/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- IsPNM
- ConstrainPixel
- PNMInteger
- ReadPNMImage
- RegisterPNMImage
- UnregisterPNMImage
- WritePNMImage
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% PPPP N N M M %
% P P NN N MM MM %
% PPPP N N N M M M %
% P N NN M M %
% P N N M M %
% %
% %
% Read/Write PBMPlus Portable Anymap Image Format %
% %
% Software Design %
% John Cristy %
% July 1992 %
% %
% %
% Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/cache.h"
#include "magick/color.h"
#include "magick/color-private.h"
#include "magick/colorspace.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/module.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/pixel-private.h"
#include "magick/property.h"
#include "magick/quantum-private.h"
#include "magick/static.h"
#include "magick/statistic.h"
#include "magick/string_.h"
#include "magick/string-private.h"
/*
Forward declarations.
*/
static MagickBooleanType
WritePNMImage(const ImageInfo *,Image *);
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I s P N M %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsPNM() returns MagickTrue if the image format type, identified by the
% magick string, is PNM.
%
% The format of the IsPNM method is:
%
% MagickBooleanType IsPNM(const unsigned char *magick,const size_t extent)
%
% A description of each parameter follows:
%
% o magick: compare image format pattern against these bytes.
%
% o extent: Specifies the extent of the magick string.
%
*/
static MagickBooleanType IsPNM(const unsigned char *magick,const size_t extent)
{
if (extent < 2)
return(MagickFalse);
if ((*magick == (unsigned char) 'P') &&
((magick[1] == '1') || (magick[1] == '2') || (magick[1] == '3') ||
(magick[1] == '4') || (magick[1] == '5') || (magick[1] == '6') ||
(magick[1] == '7') || (magick[1] == 'F') || (magick[1] == 'f')))
return(MagickTrue);
return(MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e a d P N M I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ReadPNMImage() reads a Portable Anymap image file and returns it.
% It allocates the memory necessary for the new Image structure and returns
% a pointer to the new image.
%
% The format of the ReadPNMImage method is:
%
% Image *ReadPNMImage(const ImageInfo *image_info,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image_info: the image info.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline ssize_t ConstrainPixel(Image *image,const ssize_t offset,
const size_t extent)
{
if ((offset < 0) || (offset > (ssize_t) extent))
{
(void) ThrowMagickException(&image->exception,GetMagickModule(),
CorruptImageError,"InvalidPixel","`%s'",image->filename);
return(0);
}
return(offset);
}
static size_t PNMInteger(Image *image,const unsigned int base)
{
char
*comment;
int
c;
register char
*p;
size_t
extent;
size_t
value;
/*
Skip any leading whitespace.
*/
extent=MaxTextExtent;
comment=(char *) NULL;
p=comment;
do
{
c=ReadBlobByte(image);
if (c == EOF)
return(0);
if (c == (int) '#')
{
/*
Read comment.
*/
if (comment == (char *) NULL)
comment=AcquireString((char *) NULL);
p=comment+strlen(comment);
for ( ; (c != EOF) && (c != (int) '\n'); p++)
{
if ((size_t) (p-comment+1) >= extent)
{
extent<<=1;
comment=(char *) ResizeQuantumMemory(comment,extent+MaxTextExtent,
sizeof(*comment));
if (comment == (char *) NULL)
break;
p=comment+strlen(comment);
}
c=ReadBlobByte(image);
*p=(char) c;
*(p+1)='\0';
}
if (comment == (char *) NULL)
return(0);
continue;
}
} while (isdigit(c) == MagickFalse);
if (comment != (char *) NULL)
{
(void) SetImageProperty(image,"comment",comment);
comment=DestroyString(comment);
}
if (base == 2)
return((size_t) (c-(int) '0'));
/*
Evaluate number.
*/
value=0;
do
{
value*=10;
value+=c-(int) '0';
c=ReadBlobByte(image);
if (c == EOF)
return(value);
} while (isdigit(c) != MagickFalse);
return(value);
}
static Image *ReadPNMImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
char
format;
double
quantum_scale;
Image
*image;
ssize_t
row,
y;
MagickBooleanType
status;
Quantum
*scale;
QuantumInfo
*quantum_info;
QuantumType
quantum_type;
register ssize_t
i;
size_t
extent,
packet_size;
ssize_t
count;
size_t
depth,
max_value;
/*
Open image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
image=AcquireImage(image_info);
status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
if (status == MagickFalse)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
/*
Read PNM image.
*/
count=ReadBlob(image,1,(unsigned char *) &format);
do
{
/*
Initialize image structure.
*/
if ((count != 1) || (format != 'P'))
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
max_value=1;
quantum_type=RGBQuantum;
quantum_scale=1.0;
format=(char) ReadBlobByte(image);
if (format != '7')
{
/*
PBM, PGM, PPM, and PNM.
*/
image->columns=PNMInteger(image,10);
image->rows=PNMInteger(image,10);
if ((format == 'f') || (format == 'F'))
{
char
scale[MaxTextExtent];
(void) ReadBlobString(image,scale);
quantum_scale=StringToDouble(scale);
}
else
{
if ((format == '1') || (format == '4'))
max_value=1; /* bitmap */
else
max_value=PNMInteger(image,10);
}
}
else
{
char
keyword[MaxTextExtent],
value[MaxTextExtent];
int
c;
register char
*p;
/*
PAM.
