/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- DestroyPixelThreadSet
- AcquirePixelThreadSet
- MagickMax
- MagickMin
- ApplyEvaluateOperator
- EvaluateImage
- EvaluateImages
- EvaluateImageChannel
- ApplyFunction
- FunctionImage
- FunctionImageChannel
- GetImageExtrema
- GetImageChannelExtrema
- GetImageMean
- GetImageChannelMean
- GetImageKurtosis
- GetImageChannelKurtosis
- GetImageRange
- GetImageChannelRange
- GetImageChannelStatistics
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% SSSSS TTTTT AAA TTTTT IIIII SSSSS TTTTT IIIII CCCC %
% SS T A A T I SS T I C %
% SSS T AAAAA T I SSS T I C %
% SS T A A T I SS T I C %
% SSSSS T A A T IIIII SSSSS T IIIII CCCC %
% %
% %
% MagickCore Image Statistical Methods %
% %
% Software Design %
% John Cristy %
% July 1992 %
% %
% %
% Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/property.h"
#include "magick/animate.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/cache.h"
#include "magick/cache-private.h"
#include "magick/cache-view.h"
#include "magick/client.h"
#include "magick/color.h"
#include "magick/color-private.h"
#include "magick/colorspace.h"
#include "magick/colorspace-private.h"
#include "magick/composite.h"
#include "magick/composite-private.h"
#include "magick/compress.h"
#include "magick/constitute.h"
#include "magick/deprecate.h"
#include "magick/display.h"
#include "magick/draw.h"
#include "magick/enhance.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/gem.h"
#include "magick/geometry.h"
#include "magick/list.h"
#include "magick/image-private.h"
#include "magick/magic.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/module.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/option.h"
#include "magick/paint.h"
#include "magick/pixel-private.h"
#include "magick/profile.h"
#include "magick/quantize.h"
#include "magick/random_.h"
#include "magick/random-private.h"
#include "magick/segment.h"
#include "magick/semaphore.h"
#include "magick/signature-private.h"
#include "magick/statistic.h"
#include "magick/string_.h"
#include "magick/thread-private.h"
#include "magick/timer.h"
#include "magick/utility.h"
#include "magick/version.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E v a l u a t e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EvaluateImage() applies a value to the image with an arithmetic, relational,
% or logical operator to an image. Use these operations to lighten or darken
% an image, to increase or decrease contrast in an image, or to produce the
% "negative" of an image.
%
% The format of the EvaluateImageChannel method is:
%
% MagickBooleanType EvaluateImage(Image *image,
% const MagickEvaluateOperator op,const double value,
% ExceptionInfo *exception)
% MagickBooleanType EvaluateImages(Image *images,
% const MagickEvaluateOperator op,const double value,
% ExceptionInfo *exception)
% MagickBooleanType EvaluateImageChannel(Image *image,
% const ChannelType channel,const MagickEvaluateOperator op,
% const double value,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o op: A channel op.
%
% o value: A value value.
%
% o exception: return any errors or warnings in this structure.
%
*/
static MagickPixelPacket **DestroyPixelThreadSet(MagickPixelPacket **pixels)
{
register ssize_t
i;
assert(pixels != (MagickPixelPacket **) NULL);
for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
if (pixels[i] != (MagickPixelPacket *) NULL)
pixels[i]=(MagickPixelPacket *) RelinquishMagickMemory(pixels[i]);
pixels=(MagickPixelPacket **) RelinquishMagickMemory(pixels);
return(pixels);
}
static MagickPixelPacket **AcquirePixelThreadSet(const Image *image,
const size_t number_images)
{
register ssize_t
i,
j;
MagickPixelPacket
**pixels;
size_t
length,
number_threads;
number_threads=GetOpenMPMaximumThreads();
pixels=(MagickPixelPacket **) AcquireQuantumMemory(number_threads,
sizeof(*pixels));
if (pixels == (MagickPixelPacket **) NULL)
return((MagickPixelPacket **) NULL);
(void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels));
for (i=0; i < (ssize_t) number_threads; i++)
{
length=image->columns;
if (length < number_images)
length=number_images;
pixels[i]=(MagickPixelPacket *) AcquireQuantumMemory(length,
sizeof(**pixels));
if (pixels[i] == (MagickPixelPacket *) NULL)
return(DestroyPixelThreadSet(pixels));
for (j=0; j < (ssize_t) length; j++)
GetMagickPixelPacket(image,&pixels[i][j]);
}
return(pixels);
}
static inline double MagickMax(const double x,const double y)
{
if (x > y)
return(x);
return(y);
}
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
static int IntensityCompare(const void *x,const void *y)
{
const MagickPixelPacket
*color_1,
*color_2;
int
intensity;
color_1=(const MagickPixelPacket *) x;
color_2=(const MagickPixelPacket *) y;
intensity=(int) MagickPixelIntensity(color_2)-
(int) MagickPixelIntensity(color_1);
return(intensity);
}
#if defined(__cplusplus) || defined(c_plusplus)
}
#endif
static inline double MagickMin(const double x,const double y)
{
if (x < y)
return(x);
return(y);
}
static MagickRealType ApplyEvaluateOperator(RandomInfo *random_info,
Quantum pixel,const MagickEvaluateOperator op,const MagickRealType value)
{
MagickRealType
result;
result=0.0;
switch (op)
{
case UndefinedEvaluateOperator:
break;
case AbsEvaluateOperator:
{
result=(MagickRealType) fabs((double) (pixel+value));
break;
}
case AddEvaluateOperator:
{
result=(MagickRealType) (pixel+value);
break;
}
case AddModulusEvaluateOperator:
{
/*
This returns a 'floored modulus' of the addition which is a
positive result. It differs from % or fmod() which returns a
'truncated modulus' result, where floor() is replaced by trunc()
and could return a negative result (which is clipped).
