflow_undef) {
    typedef Expr (*make_bin_op_fn)(const Expr &, const Expr &);
    static make_bin_op_fn make_bin_op[] = {
        Add::make,
        Sub::make,
        Mul::make,
        Min::make,
        Max::make,
        Div::make,
        Mod::make,
     };

    static make_bin_op_fn make_bool_bin_op[] = {
        And::make,
        Or::make,
    };

    if (T.is_int() && T.bits() == 32) {
        overflow_undef = true;
    }

    if (depth-- <= 0) {
        return random_leaf(T, overflow_undef);
    }

    const int bin_op_count = sizeof(make_bin_op) / sizeof(make_bin_op[0]);
    const int bool_bin_op_count = sizeof(make_bool_bin_op) / sizeof(make_bool_bin_op[0]);
    const int op_count = bin_op_count + bool_bin_op_count + 5;

    int op = rng() % op_count;
    switch(op) {
    case 0: return random_leaf(T);
    case 1: {
        auto c = random_condition(T, depth, true);
        auto e1 = random_expr(T, depth, overflow_undef);
        auto e2 = random_expr(T, depth, overflow_undef);
        return Select::make(c, e1, e2);
    }
    case 2:
        if (T.lanes() != 1) {
            auto e1 = random_expr(T.element_of(), depth, overflow_undef);
            return Broadcast::make(e1, T.lanes());
        }
        break;
    case 3:
        if (T.lanes() != 1) {
            auto e1 = random_expr(T.element_of(), depth, overflow_undef);
            auto e2 = random_expr(T.element_of(), depth, overflow_undef);
            return Ramp::make(e1, e2, T.lanes());
        }
        break;

    case 4:
        if (T.is_bool()) {
            auto e1 = random_expr(T, depth);
            return Not::make(e1);
        }
        break;

    case 5:
        // When generating boolean expressions, maybe throw in a condition on non-bool types.
        if (T.is_bool()) {
            return random_condition(T, depth, false);
        }
        break;

    case 6:
    {
        // Get a random type that isn't T or int32 (int32 can overflow and we don't care about that).
        Type subT;
        do {
            subT = random_type(T.lanes());
        } while (subT == T || (subT.is_int() && subT.bits() == 32));
        auto e1 = random_expr(subT, depth, overflow_undef);
        return Cast::make(T, e1);
    }

    default:
        make_bin_op_fn maker;
        if (T.is_bool()) {
            maker = make_bool_bin_op[op%bool_bin_op_count];
        } else {
            maker = make_bin_op[op%bin_op_count];
        }
        Expr a = random_expr(T, depth, overflow_undef);
        Expr b = random_expr(T, depth, overflow_undef);
        return maker(a, b);
    }
    // If we got here, try again.
    return random_expr(T, depth, overflow_undef);
}

bool test_simplification(Expr a, Expr b, Type T, const map<string, Expr> &vars) {
    for (int j = 0; j < T.lanes(); j++) {
        Expr a_j = a;
        Expr b_j = b;
        if (T.lanes() != 1) {
            a_j = extract_lane(a, j);
            b_j = extract_lane(b, j);
        }

        Expr a_j_v = simplify(substitute(vars, a_j));
        Expr b_j_v = simplify(substitute(vars, b_j));
        // If the simplifier didn't produce constants, there must be
        // undefined behavior in this expression. Ignore it.
        if (!Internal::is_const(a_j_v) || !Internal::is_const(b_j_v)) {
            continue;
        }
        if (!equal(a_j_v, b_j_v)) {
            for(map<string, Expr>::const_iterator i = vars.begin(); i != vars.end(); i++) {
                std::cout << i->first << " = " << i->second << '\n';
            }

            std::cout << a << '\n';
            std::cout << b << '\n';
            std::cout << "In vector lane " << j << ":\n";
            std::cout << a_j << " -> " << a_j_v << '\n';
            std::cout << b_j << " -> " << b_j_v << '\n';
            return false;
        }
    }
    return true;
}

bool test_expression(Expr test, int samples) {
    Expr simplified = simplify(test);

    map<string, Expr> vars;
    for (int i = 0; i < fuzz_var_count; i++) {
        vars[fuzz_var(i)] = Expr();
    }

    for (int i = 0; i < samples; i++) {
        for (std::map<string, Expr>::iterator v = vars.begin(); v != vars.end(); v++) {
            v->second = random_leaf(test.type().element_of(), true);
        }

        if (!test_simplification(test, simplified, test.type(), vars)) {
            return false;
        }
    }
    return true;
}

Expr ramp(Expr b, Expr s, int w) { return Ramp::make(b, s, w); }
Expr x1(Expr x) { return Broadcast::make(x, 2); }
Expr x2(Expr x) { return Broadcast::make(x, 2); }
Expr x4(Expr x) { return Broadcast::make(x, 2); }
Expr uint1(Expr x) { return Cast::make(UInt(1), x); }
Expr uint8(Expr x) { return Cast::make(UInt(8), x); }
Expr uint16(Expr x) { return Cast::make(UInt(16), x); }
Expr uint32(Expr x) { return Cast::make(UInt(32), x); }
Expr int8(Expr x) { return Cast::make(Int(8), x); }
Expr int16(Expr x) { return Cast::make(Int(16), x); }
Expr int32(Expr x) { return Cast::make(Int(32), x); }
Expr uint1x2(Expr x) { return Cast::make(UInt(1).with_lanes(2), x); }
Expr uint8x2(Expr x) { return Cast::make(UInt(8).with_lanes(2), x); }
Expr uint16x2(Expr x) { return Cast::make(UInt(16).with_lanes(2), x); }
Expr uint32x2(Expr x) { return Cast::make(UInt(32).with_lanes(2), x); }
Expr int8x2(Expr x) { return Cast::make(Int(8).with_lanes(2), x); }
Expr int16x2(Expr x) { return Cast::make(Int(16).with_lanes(2), x); }
Expr int32x2(Expr x) { return Cast::make(Int(32).with_lanes(2), x); }

Expr a(Variable::make(Int(0), fuzz_var(0)));
Expr b(Variable::make(Int(0), fuzz_var(1)));
Expr c(Variable::make(Int(0), fuzz_var(2)));
Expr d(Variable::make(Int(0), fuzz_var(3)));
Expr e(Variable::make(Int(0), fuzz_var(4)));

int main(int argc, char **argv) {
    // Number of random expressions to test.
    const int count = 1000;
    // Depth of the randomly generated expression trees.
    const int depth = 5;
    // Number of samples to test the generated expressions for.
    const int samples = 3;

    // We want different fuzz tests every time, to increase coverage.
    // We also report the seed to enable reproducing failures.
    int fuzz_seed = argc > 1 ? atoi(argv[1]) : time(nullptr);
    rng.seed(fuzz_seed);
    std::cout << "Simplify fuzz test seed: " << fuzz_seed << std::endl;

    int max_fuzz_vector_width = 4;

    for (int i = 0; i < fuzz_type_count; i++) {
        Type T = fuzz_types[i];
        for (int w = 1; w < max_fuzz_vector_width; w *= 2) {
            Type VT = T.with_lanes(w);
            for (int n = 0; n < count; n++) {
                // Generate a random expr...
                Expr test = random_expr(VT, depth);
                if (!test_expression(test, samples)) {
                    return -1;
                }
            }
        }
    }
    std::cout << "Success!" << std::endl;
    return 0;
}

/* [<][>][^][v][top][bottom][index][help] */