*/
for (c=ReadBlobByte(image); c != EOF; c=ReadBlobByte(image))
{
while (isspace((int) ((unsigned char) c)) != 0)
c=ReadBlobByte(image);
p=keyword;
do
{
if ((size_t) (p-keyword) < (MaxTextExtent-1))
*p++=c;
c=ReadBlobByte(image);
} while (isalnum(c));
*p='\0';
if (LocaleCompare(keyword,"endhdr") == 0)
break;
while (isspace((int) ((unsigned char) c)) != 0)
c=ReadBlobByte(image);
p=value;
while (isalnum(c) || (c == '_'))
{
if ((size_t) (p-value) < (MaxTextExtent-1))
*p++=c;
c=ReadBlobByte(image);
}
*p='\0';
/*
Assign a value to the specified keyword.
*/
if (LocaleCompare(keyword,"depth") == 0)
packet_size=StringToUnsignedLong(value);
(void) packet_size;
if (LocaleCompare(keyword,"height") == 0)
image->rows=StringToUnsignedLong(value);
if (LocaleCompare(keyword,"maxval") == 0)
max_value=StringToUnsignedLong(value);
if (LocaleCompare(keyword,"TUPLTYPE") == 0)
{
if (LocaleCompare(value,"BLACKANDWHITE") == 0)
quantum_type=GrayQuantum;
if (LocaleCompare(value,"BLACKANDWHITE_ALPHA") == 0)
{
quantum_type=GrayAlphaQuantum;
image->matte=MagickTrue;
}
if (LocaleCompare(value,"GRAYSCALE") == 0)
quantum_type=GrayQuantum;
if (LocaleCompare(value,"GRAYSCALE_ALPHA") == 0)
{
quantum_type=GrayAlphaQuantum;
image->matte=MagickTrue;
}
if (LocaleCompare(value,"RGB_ALPHA") == 0)
{
quantum_type=RGBAQuantum;
image->matte=MagickTrue;
}
if (LocaleCompare(value,"CMYK") == 0)
{
quantum_type=CMYKQuantum;
image->colorspace=CMYKColorspace;
}
if (LocaleCompare(value,"CMYK_ALPHA") == 0)
{
quantum_type=CMYKAQuantum;
image->colorspace=CMYKColorspace;
image->matte=MagickTrue;
}
}
if (LocaleCompare(keyword,"width") == 0)
image->columns=StringToUnsignedLong(value);
}
}
if ((image->columns == 0) || (image->rows == 0))
ThrowReaderException(CorruptImageError,"NegativeOrZeroImageSize");
if (max_value >= 65536)
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
for (depth=1; GetQuantumRange(depth) < max_value; depth++) ;
image->depth=depth;
if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
if (image->scene >= (image_info->scene+image_info->number_scenes-1))
break;
/*
Convert PNM pixels to runextent-encoded MIFF packets.
*/
status=MagickTrue;
row=0;
switch (format)
{
case '1':
{
/*
Convert PBM image to pixel packets.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
register ssize_t
x;
register PixelPacket
*restrict q;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
q->red=(Quantum) (PNMInteger(image,2) == 0 ? QuantumRange : 0);
q->green=q->red;
q->blue=q->red;
q++;
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
image->type=BilevelType;
break;
}
case '2':
{
size_t
intensity;
/*
Convert PGM image to pixel packets.
*/
scale=(Quantum *) NULL;
if (max_value != (1U*QuantumRange))
{
/*
Compute pixel scaling table.
*/
scale=(Quantum *) AcquireQuantumMemory((size_t) max_value+1UL,
sizeof(*scale));
if (scale == (Quantum *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
for (i=0; i <= (ssize_t) max_value; i++)
scale[i]=(Quantum) (((double) QuantumRange*i)/max_value+0.5);
}
for (y=0; y < (ssize_t) image->rows; y++)
{
register ssize_t
x;
register PixelPacket
*restrict q;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
intensity=PNMInteger(image,10);
q->red=(Quantum) intensity;
if (scale != (Quantum *) NULL)
q->red=scale[ConstrainPixel(image,(ssize_t) intensity,max_value)];
q->green=q->red;
q->blue=q->red;
q++;
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
image->type=GrayscaleType;
if (scale != (Quantum *) NULL)
scale=(Quantum *) RelinquishMagickMemory(scale);
break;
}
case '3':
{
MagickPixelPacket
pixel;
/*
Convert PNM image to pixel packets.
*/
scale=(Quantum *) NULL;
if (max_value != (1U*QuantumRange))
{
/*
Compute pixel scaling table.
*/
scale=(Quantum *) AcquireQuantumMemory((size_t) max_value+1UL,
sizeof(*scale));
if (scale == (Quantum *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
for (i=0; i <= (ssize_t) max_value; i++)
scale[i]=(Quantum) (((double) QuantumRange*i)/max_value+0.5);
}
for (y=0; y < (ssize_t) image->rows; y++)
{
register ssize_t
x;
register PixelPacket
*restrict q;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel.red=(MagickRealType) PNMInteger(image,10);
pixel.green=(MagickRealType) PNMInteger(image,10);
pixel.blue=(MagickRealType) PNMInteger(image,10);
if (scale != (Quantum *) NULL)
{
pixel.red=(MagickRealType) scale[ConstrainPixel(image,(ssize_t)
pixel.red,max_value)];
pixel.green=(MagickRealType) scale[ConstrainPixel(image,
(ssize_t) pixel.green,max_value)];
pixel.blue=(MagickRealType) scale[ConstrainPixel(image,(ssize_t)
pixel.blue,max_value)];
}
q->red=(Quantum) pixel.red;
q->green=(Quantum) pixel.green;
q->blue=(Quantum) pixel.blue;
q++;
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
if (scale != (Quantum *) NULL)
scale=(Quantum *) RelinquishMagickMemory(scale);
break;
}
case '4':
{
/*
Convert PBM raw image to pixel packets.