*/
result=pixel+value;
result-=(QuantumRange+1.0)*floor((double) result/(QuantumRange+1.0));
break;
}
case AndEvaluateOperator:
{
result=(MagickRealType) ((size_t) pixel & (size_t) (value+0.5));
break;
}
case CosineEvaluateOperator:
{
result=(MagickRealType) (QuantumRange*(0.5*cos((double) (2.0*MagickPI*
QuantumScale*pixel*value))+0.5));
break;
}
case DivideEvaluateOperator:
{
result=pixel/(value == 0.0 ? 1.0 : value);
break;
}
case ExponentialEvaluateOperator:
{
result=(MagickRealType) (QuantumRange*exp((double) (value*QuantumScale*
pixel)));
break;
}
case GaussianNoiseEvaluateOperator:
{
result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
GaussianNoise,value);
break;
}
case ImpulseNoiseEvaluateOperator:
{
result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
ImpulseNoise,value);
break;
}
case LaplacianNoiseEvaluateOperator:
{
result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
LaplacianNoise,value);
break;
}
case LeftShiftEvaluateOperator:
{
result=(MagickRealType) ((size_t) pixel << (size_t) (value+0.5));
break;
}
case LogEvaluateOperator:
{
result=(MagickRealType) (QuantumRange*log((double) (QuantumScale*value*
pixel+1.0))/log((double) (value+1.0)));
break;
}
case MaxEvaluateOperator:
{
result=(MagickRealType) MagickMax((double) pixel,value);
break;
}
case MeanEvaluateOperator:
{
result=(MagickRealType) (pixel+value);
break;
}
case MedianEvaluateOperator:
{
result=(MagickRealType) (pixel+value);
break;
}
case MinEvaluateOperator:
{
result=(MagickRealType) MagickMin((double) pixel,value);
break;
}
case MultiplicativeNoiseEvaluateOperator:
{
result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
MultiplicativeGaussianNoise,value);
break;
}
case MultiplyEvaluateOperator:
{
result=(MagickRealType) (value*pixel);
break;
}
case OrEvaluateOperator:
{
result=(MagickRealType) ((size_t) pixel | (size_t) (value+0.5));
break;
}
case PoissonNoiseEvaluateOperator:
{
result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
PoissonNoise,value);
break;
}
case PowEvaluateOperator:
{
result=(MagickRealType) (QuantumRange*pow((double) (QuantumScale*pixel),
(double) value));
break;
}
case RightShiftEvaluateOperator:
{
result=(MagickRealType) ((size_t) pixel >> (size_t) (value+0.5));
break;
}
case SetEvaluateOperator:
{
result=value;
break;
}
case SineEvaluateOperator:
{
result=(MagickRealType) (QuantumRange*(0.5*sin((double) (2.0*MagickPI*
QuantumScale*pixel*value))+0.5));
break;
}
case SubtractEvaluateOperator:
{
result=(MagickRealType) (pixel-value);
break;
}
case ThresholdEvaluateOperator:
{
result=(MagickRealType) (((MagickRealType) pixel <= value) ? 0 :
QuantumRange);
break;
}
case ThresholdBlackEvaluateOperator:
{
result=(MagickRealType) (((MagickRealType) pixel <= value) ? 0 : pixel);
break;
}
case ThresholdWhiteEvaluateOperator:
{
result=(MagickRealType) (((MagickRealType) pixel > value) ? QuantumRange :
pixel);
break;
}
case UniformNoiseEvaluateOperator:
{
result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
UniformNoise,value);
break;
}
case XorEvaluateOperator:
{
result=(MagickRealType) ((size_t) pixel ^ (size_t) (value+0.5));
break;
}
}
return(result);
}
MagickExport MagickBooleanType EvaluateImage(Image *image,
const MagickEvaluateOperator op,const double value,ExceptionInfo *exception)
{
MagickBooleanType
status;
status=EvaluateImageChannel(image,AllChannels,op,value,exception);
return(status);
}
MagickExport Image *EvaluateImages(const Image *images,
const MagickEvaluateOperator op,ExceptionInfo *exception)
{
#define EvaluateImageTag "Evaluate/Image"
CacheView
*evaluate_view;
const Image
*next;
Image
*evaluate_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickPixelPacket
**restrict evaluate_pixels,
zero;
RandomInfo
**restrict random_info;
size_t
number_images;
ssize_t
y;
/*
Ensure the image are the same size.
*/
assert(images != (Image *) NULL);
assert(images->signature == MagickSignature);
if (images->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
for (next=images; next != (Image *) NULL; next=GetNextImageInList(next))
if ((next->columns != images->columns) || (next->rows != images->rows))
{
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"ImageWidthsOrHeightsDiffer","`%s'",images->filename);
return((Image *) NULL);
}
/*
Initialize evaluate next attributes.
*/
evaluate_image=CloneImage(images,images->columns,images->rows,MagickTrue,
exception);
if (evaluate_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(evaluate_image,DirectClass) == MagickFalse)
{
InheritException(exception,&evaluate_image->exception);
evaluate_image=DestroyImage(evaluate_image);
return((Image *) NULL);
}
number_images=GetImageListLength(images);
evaluate_pixels=AcquirePixelThreadSet(images,number_images);
if (evaluate_pixels == (MagickPixelPacket **) NULL)
{
evaluate_image=DestroyImage(evaluate_image);
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
return((Image *) NULL);
}
/*
Evaluate image pixels.