*/
quantum_type=GrayQuantum;
if (image->storage_class == PseudoClass)
quantum_type=IndexQuantum;
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
SetQuantumMinIsWhite(quantum_info,MagickTrue);
extent=GetQuantumExtent(image,quantum_info,quantum_type);
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
offset;
MagickBooleanType
sync;
register PixelPacket
*restrict q;
ssize_t
count;
size_t
length;
unsigned char
*pixels;
if (status == MagickFalse)
continue;
pixels=GetQuantumPixels(quantum_info);
{
count=ReadBlob(image,extent,pixels);
if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
(image->previous == (Image *) NULL))
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,LoadImageTag,(MagickOffsetType)
row,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
offset=row++;
}
if (count != (ssize_t) extent)
status=MagickFalse;
q=QueueAuthenticPixels(image,0,offset,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
length=ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,
quantum_type,pixels,exception);
if (length != extent)
status=MagickFalse;
sync=SyncAuthenticPixels(image,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
quantum_info=DestroyQuantumInfo(quantum_info);
if (status == MagickFalse)
ThrowReaderException(CorruptImageError,"UnableToReadImageData");
SetQuantumImageType(image,quantum_type);
break;
}
case '5':
{
QuantumAny
range;
/*
Convert PGM raw image to pixel packets.
*/
range=GetQuantumRange(image->depth);
quantum_type=GrayQuantum;
extent=(image->depth <= 8 ? 1 : 2)*image->columns;
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
offset;
MagickBooleanType
sync;
register const unsigned char
*restrict p;
register ssize_t
x;
register PixelPacket
*restrict q;
ssize_t
count;
unsigned char
*pixels;
if (status == MagickFalse)
continue;
pixels=GetQuantumPixels(quantum_info);
{
count=ReadBlob(image,extent,pixels);
if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
(image->previous == (Image *) NULL))
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,LoadImageTag,(MagickOffsetType)
row,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
offset=row++;
}
if (count != (ssize_t) extent)
status=MagickFalse;
q=QueueAuthenticPixels(image,0,offset,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
p=pixels;
if ((image->depth == 8) || (image->depth == 16))
(void) ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,
quantum_type,pixels,exception);
else
if (image->depth <= 8)
{
unsigned char
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
q++;
}
}
else
{
unsigned short
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushShortPixel(MSBEndian,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
q++;
}
}
sync=SyncAuthenticPixels(image,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
quantum_info=DestroyQuantumInfo(quantum_info);
if (status == MagickFalse)
ThrowReaderException(CorruptImageError,"UnableToReadImageData");
SetQuantumImageType(image,quantum_type);
break;
}
case '6':
{
ImageType
type;
QuantumAny
range;
/*
Convert PNM raster image to pixel packets.
*/
type=BilevelType;
quantum_type=RGBQuantum;
extent=3*(image->depth <= 8 ? 1 : 2)*image->columns;
range=GetQuantumRange(image->depth);
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
offset;
MagickBooleanType
sync;
register const unsigned char
*restrict p;
register ssize_t
x;
register PixelPacket
*restrict q;
ssize_t
count;
unsigned char
*pixels;
if (status == MagickFalse)
continue;
pixels=GetQuantumPixels(quantum_info);
{
count=ReadBlob(image,extent,pixels);
if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
(image->previous == (Image *) NULL))
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,LoadImageTag,(MagickOffsetType)
row,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
offset=row++;
}
if (count != (ssize_t) extent)
status=MagickFalse;
q=QueueAuthenticPixels(image,0,offset,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
p=pixels;
if (image->depth == 8)
for (x=0; x < (ssize_t) image->columns; x++)
{
q->red=ScaleCharToQuantum(*p++);
q->green=ScaleCharToQuantum(*p++);
q->blue=ScaleCharToQuantum(*p++);
q->opacity=OpaqueOpacity;
q++;
}
else
if (image->depth == 16)
{
unsigned short
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushShortPixel(MSBEndian,p,&pixel);
q->red=ScaleShortToQuantum(pixel);
p=PushShortPixel(MSBEndian,p,&pixel);
q->green=ScaleShortToQuantum(pixel);
p=PushShortPixel(MSBEndian,p,&pixel);
q->blue=ScaleShortToQuantum(pixel);
q->opacity=OpaqueOpacity;
q++;
}
}
else
if (image->depth <= 8)
{
unsigned char
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushCharPixel(p,&pixel);
q->red=ScaleAnyToQuantum(pixel,range);
p=PushCharPixel(p,&pixel);
q->green=ScaleAnyToQuantum(pixel,range);
p=PushCharPixel(p,&pixel);
q->blue=ScaleAnyToQuantum(pixel,range);
q->opacity=OpaqueOpacity;
q++;
}
}
else
{
unsigned short
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushShortPixel(MSBEndian,p,&pixel);
q->red=ScaleAnyToQuantum(pixel,range);
p=PushShortPixel(MSBEndian,p,&pixel);
q->green=ScaleAnyToQuantum(pixel,range);
p=PushShortPixel(MSBEndian,p,&pixel);
q->blue=ScaleAnyToQuantum(pixel,range);
q->opacity=OpaqueOpacity;
q++;
}
}
if ((type == BilevelType) || (type == GrayscaleType))
{
q=QueueAuthenticPixels(image,0,offset,image->columns,1,exception);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((type == BilevelType) &&
(IsMonochromePixel(q) == MagickFalse))
type=IsGrayPixel(q) == MagickFalse ? UndefinedType :
GrayscaleType;
if ((type == GrayscaleType) && (IsGrayPixel(q) == MagickFalse))
type=UndefinedType;
if ((type != BilevelType) && (type != GrayscaleType))
break;
q++;
}
}
sync=SyncAuthenticPixels(image,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
quantum_info=DestroyQuantumInfo(quantum_info);
if (status == MagickFalse)
ThrowReaderException(CorruptImageError,"UnableToReadImageData");
if (type != UndefinedType)
image->type=type;
break;
}
case '7':
{
register IndexPacket
*indexes;
QuantumAny
range;
size_t
channels;
/*
Convert PAM raster image to pixel packets.
*/
range=GetQuantumRange(image->depth);
switch (quantum_type)
{
case GrayQuantum:
case GrayAlphaQuantum:
{
channels=1;
break;
}
case CMYKQuantum:
case CMYKAQuantum:
{
channels=4;
break;
}
default:
{
channels=3;
break;
}
}
if (image->matte != MagickFalse)
channels++;
extent=channels*(image->depth <= 8 ? 1 : 2)*image->columns;
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
offset;
MagickBooleanType
sync;
register const unsigned char
*restrict p;
register ssize_t
x;
register PixelPacket
*restrict q;
ssize_t
count;
unsigned char
*pixels;
if (status == MagickFalse)
continue;
pixels=GetQuantumPixels(quantum_info);
{
count=ReadBlob(image,extent,pixels);
if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
(image->previous == (Image *) NULL))
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,LoadImageTag,(MagickOffsetType)
row,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
offset=row++;
}
if (count != (ssize_t) extent)
status=MagickFalse;
q=QueueAuthenticPixels(image,0,offset,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetAuthenticIndexQueue(image);
p=pixels;
if ((image->depth == 8) || (image->depth == 16))
(void) ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,
quantum_type,pixels,exception);
else
switch (quantum_type)
{
case GrayQuantum:
case GrayAlphaQuantum:
{
if (image->depth <= 8)
{
unsigned char
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
SetOpacityPixelComponent(q,OpaqueOpacity);
if (image->matte != MagickFalse)
{
p=PushCharPixel(p,&pixel);
SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,
range));
}
q++;
}
}
else
{
unsigned short
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushShortPixel(MSBEndian,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
SetOpacityPixelComponent(q,OpaqueOpacity);
if (image->matte != MagickFalse)
{
p=PushShortPixel(MSBEndian,p,&pixel);
SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,
range));
}
q++;
}
}
break;
}
case CMYKQuantum:
case CMYKAQuantum:
{
if (image->depth <= 8)
{
unsigned char
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushCharPixel(p,&pixel);
indexes[x]=ScaleAnyToQuantum(pixel,range);
SetOpacityPixelComponent(q,OpaqueOpacity);
if (image->matte != MagickFalse)
{
p=PushCharPixel(p,&pixel);
SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,
range));
}
q++;
}
}
else
{
unsigned short
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushShortPixel(MSBEndian,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushShortPixel(MSBEndian,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushShortPixel(MSBEndian,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushShortPixel(MSBEndian,p,&pixel);
indexes[x]=ScaleAnyToQuantum(pixel,range);
SetOpacityPixelComponent(q,OpaqueOpacity);
if (image->matte != MagickFalse)
{
p=PushShortPixel(MSBEndian,p,&pixel);
SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,
range));
}
q++;
}
}
break;
}
default:
{
if (image->depth <= 8)
{
unsigned char
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
SetOpacityPixelComponent(q,OpaqueOpacity);
if (image->matte != MagickFalse)
{
p=PushCharPixel(p,&pixel);
SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,
range));
}
q++;
}
}
else
{
unsigned short
pixel;
for (x=0; x < (ssize_t) image->columns; x++)
{
p=PushShortPixel(MSBEndian,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushShortPixel(MSBEndian,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushShortPixel(MSBEndian,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
SetOpacityPixelComponent(q,OpaqueOpacity);
if (image->matte != MagickFalse)
{
p=PushShortPixel(MSBEndian,p,&pixel);
SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,
range));
}
q++;
}
}
break;
}
}
sync=SyncAuthenticPixels(image,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
quantum_info=DestroyQuantumInfo(quantum_info);
if (status == MagickFalse)
ThrowReaderException(CorruptImageError,"UnableToReadImageData");
SetQuantumImageType(image,quantum_type);
break;
}
case 'F':
case 'f':
{
/*
Convert PFM raster image to pixel packets.