*/
status=MagickTrue;
progress=0;
GetMagickPixelPacket(images,&zero);
random_info=AcquireRandomInfoThreadSet();
evaluate_view=AcquireCacheView(evaluate_image);
if (op == MedianEvaluateOperator)
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic) shared(progress,status)
#endif
for (y=0; y < (ssize_t) evaluate_image->rows; y++)
{
CacheView
*image_view;
const Image
*next;
const int
id = GetOpenMPThreadId();
register IndexPacket
*restrict evaluate_indexes;
register MagickPixelPacket
*evaluate_pixel;
register PixelPacket
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,evaluate_image->columns,
1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
evaluate_indexes=GetCacheViewAuthenticIndexQueue(evaluate_view);
evaluate_pixel=evaluate_pixels[id];
for (x=0; x < (ssize_t) evaluate_image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) number_images; i++)
evaluate_pixel[i]=zero;
next=images;
for (i=0; i < (ssize_t) number_images; i++)
{
register const IndexPacket
*indexes;
register const PixelPacket
*p;
image_view=AcquireCacheView(next);
p=GetCacheViewVirtualPixels(image_view,x,y,1,1,exception);
if (p == (const PixelPacket *) NULL)
{
image_view=DestroyCacheView(image_view);
break;
}
indexes=GetCacheViewVirtualIndexQueue(image_view);
evaluate_pixel[i].red=ApplyEvaluateOperator(random_info[id],
p->red,op,evaluate_pixel[i].red);
evaluate_pixel[i].green=ApplyEvaluateOperator(random_info[id],
p->green,op,evaluate_pixel[i].green);
evaluate_pixel[i].blue=ApplyEvaluateOperator(random_info[id],
p->blue,op,evaluate_pixel[i].blue);
evaluate_pixel[i].opacity=ApplyEvaluateOperator(random_info[id],
p->opacity,op,evaluate_pixel[i].opacity);
if (evaluate_image->colorspace == CMYKColorspace)
evaluate_pixel[i].index=ApplyEvaluateOperator(random_info[id],
*indexes,op,evaluate_pixel[i].index);
image_view=DestroyCacheView(image_view);
next=GetNextImageInList(next);
}
qsort((void *) evaluate_pixel,number_images,sizeof(*evaluate_pixel),
IntensityCompare);
q->red=ClampToQuantum(evaluate_pixel[i/2].red);
q->green=ClampToQuantum(evaluate_pixel[i/2].green);
q->blue=ClampToQuantum(evaluate_pixel[i/2].blue);
if (evaluate_image->matte == MagickFalse)
q->opacity=ClampToQuantum(evaluate_pixel[i/2].opacity);
else
q->opacity=ClampToQuantum(QuantumRange-evaluate_pixel[i/2].opacity);
if (evaluate_image->colorspace == CMYKColorspace)
evaluate_indexes[i]=ClampToQuantum(evaluate_pixel[i/2].index);
q++;
}
if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
status=MagickFalse;
if (images->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_EvaluateImages)
#endif
proceed=SetImageProgress(images,EvaluateImageTag,progress++,
evaluate_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
else
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic) shared(progress,status)
#endif
for (y=0; y < (ssize_t) evaluate_image->rows; y++)
{
CacheView
*image_view;
const Image
*next;
const int
id = GetOpenMPThreadId();
register IndexPacket
*restrict evaluate_indexes;
register ssize_t
i,
x;
register MagickPixelPacket
*evaluate_pixel;
register PixelPacket
*restrict q;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,evaluate_image->columns,
1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
evaluate_indexes=GetCacheViewAuthenticIndexQueue(evaluate_view);
evaluate_pixel=evaluate_pixels[id];
for (x=0; x < (ssize_t) evaluate_image->columns; x++)
evaluate_pixel[x]=zero;
next=images;
for (i=0; i < (ssize_t) number_images; i++)
{
register const IndexPacket
*indexes;
register const PixelPacket
*p;
image_view=AcquireCacheView(next);
p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
if (p == (const PixelPacket *) NULL)
{
image_view=DestroyCacheView(image_view);
break;
}
indexes=GetCacheViewVirtualIndexQueue(image_view);
for (x=0; x < (ssize_t) next->columns; x++)
{
evaluate_pixel[x].red=ApplyEvaluateOperator(random_info[id],
p->red,i == 0 ? AddEvaluateOperator : op,evaluate_pixel[x].red);
evaluate_pixel[x].green=ApplyEvaluateOperator(random_info[id],
p->green,i == 0 ? AddEvaluateOperator : op,evaluate_pixel[x].green);
evaluate_pixel[x].blue=ApplyEvaluateOperator(random_info[id],
p->blue,i == 0 ? AddEvaluateOperator : op,evaluate_pixel[x].blue);
evaluate_pixel[x].opacity=ApplyEvaluateOperator(random_info[id],
p->opacity,i == 0 ? AddEvaluateOperator : op,
evaluate_pixel[x].opacity);
if (evaluate_image->colorspace == CMYKColorspace)
evaluate_pixel[x].index=ApplyEvaluateOperator(random_info[id],
indexes[x],i == 0 ? AddEvaluateOperator : op,
evaluate_pixel[x].index);
p++;
}
image_view=DestroyCacheView(image_view);
next=GetNextImageInList(next);
}
if (op == MeanEvaluateOperator)
for (x=0; x < (ssize_t) evaluate_image->columns; x++)
{
evaluate_pixel[x].red/=number_images;
evaluate_pixel[x].green/=number_images;
evaluate_pixel[x].blue/=number_images;
evaluate_pixel[x].opacity/=number_images;
evaluate_pixel[x].index/=number_images;
}
for (x=0; x < (ssize_t) evaluate_image->columns; x++)
{
q->red=ClampToQuantum(evaluate_pixel[x].red);
q->green=ClampToQuantum(evaluate_pixel[x].green);
q->blue=ClampToQuantum(evaluate_pixel[x].blue);
if (evaluate_image->matte == MagickFalse)
q->opacity=ClampToQuantum(evaluate_pixel[x].opacity);
else
q->opacity=ClampToQuantum(QuantumRange-evaluate_pixel[x].opacity);
if (evaluate_image->colorspace == CMYKColorspace)
evaluate_indexes[x]=ClampToQuantum(evaluate_pixel[x].index);
q++;
}
if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
status=MagickFalse;
if (images->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_EvaluateImages)
#endif
proceed=SetImageProgress(images,EvaluateImageTag,progress++,
evaluate_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
evaluate_view=DestroyCacheView(evaluate_view);
evaluate_pixels=DestroyPixelThreadSet(evaluate_pixels);
random_info=DestroyRandomInfoThreadSet(random_info);
if (status == MagickFalse)
evaluate_image=DestroyImage(evaluate_image);
return(evaluate_image);
}
MagickExport MagickBooleanType EvaluateImageChannel(Image *image,
const ChannelType channel,const MagickEvaluateOperator op,const double value,
ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
status;
MagickOffsetType
progress;
RandomInfo
**restrict random_info;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if (SetImageStorageClass(image,DirectClass) == MagickFalse)
{
InheritException(exception,&image->exception);
return(MagickFalse);
}
status=MagickTrue;
progress=0;
random_info=AcquireRandomInfoThreadSet();
image_view=AcquireCacheView(image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register IndexPacket
*restrict indexes;
register PixelPacket
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
q->red=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->red,op,
value));
if ((channel & GreenChannel) != 0)
q->green=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->green,
op,value));
if ((channel & BlueChannel) != 0)
q->blue=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->blue,op,
value));
if ((channel & OpacityChannel) != 0)
{
if (image->matte == MagickFalse)
q->opacity=ClampToQuantum(ApplyEvaluateOperator(random_info[id],
q->opacity,op,value));
else
q->opacity=ClampToQuantum(QuantumRange-ApplyEvaluateOperator(
random_info[id],(Quantum) GetAlphaPixelComponent(q),op,value));
}
if (((channel & IndexChannel) != 0) && (indexes != (IndexPacket *) NULL))
indexes[x]=(IndexPacket) ClampToQuantum(ApplyEvaluateOperator(
random_info[id],indexes[x],op,value));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_EvaluateImageChannel)
#endif
proceed=SetImageProgress(image,EvaluateImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
random_info=DestroyRandomInfoThreadSet(random_info);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% F u n c t i o n I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% FunctionImage() applies a value to the image with an arithmetic, relational,
% or logical operator to an image. Use these operations to lighten or darken
% an image, to increase or decrease contrast in an image, or to produce the
% "negative" of an image.
%
% The format of the FunctionImageChannel method is:
%
% MagickBooleanType FunctionImage(Image *image,
% const MagickFunction function,const ssize_t number_parameters,
% const double *parameters,ExceptionInfo *exception)
% MagickBooleanType FunctionImageChannel(Image *image,
% const ChannelType channel,const MagickFunction function,
% const ssize_t number_parameters,const double *argument,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o function: A channel function.
%
% o parameters: one or more parameters.
%
% o exception: return any errors or warnings in this structure.
%
*/
static Quantum ApplyFunction(Quantum pixel,const MagickFunction function,
const size_t number_parameters,const double *parameters,
ExceptionInfo *exception)
{
MagickRealType
result;
register ssize_t
i;
(void) exception;
result=0.0;
switch (function)
{
case PolynomialFunction:
{
/*
* Polynomial
* Parameters: polynomial constants, highest to lowest order
* For example: c0*x^3 + c1*x^2 + c2*x + c3
*/
result=0.0;
for (i=0; i < (ssize_t) number_parameters; i++)
result = result*QuantumScale*pixel + parameters[i];
result *= QuantumRange;
break;
}
case SinusoidFunction:
{
/* Sinusoid Function
* Parameters: Freq, Phase, Ampl, bias
*/
double freq,phase,ampl,bias;
freq = ( number_parameters >= 1 ) ? parameters[0] : 1.0;
phase = ( number_parameters >= 2 ) ? parameters[1] : 0.0;
ampl = ( number_parameters >= 3 ) ? parameters[2] : 0.5;
bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5;
result=(MagickRealType) (QuantumRange*(ampl*sin((double) (2.0*MagickPI*
(freq*QuantumScale*pixel + phase/360.0) )) + bias ) );
break;
}
case ArcsinFunction:
{
/* Arcsin Function (peged at range limits for invalid results)
* Parameters: Width, Center, Range, Bias
*/
double width,range,center,bias;
width = ( number_parameters >= 1 ) ? parameters[0] : 1.0;
center = ( number_parameters >= 2 ) ? parameters[1] : 0.5;
range = ( number_parameters >= 3 ) ? parameters[2] : 1.0;
bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5;
result = 2.0/width*(QuantumScale*pixel - center);
if ( result <= -1.0 )
result = bias - range/2.0;
else if ( result >= 1.0 )
result = bias + range/2.0;
else
result=(MagickRealType) (range/MagickPI*asin((double) result)+bias);
result *= QuantumRange;
break;
}
case ArctanFunction:
{
/* Arctan Function
* Parameters: Slope, Center, Range, Bias
*/
double slope,range,center,bias;
slope = ( number_parameters >= 1 ) ? parameters[0] : 1.0;
center = ( number_parameters >= 2 ) ? parameters[1] : 0.5;
range = ( number_parameters >= 3 ) ? parameters[2] : 1.0;
bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5;
result=(MagickRealType) (MagickPI*slope*(QuantumScale*pixel-center));
result=(MagickRealType) (QuantumRange*(range/MagickPI*atan((double)
result) + bias ) );
break;
}
case UndefinedFunction:
break;
}
return(ClampToQuantum(result));
}
MagickExport MagickBooleanType FunctionImage(Image *image,
const MagickFunction function,const size_t number_parameters,
const double *parameters,ExceptionInfo *exception)
{
MagickBooleanType
status;
status=FunctionImageChannel(image,AllChannels,function,number_parameters,
parameters,exception);
return(status);
}
MagickExport MagickBooleanType FunctionImageChannel(Image *image,
const ChannelType channel,const MagickFunction function,
const size_t number_parameters,const double *parameters,
ExceptionInfo *exception)
{
#define FunctionImageTag "Function/Image "
CacheView
*image_view;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if (SetImageStorageClass(image,DirectClass) == MagickFalse)
{