*/
quantum_type=format == 'f' ? GrayQuantum : RGBQuantum;
image->endian=quantum_scale < 0.0 ? LSBEndian : MSBEndian;
image->depth=32;
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
status=SetQuantumDepth(image,quantum_info,32);
if (status == MagickFalse)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
status=SetQuantumFormat(image,quantum_info,FloatingPointQuantumFormat);
if (status == MagickFalse)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
SetQuantumScale(quantum_info,(MagickRealType) QuantumRange*
fabs(quantum_scale));
extent=GetQuantumExtent(image,quantum_info,quantum_type);
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
offset;
MagickBooleanType
sync;
register PixelPacket
*restrict q;
ssize_t
count;
size_t
length;
unsigned char
*pixels;
if (status == MagickFalse)
continue;
pixels=GetQuantumPixels(quantum_info);
{
count=ReadBlob(image,extent,pixels);
if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
(image->previous == (Image *) NULL))
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,LoadImageTag,(MagickOffsetType)
row,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
offset=row++;
}
if ((size_t) count != extent)
status=MagickFalse;
q=QueueAuthenticPixels(image,0,(ssize_t) (image->rows-offset-1),
image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
length=ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,
quantum_type,pixels,exception);
if (length != extent)
status=MagickFalse;
sync=SyncAuthenticPixels(image,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
quantum_info=DestroyQuantumInfo(quantum_info);
if (status == MagickFalse)
ThrowReaderException(CorruptImageError,"UnableToReadImageData");
SetQuantumImageType(image,quantum_type);
break;
}
default:
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
}
if (EOFBlob(image) != MagickFalse)
(void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError,
"UnexpectedEndOfFile","`%s'",image->filename);
/*
Proceed to next image.
*/
if (image_info->number_scenes != 0)
if (image->scene >= (image_info->scene+image_info->number_scenes-1))
break;
if ((format == '1') || (format == '2') || (format == '3'))
do
{
/*
Skip to end of line.
*/
count=ReadBlob(image,1,(unsigned char *) &format);
if (count == 0)
break;
if ((count != 0) && (format == 'P'))
break;
} while (format != '\n');
count=ReadBlob(image,1,(unsigned char *) &format);
if ((count == 1) && (format == 'P'))
{
/*
Allocate next image structure.
*/
AcquireNextImage(image_info,image);
if (GetNextImageInList(image) == (Image *) NULL)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
image=SyncNextImageInList(image);
status=SetImageProgress(image,LoadImagesTag,TellBlob(image),
GetBlobSize(image));
if (status == MagickFalse)
break;
}
} while ((count == 1) && (format == 'P'));
(void) CloseBlob(image);
return(GetFirstImageInList(image));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e g i s t e r P N M I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% RegisterPNMImage() adds properties for the PNM image format to
% the list of supported formats. The properties include the image format
% tag, a method to read and/or write the format, whether the format
% supports the saving of more than one frame to the same file or blob,
% whether the format supports native in-memory I/O, and a brief
% description of the format.
%
% The format of the RegisterPNMImage method is:
%
% size_t RegisterPNMImage(void)
%
*/
ModuleExport size_t RegisterPNMImage(void)
{
MagickInfo
*entry;
entry=SetMagickInfo("PAM");
entry->decoder=(DecodeImageHandler *) ReadPNMImage;
entry->encoder=(EncodeImageHandler *) WritePNMImage;
entry->description=ConstantString("Common 2-dimensional bitmap format");
entry->module=ConstantString("PNM");
(void) RegisterMagickInfo(entry);
entry=SetMagickInfo("PBM");
entry->decoder=(DecodeImageHandler *) ReadPNMImage;
entry->encoder=(EncodeImageHandler *) WritePNMImage;
entry->description=ConstantString("Portable bitmap format (black and white)");
entry->module=ConstantString("PNM");
(void) RegisterMagickInfo(entry);
entry=SetMagickInfo("PFM");
entry->decoder=(DecodeImageHandler *) ReadPNMImage;
entry->encoder=(EncodeImageHandler *) WritePNMImage;
entry->endian_support=MagickTrue;
entry->description=ConstantString("Portable float format");
entry->module=ConstantString("PFM");
(void) RegisterMagickInfo(entry);
entry=SetMagickInfo("PGM");
entry->decoder=(DecodeImageHandler *) ReadPNMImage;
entry->encoder=(EncodeImageHandler *) WritePNMImage;
entry->description=ConstantString("Portable graymap format (gray scale)");
entry->module=ConstantString("PNM");
(void) RegisterMagickInfo(entry);
entry=SetMagickInfo("PNM");
entry->decoder=(DecodeImageHandler *) ReadPNMImage;
entry->encoder=(EncodeImageHandler *) WritePNMImage;
entry->magick=(IsImageFormatHandler *) IsPNM;
entry->description=ConstantString("Portable anymap");
entry->module=ConstantString("PNM");
(void) RegisterMagickInfo(entry);
entry=SetMagickInfo("PPM");
entry->decoder=(DecodeImageHandler *) ReadPNMImage;
entry->encoder=(EncodeImageHandler *) WritePNMImage;
entry->description=ConstantString("Portable pixmap format (color)");
entry->module=ConstantString("PNM");
(void) RegisterMagickInfo(entry);
return(MagickImageCoderSignature);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% U n r e g i s t e r P N M I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% UnregisterPNMImage() removes format registrations made by the
% PNM module from the list of supported formats.
%
% The format of the UnregisterPNMImage method is:
%
% UnregisterPNMImage(void)
%
*/
ModuleExport void UnregisterPNMImage(void)
{
(void) UnregisterMagickInfo("PAM");
(void) UnregisterMagickInfo("PBM");
(void) UnregisterMagickInfo("PGM");
(void) UnregisterMagickInfo("PNM");
(void) UnregisterMagickInfo("PPM");
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W r i t e P N M I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% WritePNMImage() writes an image to a file in the PNM rasterfile format.
%
% The format of the WritePNMImage method is:
%
% MagickBooleanType WritePNMImage(const ImageInfo *image_info,Image *image)
%
% A description of each parameter follows.
%
% o image_info: the image info.
%
% o image: The image.