InheritException(exception,&image->exception);
return(MagickFalse);
}
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register IndexPacket
*restrict indexes;
register ssize_t
x;
register PixelPacket
*restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
q->red=ApplyFunction(q->red,function,number_parameters,parameters,
exception);
if ((channel & GreenChannel) != 0)
q->green=ApplyFunction(q->green,function,number_parameters,parameters,
exception);
if ((channel & BlueChannel) != 0)
q->blue=ApplyFunction(q->blue,function,number_parameters,parameters,
exception);
if ((channel & OpacityChannel) != 0)
{
if (image->matte == MagickFalse)
q->opacity=ApplyFunction(q->opacity,function,number_parameters,
parameters,exception);
else
q->opacity=(Quantum) QuantumRange-ApplyFunction((Quantum)
GetAlphaPixelComponent(q),function,number_parameters,parameters,
exception);
}
if (((channel & IndexChannel) != 0) && (indexes != (IndexPacket *) NULL))
indexes[x]=(IndexPacket) ApplyFunction(indexes[x],function,
number_parameters,parameters,exception);
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_FunctionImageChannel)
#endif
proceed=SetImageProgress(image,FunctionImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t I m a g e C h a n n e l E x t r e m a %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageChannelExtrema() returns the extrema of one or more image channels.
%
% The format of the GetImageChannelExtrema method is:
%
% MagickBooleanType GetImageChannelExtrema(const Image *image,
% const ChannelType channel,size_t *minima,size_t *maxima,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o minima: the minimum value in the channel.
%
% o maxima: the maximum value in the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageExtrema(const Image *image,
size_t *minima,size_t *maxima,ExceptionInfo *exception)
{
return(GetImageChannelExtrema(image,AllChannels,minima,maxima,exception));
}
MagickExport MagickBooleanType GetImageChannelExtrema(const Image *image,
const ChannelType channel,size_t *minima,size_t *maxima,
ExceptionInfo *exception)
{
double
max,
min;
MagickBooleanType
status;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
status=GetImageChannelRange(image,channel,&min,&max,exception);
*minima=(size_t) ceil(min-0.5);
*maxima=(size_t) floor(max+0.5);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e C h a n n e l M e a n %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageChannelMean() returns the mean and standard deviation of one or more
% image channels.
%
% The format of the GetImageChannelMean method is:
%
% MagickBooleanType GetImageChannelMean(const Image *image,
% const ChannelType channel,double *mean,double *standard_deviation,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o mean: the average value in the channel.
%
% o standard_deviation: the standard deviation of the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageMean(const Image *image,double *mean,
double *standard_deviation,ExceptionInfo *exception)
{
MagickBooleanType
status;
status=GetImageChannelMean(image,AllChannels,mean,standard_deviation,
exception);
return(status);
}
MagickExport MagickBooleanType GetImageChannelMean(const Image *image,
const ChannelType channel,double *mean,double *standard_deviation,
ExceptionInfo *exception)
{
ChannelStatistics
*channel_statistics;
size_t
channels;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
channel_statistics=GetImageChannelStatistics(image,exception);
if (channel_statistics == (ChannelStatistics *) NULL)
return(MagickFalse);
channels=0;
channel_statistics[AllChannels].mean=0.0;
channel_statistics[AllChannels].standard_deviation=0.0;
if ((channel & RedChannel) != 0)
{
channel_statistics[AllChannels].mean+=
channel_statistics[RedChannel].mean;
channel_statistics[AllChannels].standard_deviation+=
channel_statistics[RedChannel].variance-
channel_statistics[RedChannel].mean*
channel_statistics[RedChannel].mean;
channels++;
}
if ((channel & GreenChannel) != 0)
{
channel_statistics[AllChannels].mean+=
channel_statistics[GreenChannel].mean;
channel_statistics[AllChannels].standard_deviation+=
channel_statistics[GreenChannel].variance-
channel_statistics[GreenChannel].mean*
channel_statistics[GreenChannel].mean;
channels++;
}
if ((channel & BlueChannel) != 0)
{
channel_statistics[AllChannels].mean+=
channel_statistics[BlueChannel].mean;
channel_statistics[AllChannels].standard_deviation+=
channel_statistics[BlueChannel].variance-
channel_statistics[BlueChannel].mean*
channel_statistics[BlueChannel].mean;
channels++;
}
if (((channel & OpacityChannel) != 0) &&
(image->matte != MagickFalse))
{
channel_statistics[AllChannels].mean+=
channel_statistics[OpacityChannel].mean;
channel_statistics[AllChannels].standard_deviation+=
channel_statistics[OpacityChannel].variance-
channel_statistics[OpacityChannel].mean*
channel_statistics[OpacityChannel].mean;
channels++;
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
{
channel_statistics[AllChannels].mean+=
channel_statistics[BlackChannel].mean;
channel_statistics[AllChannels].standard_deviation+=
channel_statistics[BlackChannel].variance-
channel_statistics[BlackChannel].mean*
channel_statistics[BlackChannel].mean;
channels++;
}
channel_statistics[AllChannels].mean/=channels;
channel_statistics[AllChannels].standard_deviation=
sqrt(channel_statistics[AllChannels].standard_deviation/channels);
*mean=channel_statistics[AllChannels].mean;
*standard_deviation=channel_statistics[AllChannels].standard_deviation;
channel_statistics=(ChannelStatistics *) RelinquishMagickMemory(
channel_statistics);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e C h a n n e l K u r t o s i s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageChannelKurtosis() returns the kurtosis and skewness of one or more
% image channels.