%
*/
static MagickBooleanType WritePNMImage(const ImageInfo *image_info,Image *image)
{
char
buffer[MaxTextExtent],
format,
magick[MaxTextExtent];
const char
*value;
IndexPacket
index;
ssize_t
y;
MagickBooleanType
status;
MagickOffsetType
scene;
QuantumAny
pixel;
QuantumInfo
*quantum_info;
QuantumType
quantum_type;
register unsigned char
*pixels,
*q;
size_t
extent,
packet_size;
ssize_t
count;
/*
Open output image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception);
if (status == MagickFalse)
return(status);
scene=0;
do
{
/*
Write PNM file header.
*/
packet_size=3;
quantum_type=RGBQuantum;
(void) CopyMagickString(magick,image_info->magick,MaxTextExtent);
switch (magick[1])
{
case 'A':
case 'a':
{
format='7';
break;
}
case 'B':
case 'b':
{
format='4';
if (image_info->compression == NoCompression)
format='1';
break;
}
case 'F':
case 'f':
{
format='F';
if (IsGrayImage(image,&image->exception) != MagickFalse)
format='f';
break;
}
case 'G':
case 'g':
{
format='5';
if (image_info->compression == NoCompression)
format='2';
break;
}
case 'N':
case 'n':
{
if ((image_info->type != TrueColorType) &&
(IsGrayImage(image,&image->exception) != MagickFalse))
{
format='5';
if (image_info->compression == NoCompression)
format='2';
if (IsMonochromeImage(image,&image->exception) != MagickFalse)
{
format='4';
if (image_info->compression == NoCompression)
format='1';
}
break;
}
}
default:
{
format='6';
if (image_info->compression == NoCompression)
format='3';
break;
}
}
(void) FormatMagickString(buffer,MaxTextExtent,"P%c\n",format);
(void) WriteBlobString(image,buffer);
value=GetImageProperty(image,"comment");
if (value != (const char *) NULL)
{
register const char
*p;
/*
Write comments to file.
*/
(void) WriteBlobByte(image,'#');
for (p=value; *p != '\0'; p++)
{
(void) WriteBlobByte(image,(unsigned char) *p);
if ((*p == '\r') && (*(p+1) != '\0'))
(void) WriteBlobByte(image,'#');
if ((*p == '\n') && (*(p+1) != '\0'))
(void) WriteBlobByte(image,'#');
}
(void) WriteBlobByte(image,'\n');
}
if (format != '7')
{
if (image->colorspace != RGBColorspace)
(void) TransformImageColorspace(image,RGBColorspace);
(void) FormatMagickString(buffer,MaxTextExtent,"%.20g %.20g\n",
(double) image->columns,(double) image->rows);
(void) WriteBlobString(image,buffer);
}
else
{
char
type[MaxTextExtent];
/*
PAM header.
*/
(void) FormatMagickString(buffer,MaxTextExtent,
"WIDTH %.20g\nHEIGHT %.20g\n",(double) image->columns,(double)
image->rows);
(void) WriteBlobString(image,buffer);
quantum_type=GetQuantumType(image,&image->exception);
switch (quantum_type)
{
case CMYKQuantum:
case CMYKAQuantum:
{
packet_size=4;
(void) CopyMagickString(type,"CMYK",MaxTextExtent);
break;
}
case GrayQuantum:
case GrayAlphaQuantum:
{
packet_size=1;
(void) CopyMagickString(type,"GRAYSCALE",MaxTextExtent);
break;
}
default:
{
quantum_type=RGBQuantum;
if (image->matte != MagickFalse)
quantum_type=RGBAQuantum;
packet_size=3;
(void) CopyMagickString(type,"RGB",MaxTextExtent);
break;
}
}
if (image->matte != MagickFalse)
{
packet_size++;
(void) ConcatenateMagickString(type,"_ALPHA",MaxTextExtent);
}
if (image->depth > 16)
image->depth=16;
(void) FormatMagickString(buffer,MaxTextExtent,
"DEPTH %.20g\nMAXVAL %.20g\n",(double) packet_size,(double)
GetQuantumRange(image->depth));
(void) WriteBlobString(image,buffer);
(void) FormatMagickString(buffer,MaxTextExtent,"TUPLTYPE %s\nENDHDR\n",
type);
(void) WriteBlobString(image,buffer);
}
/*
Convert runextent encoded to PNM raster pixels.
*/
switch (format)
{
case '1':
{
unsigned char
pixels[2048];
/*
Convert image to a PBM image.
*/
q=pixels;
for (y=0; y < (ssize_t) image->rows; y++)
{
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=PixelIntensityToQuantum(p);
*q++=(unsigned char) (pixel >= (Quantum) (QuantumRange/2) ?
'0' : '1');
*q++=' ';
if ((q-pixels+2) >= 80)
{
*q++='\n';
(void) WriteBlob(image,q-pixels,pixels);
q=pixels;
}
p++;
}
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
if (q != pixels)
{
*q++='\n';
(void) WriteBlob(image,q-pixels,pixels);
}
break;
}
case '2':
{
unsigned char
pixels[2048];
/*
Convert image to a PGM image.