%
% The format of the GetImageChannelKurtosis method is:
%
% MagickBooleanType GetImageChannelKurtosis(const Image *image,
% const ChannelType channel,double *kurtosis,double *skewness,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o kurtosis: the kurtosis of the channel.
%
% o skewness: the skewness of the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageKurtosis(const Image *image,
double *kurtosis,double *skewness,ExceptionInfo *exception)
{
MagickBooleanType
status;
status=GetImageChannelKurtosis(image,AllChannels,kurtosis,skewness,
exception);
return(status);
}
MagickExport MagickBooleanType GetImageChannelKurtosis(const Image *image,
const ChannelType channel,double *kurtosis,double *skewness,
ExceptionInfo *exception)
{
double
area,
mean,
standard_deviation,
sum_squares,
sum_cubes,
sum_fourth_power;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
*kurtosis=0.0;
*skewness=0.0;
area=0.0;
mean=0.0;
standard_deviation=0.0;
sum_squares=0.0;
sum_cubes=0.0;
sum_fourth_power=0.0;
for (y=0; y < (ssize_t) image->rows; y++)
{
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetVirtualIndexQueue(image);
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
{
mean+=GetRedPixelComponent(p);
sum_squares+=(double) p->red*GetRedPixelComponent(p);
sum_cubes+=(double) p->red*p->red*GetRedPixelComponent(p);
sum_fourth_power+=(double) p->red*p->red*p->red*
GetRedPixelComponent(p);
area++;
}
if ((channel & GreenChannel) != 0)
{
mean+=GetGreenPixelComponent(p);
sum_squares+=(double) p->green*GetGreenPixelComponent(p);
sum_cubes+=(double) p->green*p->green*GetGreenPixelComponent(p);
sum_fourth_power+=(double) p->green*p->green*p->green*
GetGreenPixelComponent(p);
area++;
}
if ((channel & BlueChannel) != 0)
{
mean+=GetBluePixelComponent(p);
sum_squares+=(double) p->blue*GetBluePixelComponent(p);
sum_cubes+=(double) p->blue*p->blue*GetBluePixelComponent(p);
sum_fourth_power+=(double) p->blue*p->blue*p->blue*
GetBluePixelComponent(p);
area++;
}
if ((channel & OpacityChannel) != 0)
{
mean+=GetOpacityPixelComponent(p);
sum_squares+=(double) p->opacity*GetOpacityPixelComponent(p);
sum_cubes+=(double) p->opacity*p->opacity*GetOpacityPixelComponent(p);
sum_fourth_power+=(double) p->opacity*p->opacity*p->opacity*
GetOpacityPixelComponent(p);
area++;
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
{
mean+=indexes[x];
sum_squares+=(double) indexes[x]*indexes[x];
sum_cubes+=(double) indexes[x]*indexes[x]*indexes[x];
sum_fourth_power+=(double) indexes[x]*indexes[x]*indexes[x]*
indexes[x];
area++;
}
p++;
}
}
if (y < (ssize_t) image->rows)
return(MagickFalse);
if (area != 0.0)
{
mean/=area;
sum_squares/=area;
sum_cubes/=area;
sum_fourth_power/=area;
}
standard_deviation=sqrt(sum_squares-(mean*mean));
if (standard_deviation != 0.0)
{
*kurtosis=sum_fourth_power-4.0*mean*sum_cubes+6.0*mean*mean*sum_squares-
3.0*mean*mean*mean*mean;
*kurtosis/=standard_deviation*standard_deviation*standard_deviation*
standard_deviation;
*kurtosis-=3.0;
*skewness=sum_cubes-3.0*mean*sum_squares+2.0*mean*mean*mean;
*skewness/=standard_deviation*standard_deviation*standard_deviation;
}
return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e C h a n n e l R a n g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageChannelRange() returns the range of one or more image channels.
%
% The format of the GetImageChannelRange method is:
%
% MagickBooleanType GetImageChannelRange(const Image *image,
% const ChannelType channel,double *minima,double *maxima,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o minima: the minimum value in the channel.
%
% o maxima: the maximum value in the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageRange(const Image *image,
double *minima,double *maxima,ExceptionInfo *exception)
{
return(GetImageChannelRange(image,AllChannels,minima,maxima,exception));
}
MagickExport MagickBooleanType GetImageChannelRange(const Image *image,
const ChannelType channel,double *minima,double *maxima,
ExceptionInfo *exception)
{
MagickPixelPacket
pixel;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
*maxima=(-1.0E-37);
*minima=1.0E+37;
GetMagickPixelPacket(image,&pixel);
for (y=0; y < (ssize_t) image->rows; y++)
{
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetVirtualIndexQueue(image);
for (x=0; x < (ssize_t) image->columns; x++)
{
SetMagickPixelPacket(image,p,indexes+x,&pixel);
if ((channel & RedChannel) != 0)
{
if (pixel.red < *minima)
*minima=(double) pixel.red;
if (pixel.red > *maxima)
*maxima=(double) pixel.red;
}
if ((channel & GreenChannel) != 0)
{
if (pixel.green < *minima)
*minima=(double) pixel.green;
if (pixel.green > *maxima)
*maxima=(double) pixel.green;
}
if ((channel & BlueChannel) != 0)
{
if (pixel.blue < *minima)
*minima=(double) pixel.blue;
if (pixel.blue > *maxima)
*maxima=(double) pixel.blue;
}
if ((channel & OpacityChannel) != 0)
{
if (pixel.opacity < *minima)
*minima=(double) pixel.opacity;
if (pixel.opacity > *maxima)
*maxima=(double) pixel.opacity;
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
{
if ((double) indexes[x] < *minima)
*minima=(double) indexes[x];
if ((double) indexes[x] > *maxima)
*maxima=(double) indexes[x];
}
p++;
}
}
return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e C h a n n e l S t a t i s t i c s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageChannelStatistics() returns statistics for each channel in the
% image. The statistics include the channel depth, its minima, maxima, mean,
% standard deviation, kurtosis and skewness. You can access the red channel
% mean, for example, like this:
%
% channel_statistics=GetImageChannelStatistics(image,exception);
% red_mean=channel_statistics[RedChannel].mean;
%
% Use MagickRelinquishMemory() to free the statistics buffer.