*/
if (image->depth <= 8)
(void) WriteBlobString(image,"255\n");
else
(void) WriteBlobString(image,"65535\n");
q=pixels;
for (y=0; y < (ssize_t) image->rows; y++)
{
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
index=PixelIntensityToQuantum(p);
if (image->depth <= 8)
count=(ssize_t) FormatMagickString(buffer,MaxTextExtent,"%u ",
ScaleQuantumToChar(index));
else
count=(ssize_t) FormatMagickString(buffer,MaxTextExtent,"%u ",
ScaleQuantumToShort(index));
extent=(size_t) count;
(void) strncpy((char *) q,buffer,extent);
q+=extent;
if ((q-pixels+extent) >= 80)
{
*q++='\n';
(void) WriteBlob(image,q-pixels,pixels);
q=pixels;
}
p++;
}
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
if (q != pixels)
{
*q++='\n';
(void) WriteBlob(image,q-pixels,pixels);
}
break;
}
case '3':
{
unsigned char
pixels[2048];
/*
Convert image to a PNM image.
*/
if (image->depth <= 8)
(void) WriteBlobString(image,"255\n");
else
(void) WriteBlobString(image,"65535\n");
q=pixels;
for (y=0; y < (ssize_t) image->rows; y++)
{
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (image->depth <= 8)
count=(ssize_t) FormatMagickString(buffer,MaxTextExtent,
"%u %u %u ",ScaleQuantumToChar(GetRedPixelComponent(p)),
ScaleQuantumToChar(GetGreenPixelComponent(p)),
ScaleQuantumToChar(GetBluePixelComponent(p)));
else
count=(ssize_t) FormatMagickString(buffer,MaxTextExtent,
"%u %u %u ",ScaleQuantumToShort(GetRedPixelComponent(p)),
ScaleQuantumToShort(GetGreenPixelComponent(p)),
ScaleQuantumToShort(GetBluePixelComponent(p)));
extent=(size_t) count;
(void) strncpy((char *) q,buffer,extent);
q+=extent;
if ((q-pixels+extent) >= 80)
{
*q++='\n';
(void) WriteBlob(image,q-pixels,pixels);
q=pixels;
}
p++;
}
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
if (q != pixels)
{
*q++='\n';
(void) WriteBlob(image,q-pixels,pixels);
}
break;
}
case '4':
{
/*
Convert image to a PBM image.
*/
image->depth=1;
quantum_info=AcquireQuantumInfo((const ImageInfo *) NULL,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
quantum_info->min_is_white=MagickTrue;
pixels=GetQuantumPixels(quantum_info);
for (y=0; y < (ssize_t) image->rows; y++)
{
register const PixelPacket
*restrict p;
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
extent=ExportQuantumPixels(image,(const CacheView *) NULL,
quantum_info,GrayQuantum,pixels,&image->exception);
count=WriteBlob(image,extent,pixels);
if (count != (ssize_t) extent)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
quantum_info=DestroyQuantumInfo(quantum_info);
break;
}
case '5':
{
QuantumAny
range;
/*
Convert image to a PGM image.
*/
if (image->depth > 8)
image->depth=16;
(void) FormatMagickString(buffer,MaxTextExtent,"%.20g\n",(double)
GetQuantumRange(image->depth));
(void) WriteBlobString(image,buffer);
quantum_info=AcquireQuantumInfo((const ImageInfo *) NULL,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
quantum_info->min_is_white=MagickTrue;
pixels=GetQuantumPixels(quantum_info);
extent=GetQuantumExtent(image,quantum_info,GrayQuantum);
range=GetQuantumRange(image->depth);
for (y=0; y < (ssize_t) image->rows; y++)
{
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
q=pixels;
if ((image->depth == 8) || (image->depth == 16))
extent=ExportQuantumPixels(image,(const CacheView *) NULL,
quantum_info,GrayQuantum,pixels,&image->exception);
else
{
if (image->depth <= 8)
for (x=0; x < (ssize_t) image->columns; x++)
{
if (IsGrayPixel(p) == MagickFalse)
pixel=ScaleQuantumToAny(PixelIntensityToQuantum(p),range);
else
{
if (image->depth == 8)
pixel=ScaleQuantumToChar(GetRedPixelComponent(p));
else
pixel=ScaleQuantumToAny(p->red,range);
}
q=PopCharPixel((unsigned char) pixel,q);
p++;
}
else
for (x=0; x < (ssize_t) image->columns; x++)
{
if (IsGrayPixel(p) == MagickFalse)
pixel=ScaleQuantumToAny(PixelIntensityToQuantum(p),range);
else
{
if (image->depth == 16)
pixel=ScaleQuantumToShort(GetRedPixelComponent(p));
else
pixel=ScaleQuantumToAny(p->red,range);
}
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
p++;
}
extent=(size_t) (q-pixels);
}
count=WriteBlob(image,extent,pixels);
if (count != (ssize_t) extent)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
quantum_info=DestroyQuantumInfo(quantum_info);
break;
}
case '6':
{
QuantumAny
range;
/*
Convert image to a PNM image.
*/
if (image->depth > 8)
image->depth=16;
(void) FormatMagickString(buffer,MaxTextExtent,"%.20g\n",(double)
GetQuantumRange(image->depth));
(void) WriteBlobString(image,buffer);
quantum_info=AcquireQuantumInfo((const ImageInfo *) NULL,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
pixels=GetQuantumPixels(quantum_info);
extent=GetQuantumExtent(image,quantum_info,quantum_type);
range=GetQuantumRange(image->depth);
for (y=0; y < (ssize_t) image->rows; y++)
{
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
q=pixels;
if ((image->depth == 8) || (image->depth == 16))
extent=ExportQuantumPixels(image,(const CacheView *) NULL,
quantum_info,quantum_type,pixels,&image->exception);
else
{
if (image->depth <= 8)
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=ScaleQuantumToAny(p->red,range);
q=PopCharPixel((unsigned char) pixel,q);
pixel=ScaleQuantumToAny(p->green,range);
q=PopCharPixel((unsigned char) pixel,q);
pixel=ScaleQuantumToAny(p->blue,range);
q=PopCharPixel((unsigned char) pixel,q);
p++;
}
else
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=ScaleQuantumToAny(p->red,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
pixel=ScaleQuantumToAny(p->green,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
pixel=ScaleQuantumToAny(p->blue,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
p++;
}
extent=(size_t) (q-pixels);
}
count=WriteBlob(image,extent,pixels);
if (count != (ssize_t) extent)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
quantum_info=DestroyQuantumInfo(quantum_info);
break;
}
case '7':
{
QuantumAny
range;
/*
Convert image to a PAM.
*/
if (image->depth > 16)
image->depth=16;
quantum_info=AcquireQuantumInfo((const ImageInfo *) NULL,image);
pixels=GetQuantumPixels(quantum_info);
range=GetQuantumRange(image->depth);
for (y=0; y < (ssize_t) image->rows; y++)
{
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetVirtualIndexQueue(image);
q=pixels;
if ((image->depth == 8) || (image->depth == 16))
extent=ExportQuantumPixels(image,(const CacheView *) NULL,
quantum_info,quantum_type,pixels,&image->exception);
else
{
switch (quantum_type)
{
case GrayQuantum:
case GrayAlphaQuantum:
{
if (image->depth <= 8)
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=ScaleQuantumToAny(PixelIntensityToQuantum(p),range);
q=PopCharPixel((unsigned char) pixel,q);
if (image->matte != MagickFalse)
{
pixel=(unsigned char) ScaleQuantumToAny(p->opacity,
range);
q=PopCharPixel((unsigned char) pixel,q);
}
p++;
}
else
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=ScaleQuantumToAny(PixelIntensityToQuantum(p),range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
if (image->matte != MagickFalse)
{
pixel=(unsigned char) ScaleQuantumToAny(p->opacity,
range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
}
p++;
}
break;
}
case CMYKQuantum:
case CMYKAQuantum:
{
if (image->depth <= 8)
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=ScaleQuantumToAny(p->red,range);
q=PopCharPixel((unsigned char) pixel,q);
pixel=ScaleQuantumToAny(p->green,range);
q=PopCharPixel((unsigned char) pixel,q);
pixel=ScaleQuantumToAny(p->blue,range);
q=PopCharPixel((unsigned char) pixel,q);
pixel=ScaleQuantumToAny(indexes[x],range);
q=PopCharPixel((unsigned char) pixel,q);
if (image->matte != MagickFalse)
{
pixel=ScaleQuantumToAny((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)),range);
q=PopCharPixel((unsigned char) pixel,q);
}
p++;
}
else
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=ScaleQuantumToAny(p->red,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
pixel=ScaleQuantumToAny(p->green,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
pixel=ScaleQuantumToAny(p->blue,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
pixel=ScaleQuantumToAny(indexes[x],range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
if (image->matte != MagickFalse)
{
pixel=ScaleQuantumToAny((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)),range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
}
p++;
}
break;
}
default:
{
if (image->depth <= 8)
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=ScaleQuantumToAny(p->red,range);
q=PopCharPixel((unsigned char) pixel,q);
pixel=ScaleQuantumToAny(p->green,range);
q=PopCharPixel((unsigned char) pixel,q);
pixel=ScaleQuantumToAny(p->blue,range);
q=PopCharPixel((unsigned char) pixel,q);
if (image->matte != MagickFalse)
{
pixel=ScaleQuantumToAny((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)),range);
q=PopCharPixel((unsigned char) pixel,q);
}
p++;
}
else
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel=ScaleQuantumToAny(p->red,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
pixel=ScaleQuantumToAny(p->green,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
pixel=ScaleQuantumToAny(p->blue,range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
if (image->matte != MagickFalse)
{
pixel=ScaleQuantumToAny((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)),range);
q=PopShortPixel(MSBEndian,(unsigned short) pixel,q);
}
p++;
}
break;
}
}
extent=(size_t) (q-pixels);
}
count=WriteBlob(image,extent,pixels);
if (count != (ssize_t) extent)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
quantum_info=DestroyQuantumInfo(quantum_info);
break;
}
case 'F':
case 'f':
{
(void) WriteBlobString(image,image->endian != LSBEndian ? "1.0\n" :
"-1.0\n");
image->depth=32;
quantum_type=format == 'f' ? GrayQuantum : RGBQuantum;
quantum_info=AcquireQuantumInfo((const ImageInfo *) NULL,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
status=SetQuantumFormat(image,quantum_info,FloatingPointQuantumFormat);
if (status == MagickFalse)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
pixels=GetQuantumPixels(quantum_info);
for (y=(ssize_t) image->rows-1; y >= 0; y--)
{
register const PixelPacket
*restrict p;
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
extent=ExportQuantumPixels(image,(const CacheView *) NULL,
quantum_info,quantum_type,pixels,&image->exception);
(void) WriteBlob(image,extent,pixels);
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
quantum_info=DestroyQuantumInfo(quantum_info);
break;
}
}
if (GetNextImageInList(image) == (Image *) NULL)
break;
image=SyncNextImageInList(image);
status=SetImageProgress(image,SaveImagesTag,scene++,
GetImageListLength(image));
if (status == MagickFalse)
break;
} while (image_info->adjoin != MagickFalse);
(void) CloseBlob(image);
return(MagickTrue);
}