%
% The format of the GetImageChannelStatistics method is:
%
% ChannelStatistics *GetImageChannelStatistics(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport ChannelStatistics *GetImageChannelStatistics(const Image *image,
ExceptionInfo *exception)
{
ChannelStatistics
*channel_statistics;
double
area;
MagickStatusType
status;
QuantumAny
range;
register ssize_t
i;
size_t
channels,
depth,
length;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
length=AllChannels+1UL;
channel_statistics=(ChannelStatistics *) AcquireQuantumMemory(length,
sizeof(*channel_statistics));
if (channel_statistics == (ChannelStatistics *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
(void) ResetMagickMemory(channel_statistics,0,length*
sizeof(*channel_statistics));
for (i=0; i <= AllChannels; i++)
{
channel_statistics[i].depth=1;
channel_statistics[i].maxima=(-1.0E-37);
channel_statistics[i].minima=1.0E+37;
}
for (y=0; y < (ssize_t) image->rows; y++)
{
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetVirtualIndexQueue(image);
for (x=0; x < (ssize_t) image->columns; )
{
if (channel_statistics[RedChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
{
depth=channel_statistics[RedChannel].depth;
range=GetQuantumRange(depth);
status=p->red != ScaleAnyToQuantum(ScaleQuantumToAny(p->red,range),
range) ? MagickTrue : MagickFalse;
if (status != MagickFalse)
{
channel_statistics[RedChannel].depth++;
continue;
}
}
if (channel_statistics[GreenChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
{
depth=channel_statistics[GreenChannel].depth;
range=GetQuantumRange(depth);
status=p->green != ScaleAnyToQuantum(ScaleQuantumToAny(p->green,
range),range) ? MagickTrue : MagickFalse;
if (status != MagickFalse)
{
channel_statistics[GreenChannel].depth++;
continue;
}
}
if (channel_statistics[BlueChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
{
depth=channel_statistics[BlueChannel].depth;
range=GetQuantumRange(depth);
status=p->blue != ScaleAnyToQuantum(ScaleQuantumToAny(p->blue,
range),range) ? MagickTrue : MagickFalse;
if (status != MagickFalse)
{
channel_statistics[BlueChannel].depth++;
continue;
}
}
if (image->matte != MagickFalse)
{
if (channel_statistics[OpacityChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
{
depth=channel_statistics[OpacityChannel].depth;
range=GetQuantumRange(depth);
status=p->opacity != ScaleAnyToQuantum(ScaleQuantumToAny(
p->opacity,range),range) ? MagickTrue : MagickFalse;
if (status != MagickFalse)
{
channel_statistics[OpacityChannel].depth++;
continue;
}
}
}
if (image->colorspace == CMYKColorspace)
{
if (channel_statistics[BlackChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
{
depth=channel_statistics[BlackChannel].depth;
range=GetQuantumRange(depth);
status=indexes[x] != ScaleAnyToQuantum(ScaleQuantumToAny(
indexes[x],range),range) ? MagickTrue : MagickFalse;
if (status != MagickFalse)
{
channel_statistics[BlackChannel].depth++;
continue;
}
}
}
if ((double) p->red < channel_statistics[RedChannel].minima)
channel_statistics[RedChannel].minima=(double) GetRedPixelComponent(p);
if ((double) p->red > channel_statistics[RedChannel].maxima)
channel_statistics[RedChannel].maxima=(double) GetRedPixelComponent(p);
channel_statistics[RedChannel].sum+=GetRedPixelComponent(p);
channel_statistics[RedChannel].sum_squared+=(double) p->red*
GetRedPixelComponent(p);
channel_statistics[RedChannel].sum_cubed+=(double) p->red*p->red*
GetRedPixelComponent(p);
channel_statistics[RedChannel].sum_fourth_power+=(double) p->red*p->red*
p->red*GetRedPixelComponent(p);
if ((double) p->green < channel_statistics[GreenChannel].minima)
channel_statistics[GreenChannel].minima=(double)
GetGreenPixelComponent(p);
if ((double) p->green > channel_statistics[GreenChannel].maxima)
channel_statistics[GreenChannel].maxima=(double)
GetGreenPixelComponent(p);
channel_statistics[GreenChannel].sum+=GetGreenPixelComponent(p);
channel_statistics[GreenChannel].sum_squared+=(double) p->green*
GetGreenPixelComponent(p);
channel_statistics[GreenChannel].sum_cubed+=(double) p->green*p->green*
GetGreenPixelComponent(p);
channel_statistics[GreenChannel].sum_fourth_power+=(double) p->green*
p->green*p->green*GetGreenPixelComponent(p);
if ((double) p->blue < channel_statistics[BlueChannel].minima)
channel_statistics[BlueChannel].minima=(double)
GetBluePixelComponent(p);
if ((double) p->blue > channel_statistics[BlueChannel].maxima)
channel_statistics[BlueChannel].maxima=(double)
GetBluePixelComponent(p);
channel_statistics[BlueChannel].sum+=GetBluePixelComponent(p);
channel_statistics[BlueChannel].sum_squared+=(double) p->blue*
GetBluePixelComponent(p);
channel_statistics[BlueChannel].sum_cubed+=(double) p->blue*p->blue*
GetBluePixelComponent(p);
channel_statistics[BlueChannel].sum_fourth_power+=(double) p->blue*
p->blue*p->blue*GetBluePixelComponent(p);
if (image->matte != MagickFalse)
{
if ((double) p->opacity < channel_statistics[OpacityChannel].minima)
channel_statistics[OpacityChannel].minima=(double)
GetOpacityPixelComponent(p);
if ((double) p->opacity > channel_statistics[OpacityChannel].maxima)
channel_statistics[OpacityChannel].maxima=(double)
GetOpacityPixelComponent(p);
channel_statistics[OpacityChannel].sum+=GetOpacityPixelComponent(p);
channel_statistics[OpacityChannel].sum_squared+=(double)
p->opacity*GetOpacityPixelComponent(p);
channel_statistics[OpacityChannel].sum_cubed+=(double) p->opacity*
p->opacity*GetOpacityPixelComponent(p);
channel_statistics[OpacityChannel].sum_fourth_power+=(double)
p->opacity*p->opacity*p->opacity*GetOpacityPixelComponent(p);
}
if (image->colorspace == CMYKColorspace)
{
if ((double) indexes[x] < channel_statistics[BlackChannel].minima)
channel_statistics[BlackChannel].minima=(double) indexes[x];
if ((double) indexes[x] > channel_statistics[BlackChannel].maxima)
channel_statistics[BlackChannel].maxima=(double) indexes[x];
channel_statistics[BlackChannel].sum+=indexes[x];
channel_statistics[BlackChannel].sum_squared+=(double)
indexes[x]*indexes[x];
channel_statistics[BlackChannel].sum_cubed+=(double) indexes[x]*
indexes[x]*indexes[x];
channel_statistics[BlackChannel].sum_fourth_power+=(double)
indexes[x]*indexes[x]*indexes[x]*indexes[x];
}
x++;
p++;
}
}
area=(double) image->columns*image->rows;
for (i=0; i < AllChannels; i++)
{
channel_statistics[i].sum/=area;
channel_statistics[i].sum_squared/=area;
channel_statistics[i].sum_cubed/=area;
channel_statistics[i].sum_fourth_power/=area;
channel_statistics[i].mean=channel_statistics[i].sum;
channel_statistics[i].variance=channel_statistics[i].sum_squared;
channel_statistics[i].standard_deviation=sqrt(
channel_statistics[i].variance-(channel_statistics[i].mean*
channel_statistics[i].mean));
}
for (i=0; i < AllChannels; i++)
{
channel_statistics[AllChannels].depth=(size_t) MagickMax((double)
channel_statistics[AllChannels].depth,(double)
channel_statistics[i].depth);
channel_statistics[AllChannels].minima=MagickMin(
channel_statistics[AllChannels].minima,channel_statistics[i].minima);
channel_statistics[AllChannels].maxima=MagickMax(
channel_statistics[AllChannels].maxima,channel_statistics[i].maxima);
channel_statistics[AllChannels].sum+=channel_statistics[i].sum;
channel_statistics[AllChannels].sum_squared+=
channel_statistics[i].sum_squared;
channel_statistics[AllChannels].sum_cubed+=channel_statistics[i].sum_cubed;
channel_statistics[AllChannels].sum_fourth_power+=
channel_statistics[i].sum_fourth_power;
channel_statistics[AllChannels].mean+=channel_statistics[i].mean;
channel_statistics[AllChannels].variance+=channel_statistics[i].variance-
channel_statistics[i].mean*channel_statistics[i].mean;
channel_statistics[AllChannels].standard_deviation+=
channel_statistics[i].variance-channel_statistics[i].mean*
channel_statistics[i].mean;
}
channels=3;
if (image->matte != MagickFalse)
channels++;
if (image->colorspace == CMYKColorspace)
channels++;
channel_statistics[AllChannels].sum/=channels;
channel_statistics[AllChannels].sum_squared/=channels;
channel_statistics[AllChannels].sum_cubed/=channels;
channel_statistics[AllChannels].sum_fourth_power/=channels;
channel_statistics[AllChannels].mean/=channels;
channel_statistics[AllChannels].variance/=channels;
channel_statistics[AllChannels].standard_deviation=
sqrt(channel_statistics[AllChannels].standard_deviation/channels);
channel_statistics[AllChannels].kurtosis/=channels;
channel_statistics[AllChannels].skewness/=channels;
for (i=0; i <= AllChannels; i++)
{
if (channel_statistics[i].standard_deviation == 0.0)
continue;
channel_statistics[i].skewness=(channel_statistics[i].sum_cubed-
3.0*channel_statistics[i].mean*channel_statistics[i].sum_squared+
2.0*channel_statistics[i].mean*channel_statistics[i].mean*
channel_statistics[i].mean)/(channel_statistics[i].standard_deviation*
channel_statistics[i].standard_deviation*
channel_statistics[i].standard_deviation);
channel_statistics[i].kurtosis=(channel_statistics[i].sum_fourth_power-
4.0*channel_statistics[i].mean*channel_statistics[i].sum_cubed+
6.0*channel_statistics[i].mean*channel_statistics[i].mean*
channel_statistics[i].sum_squared-3.0*channel_statistics[i].mean*
channel_statistics[i].mean*1.0*channel_statistics[i].mean*
channel_statistics[i].mean)/(channel_statistics[i].standard_deviation*
channel_statistics[i].standard_deviation*
channel_statistics[i].standard_deviation*
channel_statistics[i].standard_deviation)-3.0;
}
return(channel_statistics);
}